Publikationen

  • J. Brunken and K. Smetana, Stable and efficient Petrov-Galerkin methods for a kinetic Fokker-Planck equation, https://arxiv.org/abs/2010.15784
  • J. Brunken, K. Smetana, and K. Urban, (Parametrized) first order transport equations: realization of optimally stable Petrov-Galerkin methods, SIAM J. Sci. Comput., 41 (2019), A592–A621, https://doi.org/10.1137/18M1176269 (Alternativ: Preprint-Version).
  • L. Chen, K. Painter, C. Surulescu, A. Zhigun, Mathematical models for cell migration: a nonlocal perspective, https://arxiv.org/abs/1911.05200.
  • G. Corbin, C. Engwer, A. Klar, J. Nieto, J. Soler, C. Surulescu, M. Wenske, Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: from subcellular dynamics to macroscopic PDEs with multiple taxis, https://arxiv.org/abs/2006.12322
  • G. Corbin, A. Hunt, A. Klar, F. Schneider, and C. Surulescu, Higher-order models for glioma invasion: from a two-scale description to effective equations for mass density and momentum, Math. Mod. Meth. Appl. S., 28 (2018) 1771-1800, https://doi.org/10.1142/S0218202518400055.
  • C. Engwer, C. Stinner, and C. Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Math. Mod. Meth. Appl. S., 27 (2017) 1355-1390, https://doi.org/10.1142/S0218202517400188.
  • C. Engwer, M. Wenske, Estimating the extent of glioblastoma invasion https://arxiv.org/abs/2001.05369.
  • A. Hunt, DTI-Based Multiscale Models for Glioma Invasion, Dissertation, Technische Universität Kaiserslautern, 2017, PDF (intern)
  • M. Krasnianski, K.Painter, C. Surulescu, and A. Zhigun, Nonlocal and local models for taxis in cell migration: a rigorous limit procedure, Phil. Trans. R. Soc. B, 375 (2020) https://doi.org/10.1098/rstb.2019.0379
  • N. Kolbe, N. Sfakianakis, C. Stinner, C. Surulescu, and J. Lenz, Modeling multiple taxis: tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence, https://arxiv.org/abs/2005.01444
  • J. Kroos, C. Stinner, C. Surulescu, and N. Surulescu, SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness, Discr. Cont. Dyn. Syst. B 24 (2019) 4629-4663, https://doi.org/10.3934/dcdsb.2019157.
  • C. Surulescu and M. Winkler, Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more), https://arxiv.org/abs/1904.11210
  • M. Winkler and C. Surulescu, Global weak solutions to a strongly degenerate haptotaxis model, Comm. Math. Sci., 15 (2017), 1581-1616, https://doi.org/10.4310/CMS.2017.v15.n6.a5.
  • A. Zhigun, C. Surulescu, and A. Hunt, A strongly degenerate diffusion‐haptotaxis model of tumour invasion under the go‐or‐grow dichotomy hypothesis, Math. Method. Appl. Sci., 41 (2018), 2403-2428, https://doi.org/10.1002/mma.4749.