Latest Publications
- 10.1080/01916122.2024.2388134. . ‘Palynological variability within the Permian (Changhsingian) Umm Irna Formation (Jordan): implications for biostratigraphy and fluid-flow character in alluvial formations.’ Palynology 48, № 4: 2388134. doi:
- . . ‘Biostratigraphically significant palynofloras from the Paleocene–Eocene boundary of the USA.’ Palynology 47, № 1: 2115159. doi: 10.1080/01916122.2022.2115159.
- 10.1016/j.revpalbo.2022.104790. . ‘Is Poaceae pollen size a useful proxy in palaeoecological studies? New insights from a Poaceae pollen morphological study in the Amazon.’ Review of Palaeobotany and Palynology 308: 104790. doi:
- 10.1093/botlinnean/boac050. . ‘The evolutionary history of the Central Asian steppe-desert taxon Nitraria (Nitrariaceae) as revealed by integration of fossil pollen morphology and molecular data.’ Botanical Journal of the Linnean Society 202, № 2: 195–214. doi:
- . . ‘The use of pollen morphology to disentangle the origin, early evolution, and diversification of the Asteraceae.’ International Journal of Plant Sciences 184, № 5: 350–365. doi: 10.1086/725046.
- 10.1144/SP535-2022-281. . ‘Vegetational change during the Middle–Late Pennsylvanian transition in western Pangaea.’ In Ice Ages, Climate Dynamics and Biotic Events: the Lucas, S. G., DiMichele, W. A., Opluštil, S. and Wang, X.Late Pennsylvanian World., edited by , 337–359. London: Geological Society of London. doi:
- 10.1126/sciadv.adj6309. . ‘Response to Comment on “Dying in the Sun: Direct evidence for elevated UV-B radiation at the end-Permian mass extinction”.’ Science advances 9, № 34: eadj6309. doi:
- 10.1111/pala.12683. . ‘Uncovering a phylogenetic signal in plant biopolymer chemistry: a comparison of sporopollenin isolation approaches for use in palynological research.’ Palaeontology 66, № 6: e12683. doi:
- 10.1126/science.adg4014. . ‘Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants.’ Science 380: 1188–1192. doi:
- 10.1126/sciadv.abo6102. . ‘Dying in the Sun: direct evidence for elevated UV-B radiation at the end-Permian mass extinction.’ Science advances 9, № 1: eabo6102. doi:
- 10.1016/j.gloplacha.2022.103786. . ‘Key traits of living fossil Ginkgo biloba are highly variable but not influenced by climate – Implications for palaeo-pCO2 reconstructions and climate sensitivity.’ Global and Planetary Change 211: 103786. doi:
- 10.1111/nph.18024. . ‘Why does pollen morphology vary? Evolutionary dynamics and morphospace occupation in the largest angiosperm order (Asterales).’ New Phytologist 234, № 3: 1075–1087. doi:
- . ‘A taxonomic revision of the late Paleozoic lyginopterid Sphenopteridium germanicum and description of its globose-stem growth habit.’ Review of Palaeobotany and Palynology 298: 104591.
- 10.1016/j.revpalbo.2021.104542. . ‘Saportaea Fontaine et White 1880 - An enigmatic, long-ranging, widely distributed but rare type of late Paleozoic and early Mesozoic foliage.’ Review of Palaeobotany and Palynology 296: 104542. doi:
- 10.1016/j.revpalbo.2022.104682. . ‘In search of the correspondence between in situ and dispersed pollen.’ Review of Palaeobotany and Palynology 303: 104682. doi:
- 10.1080/03115518.2022.2028899. . ‘Rhabdotaenia – a typical Gondwanan leaf from the upper Permian of Jordan.’ Alcheringa 46, № 1: 85–93. doi:
- 10.1080/23818107.2022.2122555. . ‘First records of the conifers Majonica and Ortiseia from the German Zechstein (upper Permian) of east Thuringia and west Saxony, Germany.’ Botany Letters 169, № 4: 423–441. doi:
- 10.1016/j.revpalbo.2022.104768. . ‘A simple focusing device for macrophotography at higher magnifications.’ Review of Palaeobotany and Palynology 307: 104768. doi:
- . . ‘Uncovering the natural variability of araucariacean exudates from ex situ and in situ tree populations in New Caledonia using FTIR spectroscopy.’ PeerJ Analytical Chemistry 4: e17. doi: 10.7717/peerj-achem.17.
- 10.1080/00173134.2020.1772360. . ‘A lyginopterid pollen organ from the upper Permian of the Dead Sea region.’ Grana 60: 81–96. doi:
- 10.1111/pala.12523. . ‘Sporopollenin chemistry and its durability in the geological record: an integration of extant and fossil chemical data across the seed plants.’ Palaeontology 64. doi:
- . ‘The fossil flora of the Dead Sea region, Jordan – A late Permian Garden of Delights.’ Journal of Palaeosciences 2021, № 70: 135–158.
- 10.1016/j.revpalbo.2020.1042040034-6667. . ‘A whole noeggerathialean plant Tingia unita Wang from the earliest Permian peat-forming flora, Wuda Coalfield, Inner Mongolia.’ Review of Palaeobotany and Palynology 294: 1–23. doi:
- 10.1016/j.revpalbo.2021.104502. . ‘Permian “vegetational Pompeii”: A peat-forming in situ preserved forest from the Wuda Coalfield, Inner Mongolia, China – Introduction to a volume of detailed studies.’ Review of Palaeobotany and Palynology 294: 1–7. doi:
- 10.5194/fr-24-321-2021. . ‘Experimental induction of resins as a tool to understand variability in ambers.’ Fossil Record 24: 321–337. doi:
- 10.1029/2020pa003900. . ‘Near‐Future pCO2 during the hot Mid Miocene Climatic Optimum.’ Paleoceanography and Paleoclimatology 36, № e2020PA003900. doi:
- 10.1016/j.revpalbo.2021.104441. . ‘At a crossroads: The late Eocene flora of central Myanmar owes its composition to plate collision and tropical climate.’ Review of Palaeobotany and Palynology .: 104441. doi:
- 10.1016/j.epsl.2021.116970. . ‘Decreased soil carbon in a warming world: Degraded pyrogenic carbon during the Paleocene-Eocene Thermal Maximum, Bighorn Basin, Wyoming.’ Earth and Planetary Science Letters 566: 116970. doi:
- 10.3389/feart.2021.652699. . ‘Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group.’ Frontiers in Earth Science 9: 1–14. doi:
- 10.1111/jbi.14098. . ‘Climate and geological change as drivers of Mauritiinae palm biogeography.’ Journal of Biogeography . doi:
- 10.1130/G48596C.1. . ‘A 23 m.y. record of low atmospheric CO2: COMMENT.’ Geology 49, № 4: e523. doi:
- 10.7554/eLife.69447. . ‘An evidence-based 3D reconstruction of Asteroxylon mackiei, the most complex plant preserved from the Rhynie chert.’ eLife 10: 1–18. doi:
- . The Pennsylvanian System in the Sacramento Mountains, New Mexico, USA: Stratigraphy, Petrography, Depositional Systems, Paleontology, Biostratigraphy, and Geologic History. N/A: Selbstverlag / Eigenverlag.
- 10.1016/j.geobios.2020.10.004. . ‘Fossil roots with root nodules from the Madygen Formation (Ladinian–Carnian; Triassic) of Kyrgyzstan.’ Geobios 2021, № 64: 65–75. doi:
- . „Die terrestrische Makroflora des Zechsteins.“ Schriftreihe der Deutschen Gesellschaft für Geowissenschaften 89: 83–91.
- . . ‘Plenasium (Aurealcaulis) elegans sp. nov. from the Eocene of Vietnam—a connecting link in the evolution of modern Royal Ferns (Osmundeae, Osmundaceae).’ Journal of Systematic Palaeontology 18, № 8: 703–715.
- 10.1177/0959683619875798. . ‘Proxy reconstruction of ultraviolet-B irradiance at the Earth’s surface, and its relationship with solar activity and ozone thickness.’ The Holocene 30, № 1: 155–161. doi:
- . . ‘Uncharted Permian to Jurassic continental deposits in the far north of Victoria Land, East Antarctica.’ Journal of the Geological Society 2020. [online first]
- . . ‘Palynological evidence supporting widespread synchronicity of Early Jurassic silicic volcanism throughout the Transantarctic Basin.’ Antarctic Science 32, № 5: 396–397. doi: 10.1017/S0954102020000346.
- . ‘Subchapter 3J – Plants, spores and pollen.’ In Geologic Time Scale 2020, edited by , 109–121. N/A: unbekannt / n.a. / unknown.
- 10.1016/j.earscirev.2020.103278. . ‘Palynology and vegetation dynamics across the Permian–Triassic boundary in southern Tibet.’ Earth-Science Reviews 209: 103278. doi:
- 10.1093/aob/mcaa113. . ‘Archaeosporites rhyniensis gen. et sp. nov. (Glomeromycota, Archaeosporaceae), from the Lower Devonian Rhynie chert – a fungal lineage morphologically unchanged for more than 400 million years.’ Annals of Botany 126: 915–928. doi:
- . . ‘Palynology and vegetation dynamics across the Permian–Triassic boundary in southern Tibet.’ Earth-Science Reviews 209: 103278. doi: 10.1016/j.earscirev.2020.103278.
- 10.1007/s12542-020-00522-x. . ‘Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding “Fossils from conflict zones and reproducibility of fossil-based scientific data”: the importance of private collections.’ Paläontologische Zeitschrift 94: 413–429. doi:
- 10.1007/s12542-020-00524-9. . ‘Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding “Fossils from conflict zones and reproducibility of fossil-based scientific data”: Myanmar amber.’ PalZ 94: 431–437. doi:
- 10.1007/978-3-030-35058-1_13. . ‘The Coal Farms of the Late Paleozoic.’ In Nature Through Time, edited by , 317–343. Berlin: Springer Nature. doi:
- 10.1007/978-3-030-35058-1_12. . ‘The non-analog vegetation of the Late Paleozoic icehouse–hothouse and their coal-forming forested environments.’ In Nature Through Time, edited by , 291–316. Berlin: Springer Nature. doi:
- 10.1016/j.revpalbo.2020.104210. . ‘Contributions towards whole-plant reconstructions of Dicroidium plants (Umkomasiaceae) from the Permian of Jordan.’ Review of Palaeobotany and Palynology 278, № 104210. doi:
- . . ‘Cryptokerpia sarlaccophora gen. et sp. nov., an enigmatic plant fossil from the Late Permian Umm Irna Formation of Jordan.’ PalZ 93, № 3: 479–485.
- . . ‘A silicified Todea trunk (Osmundaceae) from the Eocene of Patagonia.’ PalZ 93, № 3: 543–548.
- . . ‘(2709) Proposal to conserve the name Callistophytaceae against Emplectopteridaceae (Pteridospermopsida).’ Taxon 68, № 4: 872–873. doi: 10.1002/tax.12111.
- 10.1007/s12542-019-00489-4. . ‘A treasure trove of peculiar Permian plant fossils.’ Paläontologische Zeitschrift 93, № 4. doi:
- . . „Die ältesten anatomisch erhaltenen fossilen Pflanzen aus dem Ruhrkarbon.“ In Archäologie im Rheinland 2018, herausgegeben von , 52–54. Oppenheim: Nünnerich-Asmus Verlag.
- . . ‘Palynostratigraphy of the Devonian–Carboniferous transition in the Tulong section in South Tibet: A Hangenberg Event sequence analogue in the Himalaya-Tethys zone.’ Palaeogeography, Palaeoclimatology, Palaeoecology 531: Art. 108704. doi: 10.1016/j.palaeo.2018.03.016.
- . . ‘A tiny parasite of unicellular microorganisms from the Lower Devonian Rhynie and Windyfield cherts, Scotland.’ Review of Palaeobotany and Palynology 271: Art 104106. doi: 10.1016/j.revpalbo.2019.104106.
- 10.1086/704375. . ‘Reconstruction of a small-leaved cordaitalean plant from the Permian of North China by means of cuticular analysis.’ International Journal of Plant Sciences 180: 709–723. doi:
- 10.1007/s12542-019-00486-7. . ‘Ginkgo leaf cuticle chemistry across changing pCO2 regimes.’ PalZ 93: 549–558. doi:
- 10.1016/j.gca.2018.12.026. . ‘An experimental evaluation of the use of D13C as a proxy for palaeoatmospheric CO2.’ Geochimica et Cosmochimica Acta 247: 162–174. doi:
- 10.1080/00173134.2018.1510027. . ‘Variability in modern pollen rain from moist and wet tropical forest plots in Ghana, West Africa.’ Grana 58, № 1: 45–62. doi:
- . . ‘First evidence of a tetrapod footprint from the Triassic of northern Victoria Land, Antarctica.’ Polar Research 38, № 3438.
- . . ‘Frond morphology and epidermal anatomy of Compsopteris wongii (T. Halle) Zalessky from the Permian of Shanxi, China.’ Paläontologische Zeitschrift 93, № 3: 453–464. doi: 10.1007/s12542-019-00471-0DO-10.1007/s12542-019-00471-0.
- 10.5194/jm-38-83-2019. . ‘Chemotaxonomy of domesticated grasses: a pathway to understanding the origins of agriculture.’ Journal of Micropalaeontology 38: 83–95. doi:
- . . ‘A hidden cradle of plant evolution in Permian tropical lowlands.’ Science 362: 1414–1416. doi: 10.1126/science.aau4061.
- . . ‘Lower Permian flora of the Sanzenbacher Ranch, Clay County, Texas.’ In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, edited by , 95–126. Boston, New York, San Diego: Academic Press.
- 10.7717/peerj.5055. . ‘A novel approach to study the morphology and chemistry of pollen in a phylogenetic context, applied to the steppe-desert taxon Nitraria L. (Nitrariaceae).’ PeerJ 6: e5055. doi:
- 10.1130/G40145.1. . ‘Paleoecologic and paleoceanographic interpretation of δ18O taxonomic variability amongst Ordovician (Floian) conodonts.’ Geology 46, № 5: 467–470. doi:
- 10.1111/jbi.13216. . ‘Drivers and constraints on latitudinal floral diversification gradients.’ Journal of Biogeography 45, № 6: 1408–1419. doi:
- 10.1080/01916122.2017.1356392. . ‘The modern pollen-vegetation relationships of a forest-savannah mosaic landscape, Ghana, West Africa.’ Palynology 42, № 3: 324–338. doi:
- . . ‘Sphenopterid diversity in the Kungurian of Tregiovo (Trento, NE-Italy).’ Review of Palaeobotany and Palynology 252: 64–76. doi: 10.1016/j.revpalbo.2018.02.006.
- 10.1130/G39929.1. . „280-million-year old fossil starch reveals early plant-animal mutualism.“ Geology 46: 423–426. doi:
- 10.1007/s00334-017-0642-y. . ‘Pollen-vegetation richness and diversity relationships in the tropics.’ Vegetation History and Archaeobotany 27, № 2: 411–418. doi:
- . . ‘A conifer-dominated Early Triassic flora from southwest China.’ Science Bulletin 63: 1462–1463.
- . . ‘280-m.y.-old fossil starch reveals early plant-animal mutualism.’ Geology 46, № 5: 423–426.
- . . ‘Pachytestopsis tayloriorum gen. et sp. nov., an anatomically preserved glossopterid seed from the Lopingian of Queensland, Australia.’ In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, edited by , 155–178. Boston, New York, San Diego: Academic Press.
- . . ‘Ferns and fern allies from the Carnian (Upper Triassic) of Lunz am See, Lower Austria: A melting pot of Mesozoic fern vegetation.’ Palaeontographica Abt. B 297, № 1-6: 1–101.
- . . ‘Why Are Bryophytes So Rare in the Fossil Record? A Spotlight on Taphonomy and Fossil Preservation.’ In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, edited by , 375–416. Boston, New York, San Diego: Academic Press.
- . . „Das Ende des Bergbaus in den Steinkohlenrevieren von Nordrhein-Westfalen.“ In Das Ganze ist mehr als die Summe der Teile. Festschrift für Jürgen Künow, herausgegeben von , 197–202. N/A: Sonstiger Verlag / other publisher.
- . . ‘Early Permian Flora, Doña Ana Mountains, Southern New Mexico, with Special Consideration of Taxonomic Issues and Arthropod Damage.’ New Mexico Museum of Natural History and Science Bulletin 79: 165–205.
- . . ‘Exceptional preservation of sessile, long-stalked microorganisms in the Lower Devonian Windyfield chert (Scotland).’ In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, edited by , 519–526. Boston, New York, San Diego: Academic Press.
- . . ‘Polar Regions of the Mesozoic–Paleogene greenhouse world as refugia for relict plant groups.’ In Transformative Paleobotany: Papers to Commemorate the Life and Legacy of Thomas N. Taylor, edited by , 593–611. Boston, New York, San Diego: Academic Press.
- . ‘The Lopingian (late Permian) flora from the Bletterbach Gorge in the Dolomites, Northern Italy: a review.’ Geo.Alp 14: 39–61.
- . . ‘Is pollen size a robust proxy for moisture availability?’ Review of Palaeobotany and Palynology 246: 161–166. doi: 10.1016/j.revpalbo.2017.06.013.
- . . ‘Shedding light on sporopollenin chemistry, with reference to UV reconstructions.’ Review of Palaeobotany and Palynology 238: 1–6. doi: 10.1016/j.revpalbo.2016.11.014.
- 10.1016/j.revpalbo.2017.01.0010034-6667. . ‘The bark anatomy of Ningxiaites specialis from the Permian of China.’ Review of Palaeobotany and Palynology 240: 11–21. doi: