
Pawel Sobocinski, Tallinn University of Technology 
IFIP WG2.2 Bologna 6-8 September, 2023

Diagrammatic Algebra of First Order Logic
joint work with Filippo Bonchi and Alessandro Di Giorgio, U. Pisa and 
Nathan Haydon, Tallinn University of Technology



(First Order) Logic is strange, when you’re a stranger

• The syntax has binders, with all of the added baggage


• The proof theory (sequent calculus, natural deduction) is syntax directed and 
not compositional — rules look only at the outer connective


• although Guglielmi et al have been doing very interesting work on deep 
inference


• There are some more subtle technical issues caused by bad syntax 

• e.g. Gödel completeness (e.g. Henkin’s proof) has as an assumption model 
non-emptiness, which seems strange — surely first order logic with empty 
model should be propositional logic?



W.V. Quine. 1971. Predicate-Functor Logics.

“Logic in his adolescent phase was algebraic. There was Boole’s 
algebra of classes and Peirce’s algebra of relations. But in 1879 
logic come of age, with Frege’s quantification theory. Here the 
bound variables, so characteristic of analysis rather than of algebra, 
became central to logic.”



Some recent work

• Relational calculus with string diagrams, building on the concept of cartesian bicategories of 
relations of Carboni and Walters


• logically, this corresponds to regular logic: the conjunctive existential fragment 


• Filippo Bonchi, Jens Seeber, PS. Graphical Conjunctive Queries. CSL 2018: 13:1-13:23


• Peirce’s existential graphs seen as string diagrams


• Nathan Haydon, PS. Compositional Diagrammatic First-Order Logic. Diagrams 2020: 402-418


• Adding disjunction to regular logic (= coherent logic)


• Filippo Bonchi, Alessandro Di Giorgio, Alessio Santamaria. Deconstructing the Calculus of 
Relations with Tape Diagrams. PoPL 23: 1864-1894



The monoidal category of relations

• Rel = category with objects sets and arrows X→Y relations R ⊆ X×Y


• composition x (R ; S) z iff ∃y. xRy ∧ ySz 


• monoidal product is cartesian product


• identies are x I y iff x=y 



Results

• An algebraic calculus for full first order logic with equality


• diagrammatic syntax with a sound and complete axiomatisation


• an axiomatisation that is justified by some underlying categorical structure


• A functorial semantics for first order theories

M : STh → Rel



Two starting points

• Aurelio Carboni and RFC Walters (1987) Cartesian Bicategories  

• an algebra of relations with the expressive power of regular logic 

• Charles Peirce’s Calculus of Relations (1883)


• featuring linear distributivity and linear adjoints



Towards cartesian bicategories i 

• Lawvere in the 1960s realised the power of cartesian categories


• free cartesian categories on a signature are the same as categories of 
terms and substitutions (classical syntax)


• cartesian category induced by a (presentation of an) algebraic theory is a 
presentation-independent notion of algebraic theory in the universal 
algebraic sense 


• functorial semantics: models are cartesian functors to Set, 
homomorphisms are natural transformations 



Aside - Fox’s theorem

• A category is cartesian iff it is symmetric monoidal st every object is equipped 
with a cocommutative comonoid structure 


• which is natural


• and coherent
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Fig. 1. Axioms of Cartesian bicategories

instance the left and the right hand sides of the axiom (J�-nat) in Figure 1 become 2
<
<

=

and
2

2

<
<

= for all =,< 2 N and 2 2 dNPR⌃ [=,<]. In term syntax: 2 ,� J�< , J�= ,� (2 ⌦ 2).
Let FOB be the well-typed relation containing the pairs of diagrams (2,3) obtained via such

substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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instance the left and the right hand sides of the axiom (J�-nat) in Figure 1 become 2
<
<

=

and
2

2

<
<

= for all =,< 2 N and 2 2 dNPR⌃ [=,<]. In term syntax: 2 ,� J�< , J�= ,� (2 ⌦ 2).
Let FOB be the well-typed relation containing the pairs of diagrams (2,3) obtained via such

substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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Towards cartesian bicategories ii

• But what if one wants to move to more expressive theories? 


• e.g. what if one wants models in Rel?


• Rel = category with objects sets and arrows X→Y relations R ⊆ X×Y


• composition x (R ; S) z iff ∃y. xRy ∧ ySz 


• identies are x I y iff x=y 


• Cartesian product is still important (n-ary relations can be seen as a relation of type Xn → 1)


• But cartesian product is not the categorical product in Rel…


• Note though: it does make Rel a symmetric monoidal category and every homset is a poset 



Cartesian bicategories 
• every homset is a poset 


• every object X is equipped with a cocommutative comonoid structure 


• but now the naturality is only weak


• and there is new structure!


• the comonoid structure has right adjoints 

• and together they satisfy the Frobenius equation
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= for all =,< 2 N and 2 2 dNPR⌃ [=,<]. In term syntax: 2 ,� J�< , J�= ,� (2 ⌦ 2).
Let FOB be the well-typed relation containing the pairs of diagrams (2,3) obtained via such

substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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Let FOB be the well-typed relation containing the pairs of diagrams (2,3) obtained via such

substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.
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Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
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instance the left and the right hand sides of the axiom (J�-nat) in Figure 1 become 2
<
<

=

and
2

2

<
<

= for all =,< 2 N and 2 2 dNPR⌃ [=,<]. In term syntax: 2 ,� J�< , J�= ,� (2 ⌦ 2).
Let FOB be the well-typed relation containing the pairs of diagrams (2,3) obtained via such

substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.
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Let FOB be the well-typed relation containing the pairs of diagrams (2,3) obtained via such

substitutions for the axioms in Figs. 1, 2, 3, 4 and call its precongruence closure syntactic inclusion,
written .. In symbols .= pc(FOB). We will also write �def=. \ &. Our main result is:

T������ 3.3 (C�����������). For all diagrams 2,3 : = !< in dNPR⌃, 2 . 3 i� 2 5 3 .

The axiomatisation is far from minimal and is redundant in several respects: for instance in
Figure 1 the law ([ J�) follows immediately from (S�); in the same �gure the letter - in all the
axioms, with the exception of (J�-nat) and (!�-nat), can be substituted only by 1 rather than an
arbitrary = 2 N. We chose the more verbose presentation in order to emphasise both the underlying
categorical structures and the various dualities that we will highlight in the next sections.

Proofs as diagrams rewrites. Proofs in NPR⌃ are rather di�erent from those of traditional proof
systems: since the only inference rules are those in (11), any proof of 2 . 3 consists of a sequence of
applications of axioms. As an example consider (1) from the Introduction (see App. A.1 for a proof
not using Prop. 6.4). Note that, when applying axioms, we are in fact performing diagram rewriting:
an instance of the left hand side of an axiom is found within a larger diagram and replaced with the
right hand side. Given that such rewrites can happen anywhere, there are close analogies between
proofs in NPR⌃ and deep inference [15, 39, 45] – see Example 7.6 for more details.

4 CARTESIAN BICATEGORIES
Although the term bicategory might seem ominous, the beasts considered in this paper are actually
quite simple. We consider poset enriched symmetric monoidal categories: every homset carries a
partial order , and composition ,•� and monoidal product �⌦ are monotone. That is, if 0  1 and
2  3 then 0 ,•� 2  1 ,•� 3 and 0 �⌦ 2  1 �⌦ 3 . A poset enriched symmetric monoidal functor is a
(strong, and usually strict) symmetric monoidal functor that preserves the order . The notion of
adjoint arrows, which will play a key role, amounts to the following: for 2 : - ! . and 3 : . ! - ,
2 is left adjoint to 3 , or 3 is right adjoint to 2 , written 3 ` 2 , if 83•�-  2 ,•� 3 and 3 ,•� 2  83•�. .

For a symmetric monoidal bicategory (C, �⌦, � ), we will write Cop for the bicategory having the
same objects as C but homsets Cop

[- ,. ]
def= C[. ,- ]: ordering, identities and monoidal product are

de�ned as in C, while composition 2 ,•� 3 in Cop is 3 ,•� 2 in C. Similarly, we will write Cco to denote
the bicategory having the same objects and arrows of C but equipped with the reversed ordering �.

10



Functorial semantics for relational theories

• A la Lawvere, once you know that the notion of cartesian bicategory replaces 
cartesian category


• term syntax is given by string diagrams


• models are functors of cartesian bicategories to Rel 

• homomorphisms are the canonical notion of natural transformation


• completeness (CSL 2018)


• This same general functorial semantics recipe is repeated for partial algebraic 
theories (PoPL 21) and coherent theories (PoPL 23)



Two starting points

• Aurelio Carboni and RFC Walters (1987) Cartesian Bicategories 


• an algebra of relations with the expressive power of regular logic


• Charles Peirce’s Calculus of Relations (1883) 

• featuring linear distributivity and linear adjoints



Aside: Rel’s weird cousin 

• From now on let us call the usual category of relations Rel◦


• Lets meet its strange cousin, Rel•

• objects are still sets and arrows are still relations


• composition is x (R ; S) z iff ∀ y. xRy ∨ ySz


• identities are x I y iff x ≠ y


• cartesian product on objects still makes it a symmetric monoidal category, and 
homsets are posets 


• But it is a cocartesian bicategory (the inequalities go the other way!)



Peirce’s calculus of relations (1883)

• Peirce liked the weird cousin 


• The calculus only deals with binary relations. Peirce did not like this and went 
on to work on existential graphs (19th century string diagrams)


• Later work on relational calculi (e.g. Tarski) discarded the “black” structure
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so does the second. Within our calculus, this statement is expressed as the above right inequality.
This can be proved by mean of the axiomatisation we introduce in this work as follows:

' = '
([¡•)
 '

Prop.
6.4= '

(n¡•)
 ' = ' (1)

The central step relies on the particularly good behaviour of maps, intuitively those relations that
are functional. In particular is an example. The details are not important at this stage.

Synopsis. We begin by recalling Peirce’s calculus of relations in Section 2. The calculus of neo-
Peircean relations is introduced in Section 3, together with the statement of our main result
(Theorem 3.3). We recall (co)cartesian bicategories in Section 4 and linear bicategories in Section 5.
The categorical structures most important for our work are �rst-order bicategories, introduced in
Section 6. In Section 7 we consider �rst order theories, the diagrammatic version of the deduction
theorem (Theorem 7.7) and some subtle di�erences with �rst order logic that play an important role
on the proof of completeness in Section 8. The translations of �rst-order logic, existential graphs
and the calculus of relations into NPR⌃ are given in Section 9. Appendix A contains additional
material that did not make it due to space restrictions. All proofs are in the remaining appendices.

2 PEIRCE’S CALCULUS OF BINARY RELATIONS
The calculus of binary relations, in an original presentation given by Peirce in [66], features two
forms of relational compositions ,� and ,• , de�ned for all relations ' ✓ - ⇥ . and ( ✓ . ⇥ / as

' ,� (
def= {(G,~) | 9~ . (G,~) 2 '^(~, I) 2 (} and ' ,• (

def= {(G,~) | 8~ . (G,~) 2 '_(~, I) 2 (} (2)

with units the equality and the di�erence relations respectively, de�ned for all sets - as

83�-
def= {(G,~) | G = ~} ✓ - ⇥ - and 83•-

def= {(G,~) | G < ~} ✓ - ⇥ - . (3)

Beyond the usual union [, intersection \, and their units ? and >, the calculus also features two
unary operations ·† and · denoting the opposite and the complement: '† def= {(~, G) | (G,~) 2 '} and
'

def= {(G,~) | (G,~) 8 '}. In summary, its syntax is given by the following context free grammar

⇢ ::= ' | 83� | ⇢ ,� ⇢ | 83• | ⇢ ,• ⇢ | ? | ⇢ [ ⇢ | > | ⇢ \ ⇢ | ⇢† | ⇢ (CR⌃)

where ' is taken from a given set ⌃ of generating symbols. The semantics is de�ned wrt a relational
interpretation I, that is, a set - together with a binary relation d (') ✓ - ⇥ - for each ' 2 ⌃.

h?iI
def= ú h⇢1 [ ⇢2iI

def= h⇢1iI [ h⇢2iI h>iI
def= - ⇥ - h⇢1 \ ⇢2iI

def= h⇢1iI \ h⇢2iI
h83�iI

def= 83�- h⇢1 ,� ⇢2iI
def= h⇢1iI ,� h⇢2iI h83•iI

def= 83•- h⇢1 ,• ⇢2iI
def= h⇢1iI ,• h⇢2iI

h'iI
def= d (') h⇢†iI

def= h⇢i†
I

h⇢iI
def= h⇢iI

(4)

Two expressions ⇢1, ⇢2 are said to be equivalent, written ⇢1 ⌘CR ⇢2, if and only if h⇢1iI = h⇢2iI ,
for all interpretations I. Inclusion, denoted by CR, is de�ned analogously by replacing = with ✓.
For instance, the following inclusions hold, witnessing the fact that ,� linearly distributes over ,• .

' ,� (( ,• ) ) CR (' ,� () ,• ) (' ,• () ,� ) CR ' ,• (( ,� ) ) (5)

Another set of inclusions, the linear negation laws, can be expressed by the following:

83�. CR '† ,• ' ' ,� '† CR 83•- . (6)
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Diagrams in Rel•

• Use black background/white strings to emphasise the “De Morgan” aspects


• but how to understand two compositions and two tensors together?
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Table 2. Axioms of strict symmetric monoidal categories.

0 ,•� (1 ,•� 2) = (0 ,•� 1) ,•� 2 83•�= ,•� 2 = 2 = 2 ,•� 83•�< (0 �⌦ 1) �⌦ 2 = 0 �⌦ (1 �⌦ 2) 83•�0 �⌦ 2 = 2 = 83•�0 �⌦ 2
(0 �⌦ 1) ,•� (2 �⌦ 3) = (0 ,•� 2) �⌦ (1 ,•� 3) f•�

1,1 ,•� f•�
1,1 = 83•�2 (2 �⌦ 83•�> ) ,•� f•�

<,> = f•�
=,> ,•� (83•�> �⌦ 2)

Two terms 2,3 : = !< are semantically equivalent, written 2 ⌘ 3 , if and only if I•
(2) = I

•
(3),

for all interpretations I. Semantic inclusion (5) is de�ned analogously replacing = with ✓.
Note that by de�nition ⌘ and 5 only relate terms of the same type. Throughout the paper, we

will encounter several relations amongst terms of the same type. To avoid any confusion with the
relations denoted by the terms, we call them well-typed relations and use symbols I rather than the
usual ', (,) . In the following, we write 2I3 for (2,3) 2 I and pc(I) for the smallest precongruence
(w.r.t. ,� , ,• , ⌦ and �⇥) generated by I, i.e., the relation inductively generated as
2I3

2 pc(I) 3
(83) �

2 pc(I) 2
(A ) 0 pc(I) 1 1 pc(I) 2

0 pc(I) 2
(C ) 21 pc(I) 22 31 pc(I) 32

21 ,•� 31 pc(I) 22 ,•� 32
( ,•� )

21 pc(I) 22 31 pc(I) 32
21 �⌦ 31 pc(I) 22 �⌦ 32

(�⌦) (11)

Let c(I) be the congruence closure of I. Clearly c(⌘) ✓ ⌘ and similarly pc(5) ✓ 5.

3.1 Diagrams
The terms of our calculus enjoy a convenient graphical representation inspired by string diagrams
[46, 83], formally arrows of a free symmetric (strict) monoidal category. A term 2 : = ! < is
depicted as a diagram with = ports on the left and< ports on the right; ,•� is depicted as horizontal
composition while �⌦ by vertically “stacking” diagrams. However, since there are two compositions
,� and ,• and two monoidal products ⌦ and �⇥, to distinguish them we use di�erent colours. All
constants in the white fragment have white background, mutatis mutandis for the black fragment:
for instance 83�1 and 83

•

1 are drawn and . Indeed, the diagrammatic version of (NPR⌃) is:

2 ::= | | ' | | | | | | 2 2 |
2

2
|

| | ' | | | | | | 2 2 |
2

2

(dNPR⌃)

For instance the terms in (10) are depicted as the following two diagrams:

'

(

The rightmost diagram does not only represent the term J�1 ,� (('�
⌦ (�) ,� I�1 ) but also (J�1

,� ('�
⌦ (�)) ,� I�1 . Indeed, it is clear that traditional term-based syntax carries more information

than the diagrammatic one (e.g. associativity). From the point of view of the semantics, however,
this bureaucracy is irrelevant and is conveniently discarded by the diagrammatic notation. To
formally show this, it is enough to see that diagrams capture only the axioms of symmetric monoidal
categories [46, 83], illustrated in Table 2, and that these are sound wrt ⌘.

More precisely, let SMC be the well-typed relation obtained by substituting 0,1, 2,3 in the axioms
in Table 2 with terms of the appropriate type. Its congruence closure is called structural congruence,
written ⇡. In symbols ⇡ def= c(SMC). To say that terms 2 and 3 can be proved equal with the axioms
in Table 2 is to say 2 ⇡ 3 . For instance, by replacing in the top leftmost axiom in Table 2, 0 with J�1 ,
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How do the white and black structures combine to form a complete account of �rst order logic?

Linear bicategories. The �rst problematic issue is the fact that, although Rel� and Rel• have
the same objects and arrows, there are two di�erent compositions ( ,� and ,• ). The appropriate
categorical structure to deal with these situations is linear bicategories introduced in [18] as a
horizontal categori�cation of linearly distributive categories [20, 23]. The laws of linear bicategories
are in Fig. 3: the key law is linearly distributivity of ,� over ,• ((X; ), (XA )), that was already known
to hold for relations since the work of Peirce [66]. Another crucial property observed by Peirce is
that for any relation ' ✓ - ⇥ . , the relation '?

✓ . ⇥ -
def= {(~, G) | (G,~) 8 '} is its linear adjoint.

This operation has an intuitive graphical representation: given a diagram 2 , take its mirror image
2 and then its photographic negative 2 . For instance, the linear adjoint of ' is ' .
First order bicategories. The �nal step is to charac-
terise how cartesian, cocartesian and linear bicate-
gories combine: (i) the white comonoid and black
monoid are linear adjoints; (ii) white and black
(co)monoids are linear adjoints that (iii) satisfy
a “linear” version of the Frobenius law. We dub
the result �rst order bicategories. We shall see that
these laws provide a complete axiomatisation for
�rst order logic, yet all of this algebraic machinery
is compactly summarised on the right.

OO

lin. adj.
✏✏

left adj.
//

OO

lin. adj.
✏✏

spec. Frobenius

lin. Frobenius

right adj.
oo

spec. Frobenius

lin. Frobenius

Functorial semantics for �rst order theories. In the spirit of Lawvere’s functorial semantics, we
take the free �rst order bicategory LCBT generated by a theory T and observe that models of T in a
�rst order bicategory C are morphisms M : LCBT ! C. Taking C = Rel, the �rst order bicategory
of sets and relations, these are models in the sense of �rst order logic with one notable exception:
in FOL models with the empty domain ú are forbidden, while our models are not subject to this
restriction. In fact, models with the empty domain coincide with propositional models and our
axiomatisation simpli�es to the deep inference Calculus of Structures [15, 39] (see Example 7.6).

Completeness. We prove that the laws of �rst order bicategories provide a complete axiomatisation
for �rst order logic. The proof is a diagrammatic adaptation of Henkin’s proof [41] of Gödel’s
completeness theorem. However, in order to properly consider models with an empty domain, we
make a slight additional step to go beyond Gödel completeness.

A taste of diagrammatic logic. Before we introduce the calculus of neo-Peircean relations, we start
with a short worked example to give the reader a taste of using the calculus to prove a non-trivial
result of �rst order logic. Doing so lets us illustrate the methodology of proof within the calculus,
which is sometimes referred to as diagrammatic reasoning or string diagram surgery. Diagrams help
to parse otherwise complex syntactic terms, give useful visual intuitions for fundamental concepts,
re�ect the symmetries of the calculus, and remove the burden of unnecessary bureaucracy.

Let ' be a relation symbol with arity 2 and coarity 0. Consider the two diagrams below left:

' '

9G .8~.'(G,~) 8~. 9G .'(G,~)

' 5 '

In FOL, the two diagrams correspond to the formulas 9G .8~.'(G,~) and8~. 9G .'(G,~) respectively.
We provide a dictionary of translating between the diagrams and FOL in Section 9. It is well-known
that 9G .8~ .'(G,~) |= 8~ . 9G .'(G,~), i.e. in any model, if the �rst formula evaluates to true then
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(symmetric monoidal) Linear bicategories 

• obvious extension of Cockett, 
Koslowski, Seely 2000


• linear distributivity


• and linear strengths for tensors


• + obvious laws for identities and 
symmetries 
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 3 42- .

32 4- .
(XA )
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Fig. 3. Axioms of closed symmetric monoidal linear bicategories

We draw arrows of cocartesian bicategories in black: J•- ,!
•

- , I
•

- and ¡•
- are drawn -

-
- ,

- , -
-
- and - . Following this convention, the axioms of cocartesian bicategories

are in Fig. 2; they can also be obtained from Fig. 1 by inverting both the colours and the order.
It is not surprising that in a cocartesian bicategory C, every homset C[- ,. ] carries a join

semi-lattice with bottom, where 2 t 3 and ? are de�ned for all arrows 2,3 : - ! . as follows.

2 t 3
def=

2

3
- . ?

def= - . (15)

5 LINEAR BICATEGORIES
We have seen that Rel� forms a cartesian, and Rel• a cocartesian bicategory. Categorically, they
are remarkably similar — as evidenced by the isomorphism (·) — but from a logical viewpoint
they represent two complimentary parts of FOL: Rel� the existential conjunctive fragment, and
Rel• the universal disjunctive fragment. To discover the full story, we must merge them into
one entity and study the algebraic interactions between them. However, the coexistence of two
di�erent compositions ,� and ,• brings us out of the realm of ordinary categories. The solution is
linear bicategories [18]. Here ,� linearly distributes over ,• , as in Pierce’s calculus. To keep our
development easier, we stick to the poset enriched case and rely on diagrams, using white and
black to distinguish ,� and ,• .

De�nition 5.1. A linear bicategory (C, ,� , 83�, ,• , 83•) consists of two poset enriched categories
(C, ,� , 83�) and (C, ,• , 83•) with the same objects, arrows and orderings but possibly di�erent
identities and compositions s.t.:

(1) the composition ,� linearly distributes over ,• , i.e., (X; ) and (XA ) in Fig. 3 hold.
A symmetric monoidal linear bicategory (C, ,� , 83�, ,• , 83•, ⌦,f�, �⇥,f•, � ), shortly (C, ⌦, �⇥, � ), con-
sists of a linear bicategory (C, ,� , 83•, ,• , 83•) and two poset enriched symmetricmonoidal categories
(C, ⌦, � ) and (C, �⇥, � ) s.t. ⌦ and �⇥ agree on objects, i.e., - ⌦ . = - �⇥ . , share the same unit � and
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First order bicategories

• The missing thing is to characterise how the two (co)cartesian structures 
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Fig. 4. Additional axioms for fo-bicategories

(1) a closed linear bicategory (C, ⌦, �⇥, � ),
(2) a cartesian bicategory (C, ⌦, � , J�, !�, I�, ¡�) and
(3) a cocartesian bicategory (C, �⇥, � , J•, !•, I•, ¡•), such that
(4) the white comonoid (J�, !�) is left and right linear adjoint to black monoid (I•, ¡•) and

(I�, ¡�) is left and linear adjoint to (J•, !•) i.e., the inequalities (g J�), (g !�), (g I�), (g ¡�),
(W J�), (W !�), (W I�), (W ¡�), (g J•), (g !•), (g I•), (g ¡•), (W J•), (W !•), (W I•), (W ¡•) in Figure 4 hold;

(5) white and black (co)monoids satisfy the linear Frobenius laws, i.e. (F•�), (F�•), (F �
• ), (F •

� ) hold.
A morphism of fo-bicategories is a morphism of linear bicategories and of (co)cartesian bicategories.

We have seen that Rel is a closed linear bicategory, Rel� a cartesian bicategory and Rel• a
cocartesian bicategory. Given (7), it is easy to con�rm linear adjointness and linear Frobenius.
Now if (C, J�, I�, J•, I•) is a fo-bicategory then (Cop, I�, J�, I•, J•) and (Cco, J•, I•, J�, I�)

are fo-bicategories: the laws of Figure 4 are closed undermirror-re�ection and photographic negative.
The fourth condition inDe�nition 6.1 entails that the linear bicategorymorphism (·)

? : C ! (Cco
)
op

(see Proposition 5.6) is a morphism of fo-bicategories and, similarly, the �fth condition that also
(·)

† : C ! Cop (Proposition 4.3) is a morphism of fo-bicategories.

P���������� 6.2. Let (C, J�, I�, J•, I•) be a fo-bicategory. Then

(·)
† : (C, J�, I�, J•, I•) ! (Cop, I�, J�, I•, J•) and (·)

? : (C, J�, I�, J•, I•) ! ((Cco
)
op, I•, J•, I�, J�)

are isomorphisms of fo-bicategories, namely all the laws in Tables 3 and 4 hold.

C�������� 6.3. The laws in the �rst three rows of Table 5b hold.

Table 5. Properties on homsets

Enrichment over join-meet semilattices

2 ,� (3 t 4) = (2 ,� 3) t (2 ,� 4) 2 ,• (3 u 4) = (2 ,• 3) u (2 ,• 4)

(3 t 4) ,� 2 = (3 ,� 2) t (4 ,� 2) (3 u 4) ,• 2 = (3 ,• 2) u (4 ,• 2)

2 ,� ? = ? = ? ,� 2 2 ,• > = > = > ,• 2

2 ⌦ (3 t 4) = (2 ⌦ 3) t (2 ⌦ 4) 2 �⇥ (3 u 4) = (2 �⇥ 3) u (2 �⇥ 4)

(3 t 4) ⌦ 2 = (3 ⌦ 2) t (4 ⌦ 2) (3 u 4) �⇥ 2 = (3 �⇥ 2) u (4 �⇥ 2)

2 ⌦ ? = ? = ? ⌦ 2 2 �⇥ > = > = > �⇥ 2

(a)

Interaction of ·† and ·
? with the lattice structure

(2 u 3)† = 2† u 3† >
† = > (2 t 3)† = 2† t 3† ?

† = ?

(2 u 3)? = 2? t 3? (>)
? = ? (2 t 3)? = 2? u 3? (?)

? = >

(2†)? = (2?)†

Laws of Boolean algebras

(2 u 3) = 2 t 3 > = ? 2 u (3 t 4) = (2 u 3) t (2 u 4) 2 u 2 = ?

(2 t 3) = 2 u 3 ? = > 2 t (3 u 4) = (2 t 3) u (2 t 4) 2 t 2 = >

(b)
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• ), (F •

� ) hold.
A morphism of fo-bicategories is a morphism of linear bicategories and of (co)cartesian bicategories.

We have seen that Rel is a closed linear bicategory, Rel� a cartesian bicategory and Rel• a
cocartesian bicategory. Given (7), it is easy to con�rm linear adjointness and linear Frobenius.
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� ) hold.
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How do the white and black structures combine to form a complete account of �rst order logic?

Linear bicategories. The �rst problematic issue is the fact that, although Rel� and Rel• have
the same objects and arrows, there are two di�erent compositions ( ,� and ,• ). The appropriate
categorical structure to deal with these situations is linear bicategories introduced in [18] as a
horizontal categori�cation of linearly distributive categories [20, 23]. The laws of linear bicategories
are in Fig. 3: the key law is linearly distributivity of ,� over ,• ((X; ), (XA )), that was already known
to hold for relations since the work of Peirce [66]. Another crucial property observed by Peirce is
that for any relation ' ✓ - ⇥ . , the relation '?

✓ . ⇥ -
def= {(~, G) | (G,~) 8 '} is its linear adjoint.

This operation has an intuitive graphical representation: given a diagram 2 , take its mirror image
2 and then its photographic negative 2 . For instance, the linear adjoint of ' is ' .
First order bicategories. The �nal step is to charac-
terise how cartesian, cocartesian and linear bicate-
gories combine: (i) the white comonoid and black
monoid are linear adjoints; (ii) white and black
(co)monoids are linear adjoints that (iii) satisfy
a “linear” version of the Frobenius law. We dub
the result �rst order bicategories. We shall see that
these laws provide a complete axiomatisation for
�rst order logic, yet all of this algebraic machinery
is compactly summarised on the right.

OO

lin. adj.
✏✏

left adj.
//

OO

lin. adj.
✏✏

spec. Frobenius

lin. Frobenius

right adj.
oo

spec. Frobenius

lin. Frobenius

Functorial semantics for �rst order theories. In the spirit of Lawvere’s functorial semantics, we
take the free �rst order bicategory LCBT generated by a theory T and observe that models of T in a
�rst order bicategory C are morphisms M : LCBT ! C. Taking C = Rel, the �rst order bicategory
of sets and relations, these are models in the sense of �rst order logic with one notable exception:
in FOL models with the empty domain ú are forbidden, while our models are not subject to this
restriction. In fact, models with the empty domain coincide with propositional models and our
axiomatisation simpli�es to the deep inference Calculus of Structures [15, 39] (see Example 7.6).

Completeness. We prove that the laws of �rst order bicategories provide a complete axiomatisation
for �rst order logic. The proof is a diagrammatic adaptation of Henkin’s proof [41] of Gödel’s
completeness theorem. However, in order to properly consider models with an empty domain, we
make a slight additional step to go beyond Gödel completeness.

A taste of diagrammatic logic. Before we introduce the calculus of neo-Peircean relations, we start
with a short worked example to give the reader a taste of using the calculus to prove a non-trivial
result of �rst order logic. Doing so lets us illustrate the methodology of proof within the calculus,
which is sometimes referred to as diagrammatic reasoning or string diagram surgery. Diagrams help
to parse otherwise complex syntactic terms, give useful visual intuitions for fundamental concepts,
re�ect the symmetries of the calculus, and remove the burden of unnecessary bureaucracy.

Let ' be a relation symbol with arity 2 and coarity 0. Consider the two diagrams below left:

' '

9G .8~.'(G,~) 8~. 9G .'(G,~)

' 5 '

In FOL, the two diagrams correspond to the formulas 9G .8~ .'(G,~) and8~. 9G .'(G,~) respectively.
We provide a dictionary of translating between the diagrams and FOL in Section 9. It is well-known
that 9G .8~.'(G,~) |= 8~ . 9G .'(G,~), i.e. in any model, if the �rst formula evaluates to true then
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How do the white and black structures combine to form a complete account of �rst order logic?

Linear bicategories. The �rst problematic issue is the fact that, although Rel� and Rel• have
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monoid are linear adjoints; (ii) white and black
(co)monoids are linear adjoints that (iii) satisfy
a “linear” version of the Frobenius law. We dub
the result �rst order bicategories. We shall see that
these laws provide a complete axiomatisation for
�rst order logic, yet all of this algebraic machinery
is compactly summarised on the right.
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Functorial semantics for �rst order theories. In the spirit of Lawvere’s functorial semantics, we
take the free �rst order bicategory LCBT generated by a theory T and observe that models of T in a
�rst order bicategory C are morphisms M : LCBT ! C. Taking C = Rel, the �rst order bicategory
of sets and relations, these are models in the sense of �rst order logic with one notable exception:
in FOL models with the empty domain ú are forbidden, while our models are not subject to this
restriction. In fact, models with the empty domain coincide with propositional models and our
axiomatisation simpli�es to the deep inference Calculus of Structures [15, 39] (see Example 7.6).

Completeness. We prove that the laws of �rst order bicategories provide a complete axiomatisation
for �rst order logic. The proof is a diagrammatic adaptation of Henkin’s proof [41] of Gödel’s
completeness theorem. However, in order to properly consider models with an empty domain, we
make a slight additional step to go beyond Gödel completeness.

A taste of diagrammatic logic. Before we introduce the calculus of neo-Peircean relations, we start
with a short worked example to give the reader a taste of using the calculus to prove a non-trivial
result of �rst order logic. Doing so lets us illustrate the methodology of proof within the calculus,
which is sometimes referred to as diagrammatic reasoning or string diagram surgery. Diagrams help
to parse otherwise complex syntactic terms, give useful visual intuitions for fundamental concepts,
re�ect the symmetries of the calculus, and remove the burden of unnecessary bureaucracy.

Let ' be a relation symbol with arity 2 and coarity 0. Consider the two diagrams below left:

' '

9G .8~.'(G,~) 8~. 9G .'(G,~)

' 5 '

In FOL, the two diagrams correspond to the formulas 9G .8~.'(G,~) and8~. 9G .'(G,~) respectively.
We provide a dictionary of translating between the diagrams and FOL in Section 9. It is well-known
that 9G .8~.'(G,~) |= 8~ . 9G .'(G,~), i.e. in any model, if the �rst formula evaluates to true then
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so does the second. Within our calculus, this statement is expressed as the above right inequality.
This can be proved by mean of the axiomatisation we introduce in this work as follows:

' = '
([¡•)
 '

Prop.
6.4= '

(n¡•)
 ' = ' (1)

The central step relies on the particularly good behaviour of maps, intuitively those relations that
are functional. In particular is an example. The details are not important at this stage.

Synopsis. We begin by recalling Peirce’s calculus of relations in Section 2. The calculus of neo-
Peircean relations is introduced in Section 3, together with the statement of our main result
(Theorem 3.3). We recall (co)cartesian bicategories in Section 4 and linear bicategories in Section 5.
The categorical structures most important for our work are �rst-order bicategories, introduced in
Section 6. In Section 7 we consider �rst order theories, the diagrammatic version of the deduction
theorem (Theorem 7.7) and some subtle di�erences with �rst order logic that play an important role
on the proof of completeness in Section 8. The translations of �rst-order logic, existential graphs
and the calculus of relations into NPR⌃ are given in Section 9. Appendix A contains additional
material that did not make it due to space restrictions. All proofs are in the remaining appendices.

2 PEIRCE’S CALCULUS OF BINARY RELATIONS
The calculus of binary relations, in an original presentation given by Peirce in [66], features two
forms of relational compositions ,� and ,• , de�ned for all relations ' ✓ - ⇥ . and ( ✓ . ⇥ / as

' ,� (
def= {(G,~) | 9~ . (G,~) 2 '^(~, I) 2 (} and ' ,• (

def= {(G,~) | 8~ . (G,~) 2 '_(~, I) 2 (} (2)

with units the equality and the di�erence relations respectively, de�ned for all sets - as

83�-
def= {(G,~) | G = ~} ✓ - ⇥ - and 83•-

def= {(G,~) | G < ~} ✓ - ⇥ - . (3)

Beyond the usual union [, intersection \, and their units ? and >, the calculus also features two
unary operations ·† and · denoting the opposite and the complement: '† def= {(~, G) | (G,~) 2 '} and
'

def= {(G,~) | (G,~) 8 '}. In summary, its syntax is given by the following context free grammar

⇢ ::= ' | 83� | ⇢ ,� ⇢ | 83• | ⇢ ,• ⇢ | ? | ⇢ [ ⇢ | > | ⇢ \ ⇢ | ⇢† | ⇢ (CR⌃)

where ' is taken from a given set ⌃ of generating symbols. The semantics is de�ned wrt a relational
interpretation I, that is, a set - together with a binary relation d (') ✓ - ⇥ - for each ' 2 ⌃.

h?iI
def= ú h⇢1 [ ⇢2iI

def= h⇢1iI [ h⇢2iI h>iI
def= - ⇥ - h⇢1 \ ⇢2iI

def= h⇢1iI \ h⇢2iI
h83�iI

def= 83�- h⇢1 ,� ⇢2iI
def= h⇢1iI ,� h⇢2iI h83•iI

def= 83•- h⇢1 ,• ⇢2iI
def= h⇢1iI ,• h⇢2iI

h'iI
def= d (') h⇢†iI

def= h⇢i†
I

h⇢iI
def= h⇢iI

(4)

Two expressions ⇢1, ⇢2 are said to be equivalent, written ⇢1 ⌘CR ⇢2, if and only if h⇢1iI = h⇢2iI ,
for all interpretations I. Inclusion, denoted by CR, is de�ned analogously by replacing = with ✓.
For instance, the following inclusions hold, witnessing the fact that ,� linearly distributes over ,• .

' ,� (( ,• ) ) CR (' ,� () ,• ) (' ,• () ,� ) CR ' ,• (( ,� ) ) (5)

Another set of inclusions, the linear negation laws, can be expressed by the following:

83�. CR '† ,• ' ' ,� '† CR 83•- . (6)

5



Highlights

• Gödel completeness by adapting Henkin’s proof to the string diagrammatic 
language (more on this on the next slide)


• Functorial semantics for first order theories following the usual recipe


• No variables, no quantifiers 


• Easy and natural encodings of other variable free approaches (e.g. Quine 
predicate functor logic)



What’s new, different?

• Diagrammatic syntax is closely related to Peirce’s existential graphs


• Although negation is not a primitive


• it is a derived operation that operates on syntax


• e.g. ¬¬¬φ is syntactically equal as a diagram to ¬φ 


• string diagrams let one to discover places where the traditional syntax has caused problems


• trivial vs contradictory theories is a meaningful distinction 


• trivial theories are propositional logic 


• our axiomatisation becomes Guglielmi’s deep inference Calculus of Structures (SKSg)


• completeness theorem extends Gödel’s to all theories



From traditional syntax to string diagrams



Relationship with Peirce’s existential graphs
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E(x= ` >)
def= = E(x= ` ?)

def= =

E(x= ` C1 = C2)
def=

E(x= ` C1)
=

E(x= ` C2)
E(x= ` '(C1, . . . , C<))

def=
E(x= ` C1)

=
E(x= ` C<)

'
...

E(x= ` i1 ^ i2)
def=

E(x= ` i1)
=

E(x= ` i2)
E(x= ` i1 _ i2)

def=
E(x= ` i1)

=
E(x= ` i2)

E(x=�1 ` 9G= .i)
def= E(x= ` i)= � 1

E(x=�1 ` 8G= .i)
def= E(x= ` i)= � 1

E(x= ` ¬i)
def= E(x= ` i)=

The above should give the reader the spirit of the correspondence between NPR⌃ and traditional
syntax. There is one aspect of the above translation that merits additional attention.

R����� 7. By the inductive de�nition of !•�= in Table 1, we have that:

E(x0 ` >)
def
= E(x0 ` ?)

def
=

Thus > and ? translate to, respectively 83�0 , 83
•

0 in the absence of free variables or to !�= , !•= , respectively,
when = > 0. This – recalling Remark 5 – can be seen as an ambiguity in the traditional FOL syntax,
which obscures the distinction between inconsistent and trivial theories in traditional accounts, and as
a side e�ect requires the assumption on non-empty models in formal statements of Gödel completeness.
Instead, the syntax of NPR⌃ ensures that this pitfall is side-stepped.

9.2 Peirce’s existential graphs
The diagrammatic notation of NPR⌃ is closely related to system V of Peirce’s EGs [69–71, 79]. Con-
sider the two diagrams below corresponding to the closed FOL formula 9G . ? (G)^8~ . ? (~) ! @(~).

?

@
? !

?

@
?

In existential graph notation the circle enclosure
(dubbed ‘cut’ by Peirce) signi�es negation. To
move from EGs to diagrams of NPR⌃ it su�ces to
treat lines and predicate symbols in the obvious
way and each cut as a color switch.

A string diagrammatic approach to existential graphs appeared in [40]This exploits the white frag-
ment of NPR⌃ with a primitive negation operator rendered as Peirce’s cut, namely a circle around
diagrams. However, this inhibits a fully compositional treatment since, for instance, negation is
not functorial. As an example consider Peirce’s (de)iteration rule in Figure 6: in NPR⌃ on the left,
and in [40] on the right. Note that the diagrams on the right require open cuts, a notational trick,
allowing to express the rule for arbitrary contexts, i.e. any diagram eventually appearing inside
the cut. In NPR⌃ this ad-hoc treatment of contexts is not needed as negation is not a primitive
operation, but a derived one. A proof of the law on the left of Figure 6 can be found in Appendix A.1.

2 3 �
2

3
2

Fig. 6. Peirce’s (de)iteration rule in NPR⌃ (le�) and in [40] (right).
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Trivial vs contradictory

• A theory is trivial if 


• A theory is contradictory


