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Abstract. The residue cocycle associated to a suitable spectral triple is the key component
of the Connes–Moscovici local index theorem in noncommutative geometry. We review the
relationship between the residue cocycle and heat kernel asymptotics. We use a modified
version of the Getzler calculus to compute the cocycle for a class of Dirac-type operators
introduced by Bismut, obtained by deforming a Dirac operator by a closed 3-form B. We
also consider the case when the 3-form B is not closed, and our main result is a computation
of the cocycle in low dimensions in this case.

1. Introduction

An even spectral triple consists of an algebra A acting by degree zero
bounded operators on a Z2-graded Hilbert space H and an odd (unbounded)
selfadjoint operator D on H such that [D, a] is bounded and a(1 +D2)−1 is
compact for a ∈ A. Under suitable analytic hypotheses, Connes and Moscovici
[6] introduced a cocycle in the (b,B)-bicomplex computing the periodic cyclic
cohomology of A, involving a complicated combination of residues of spectral
ζ-functions for operators built from D, ∆ = D2 and A. The cocycle can be
used to compute index pairings with elements of the K-theory K0(A), and
the resulting formula is referred to as the local index theorem in noncommu-
tative geometry. We provide a brief introduction in Section 2 and explain the
relationship with heat kernel asymptotics.

The first example of a spectral triple is the case A = C∞(M) for a closed
even-dimensional Riemannian spin manifold (Mn, S 	 Cl(T ∗M)), and D =
DLC is the spin Dirac operator acting on the space of L2 spinors L2(M, S)
(“LC” refers to the Levi-Civita connection). In this case, the Getzler calcu-
lus [7] can be used to show that all but the lowest terms in the formula for the
residue cocycle vanish identically and to simplify the remaining terms. In [6,
Rem. II.1], it is very briefly remarked that this approach leads to the formula
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(for the (p+ 1)-multilinear component)

(1) ϕp(a0, . . . , ap) =
(2πi)−n/2

p!

∫

M

a0 da1 · · ·dap · det1/2
( RLC/2

sinh(RLC/2)

)

[n−p]
,

where 0 ≤ p ≤ n is even, a0, . . . , ap ∈ C∞(M) and RLC ∈ Ω2(M,o(TM)) is the
Riemannian curvature. Detailed proofs were given by Ponge [16], Chern–Hu
[4] and Lescure [13].

Bismut [3] studied the local index problem for operators of the form

D = DLC + c(B),

where DLC is the spin Dirac operator as above and B ∈ Ω3(M) is a closed
3-form (it is also possible to work with more general Clifford module bundles).
Bismut showed that there is still a local index theorem in this case, where the
local supertrace converges to

(2πi)−n/2 det1/2
( R−/2

sinh(R−/2)

)

with R− the curvature of a certain metric connection ∇− (depending on B).
In [3], probabilistic methods were used to prove this result, but it was also
remarked that other methods, including Getzler’s method, could be adapted
to this situation. In the first part of this article, we spell out the details of this
modification of Getzler’s method and use it to compute the residue cocycle
for D. In this more general setting, we obtain (1) but with RLC replaced
with R−.

The principal motivation for this work was to gain insight into the compli-
cated higher terms in the Connes–Moscovici cocycle in situations where the
Getzler calculus is not available and the terms do not vanish identically. To-
ward this goal, in the second part of the article, we study the residue cocycle
for D = DLC + c(B) in low dimensions (n = 4, 6) when B is not closed. In
this case, the Getzler calculus is not sufficient and some of the higher terms
do appear.

Theorem 1.1. Let (M, g, S) be a 4-dimensional compact Riemannian spin
manifold. Let D = DLC + c(B), where DLC is the spin Dirac operator and
B ∈ Γ(∧3TM). The Connes–Moscovici cocycle (ϕ0, ϕ2, ϕ4) for the spectral
triple (C∞(M), L2(M, S), D) and smooth functions a0, . . . , a4 ∈ C∞(M) is
given by the expressions

ϕ0(a0) = (2πi)−2

∫

M

a0

(

det1/2
( R−/2

sinh(R−/2)

)

+
1

6
d d∗ dB

)

,

ϕ2(a0, a1, a2) =
(2πi)−2

6

∫

M

a0g(da1, da2) dB,

ϕ4(a0, a1, a2, a3, a4) =
(2πi)−2

4!

∫

M

a0 da1 da2 da3 da4.
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In addition to the expected R− Chern–Weil representative of the Â-class,
the formulas include interesting correction terms constructed from dB. In case
n = 6, we give a formula (Theorem 6.1) for the degree zero term ϕ0.

Notation. For elements a, b of a Z2-graded algebra, [a, b] denotes the graded
commutator. We use the convention v2 =−|v|2 for the Clifford algebra Cl(V ) of
a real Euclidean vector bundle (V, | · |). If V is oriented, then B : ∧rk(V )V → R

denotes the “Berezin integral” [2, p. 40] determined by the Euclidean structure
and the orientation.

2. The Connes–Moscovici residue cocycle

In [6], Connes and Moscovici introduced a powerful new (b, B)-cocycle
into noncommutative geometry. The cocycle is associated to a spectral triple
(A,H,D) satisfying suitable technical hypotheses and involves residues of spec-
tral zeta functions for ∆ =D2. It is cohomologous (in the (b,B)-bicomplex) to
Connes’ Chern character for the K-homology class [F ] ∈K0(A) defined by the
operator F =D(1 +D2)−1/2 and hence, in particular, may be used to compute
index pairings (see for example [5, 8, 11]). In this section, we give a short in-
troduction to the Connes–Moscovici cocycle following Higson’s notes [11] and
then briefly discuss the relationship to heat kernel asymptotics. One simplify-
ing assumption we shall make is to take the operator D to be Fredholm. The
non-Fredholm case is important in certain applications but introduces minor
technical complications, and we refer the interested reader to [11] for discussion
of how to reduce to the Fredholm (even the invertible) case.

2.1. The Connes–Moscovici theorem. Recall (cp. [5]) that an even spectral
triple (A,H,D) for an (ungraded) algebra A consists of a Z2-graded Hilbert
space H , a representation of A on H by operators of even degree, and an
unbounded odd selfadjoint operator D such that, for all a ∈ A,
(i) a(1 +D2)−1 is a compact operator, and
(ii) a · dom(D) ⊂ dom(D) and the commutator [D, a] extends to a bounded

operator on H .
The standard example is A=C∞

c (M), whereM is a complete even-dimensional
Riemannian manifold, H = L2(M, S) and D is a Dirac operator acting on
sections of a Z2-graded Clifford module S.

The Connes–Moscovici result applies to spectral triples satisfying some tech-
nical hypotheses that we now describe. Following [11], we introduce an algebra
of “generalized differential operators” for (A,H,D). Let ∆ = D2 and define

H∞ =

∞
⋂

s=1

dom(∆s).

Suppose a ·H∞ ⊂ H∞ for all a ∈ A. Let D(A,D) be the smallest algebra of
operators on H∞ that contains A, [D,A] and such that if X ∈ D(A,D), then
[∆, X ] ∈ D(A,D).
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We suppose the algebra D(A,D) is equipped with an increasing filtration
D(A,D) =

⋃

q≥0Dq(A,D), where the operatorsX in Dq(A,D) are said to have

“(generalized) order q” (notation o(X) = q), having the following properties.
• There is an even integer r ≥ 2 such that

(2) [∆,Dq(A,D)] ⊂ Dq+r−1(A,D), [D, a] ∈ D r
2
−1(A,D) for all a ∈ A.

• If X ∈ Dq(A,D), then there is a constant ε > 0 such that

(3) ε‖Xv‖ ≤ ‖v‖+ ‖∆ q

r v‖.
The integer r should be thought of as the generalized order of ∆, even though
∆ need not itself lie in the algebra D(A,D). The correct choice of r depends
on the details of the application; in the standard example mentioned above,
r = 2, but for example Connes and Moscovici study an interesting example
with r = 4.

We now make the simplifying assumption that D is a Fredholm operator
(cp. [11, Sec. 6.1] for a discussion of how to reduce to this situation). For
ℜ(z) > 0, define

∆−z =

∫

C

λ−z(λ−∆)−1 dλ,

where the contour C is a downward-oriented vertical line in the complex plane
which separates 0 from the strictly positive part of the spectrum of ∆.

Definition 2.2. The algebra D(A,D) has finite analytic dimension if there is
a real number n ≥ 0 such that if X ∈ Dq(A,D), then for all z ∈ C with real
part ℜ(z) > q+n

r , the operator X∆−z extends by continuity to a trace-class
operator on H . The minimal n ≥ 0 with this property is called the analytic
dimension of D(A,D). The function z 7→ Tr(X∆−z) is then well-defined and
holomorphic in the right half-plane ℜ(z) > q+n

r . We say that D(A, D) has
the analytic continuation property if this function extends to a meromorphic
function on C.

If ∆=D2 for a Dirac operatorD on a compact Riemannian manifoldM , the
above analytic continuation property is well-known (originally due to Minak-
shisundaram–Pleijel) and the analytic dimension coincides with the dimension
ofM . For further context, see for example the account in [10], which describes
a fairly general analytic continuation result. Note in particular that if D(A,D)
has finite analytic dimension n, then for q > r

n and for all a ∈ A ⊂ D0(A,D),
a(1 +D2)−q is trace class; hence (A,H,D) is a finitely summable spectral triple
and Connes’ Chern character is defined (cp. [5]).

The following is a case of the Connes–Moscovici local index formula [6],
although we have formulated the hypotheses in the language of [11].

Theorem 2.3 (Connes–Moscovici [6]). Let (A,H,D) be an even spectral triple
with D Fredholm, and let ∆=D2. Suppose A preserves H∞ =

⋂

s≥1 dom(∆s),

and define the filtered algebra D(A, D) as above. Assume D(A, D) satisfies
(2), (3), has finite analytic dimension n and satisfies the analytic continuation
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property. Then there is an even (b,B)-cocycle Φ = (ϕ0, ϕ2, . . . , ϕ2⌊n
2
⌋) coho-

mologous to Connes’ Chern character, which is given, for all a0, . . . , ap ∈ A,
by the following expressions:

ϕ0(a0) = Res
z=0

(

Γ(z)Trs(a0∆
−z)

)

+Trs(a0Π),

where Π is the orthogonal projection onto the kernel of D and Trs denotes the
supertrace, and if p > 0,

ϕp(a0, . . . , ap) =
∑

|k|≤n−p

cpk Res
z= p

2
+|k|

Trs
(

Pk(a0, . . . , ap)∆
−z

)

,

Pk(a0, . . . , ap) = a0[D, a1]
(k1) · · · [D, ap](kp),

where k = (k1, . . . , kp) ∈ (Z≥0)
p is a multi-index, X(ℓ) = adℓ∆(X) and

cpk =
(−1)k

k!

Γ(p2 + |k|)
(k1 + 1)(k1 + k2 + 2) · · · (k1 + · · ·+ kp + p)

, |k| = k1 + · · ·+ kp.

We will refer to Φ as the Connes–Moscovici cocycle or the residue cocycle.

Remark 2.4. The bounds p ≤ 2⌊n
2 ⌋ and |k| ≤ n − p come from generalized

order considerations: the operator Pk(a0, . . . , ap) ∈ D(A, D) has generalized
order at most |k|(r − 1) + p( r2 − 1); hence by the analytic continuation as-
sumption, p

2 + |k| will lie in the half plane where the supertrace is holomorphic
provided that n < p+ |k|.

Being cohomologous to Connes’ Chern character, the residue cocycle yields
a formula for the index of the operator in the spectral triple and, more generally,
for the index pairing with an element in the K-theory group K0(A). A multi-
linear functional ϕp :A

⊗(p+1) →Cmay be extended toMk(A)
⊗(p+1) by defining

ϕp(m0 ⊗ a0, . . . ,mp ⊗ ap) = tr(m0 · · ·mp)ϕp(a0, . . . , ap).

For the following, see for example [8, Prop. 1.1, Thm. D] and [11, Thm. 2.27].

Theorem 2.5. Let (A,H,D), Φ be as in Theorem 2.3, and assume in addition
that A is unital. Let e ∈Mk(A) be an idempotent. Then

index
(

e(D ⊗ 1k)e
)

= ϕ0(e) +
∑

p>0, even

(−1)
p

2
p!

(p2 )!
ϕp

(

e− 1

2
, e, . . . , e

)

.

2.6. Residues and heat kernel asymptotics. Throughout this subsection,
we assume (A, H, D) are as in Theorem 2.3. The residue cocycle is closely
related to the small time behavior of the heat kernel e−t∆. Let Π⊥ = 1 − Π
be the projection onto the orthogonal complement of ker(D) = ker(∆). The
following is well-known, but we include it for completeness.

Proposition 2.7. For all t > 0, the operator Pk(a0, . . . , ap)e
−t∆ is trace class.

As t→ 0+, the trace norm is O(t−s) for any

s >
n

r
+ |k|

(

1− 1

r

)

+ p
(1

2
− 1

r

)

.

As t→ ∞, the trace norm of Pk(a0, . . . , ap)e
−t∆Π⊥ decays exponentially.
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Proof. Let s ∈ R be as in the statement. By order considerations (see Re-
mark 2.4), the operator Pk(a0, . . . , ap)(1 + ∆)−s is trace class. On the other
hand, by functional calculus, (1 + ∆)se−t∆ is a bounded operator with norm
at most Cst

−set, where Cs is a constant. It follows that Pk(a0, . . . , ap)e
−t∆ =

Pk(a0, . . . , ap)(1 + ∆)−s(1 + ∆)se−t∆ is trace class for all t > 0, and that its
trace norm has the claimed asymptotic behavior as t→ 0+. For t > 1,

Pk(a0, . . . , ap)e
−t∆Π⊥ = Pk(a0, . . . , ap)e

−∆e−(t−1)∆Π⊥;

thus the trace norm is bounded by the trace norm of Pk(a0, . . . , ap)e
−∆ times

the operator norm ‖Π⊥e−(t−1)∆Π⊥‖= e−(t−1)b, where b > 0 is the lower bound
of Π⊥∆Π⊥ on Π⊥H . �

Proposition 2.8. Suppose the supertrace admits an asymptotic expansion as
t→ 0+ of the form

Trs
(

Pk(a0, . . . , ap)e
−t∆

)

∼ t−Nk

∑

s≥0

tsψk,s(a0, . . . , ap).

Then the components of the residue cocycle are given by

ϕp(a0, . . . , ap) =
∑

|k|≤n−p

c′pkψk,sp,k(a0, . . . , ap), sp,k = Nk −
p

2
− |k|,

where

c′pk =
(−1)k

k! · (k1 + 1)(k1 + k2 + 2) · · · (k1 + · · ·+ kp + p)
.

Proof. For brevity, let Pk = Pk(a0, . . . , ap). Since ∆−z was defined to vanish
on ker(∆), one has ∆−z = ∆−zΠ⊥. By the Mellin transform,

Γ(z)Pk∆
−z =

∫ ∞

0

tz−1Pke
−t∆Π⊥ dt,

where the integral converges in the trace norm when ℜ(z) ≫ 0 by Proposi-
tion 2.7. Therefore, taking the trace and splitting the range of integration, we
have, for ℜ(z) ≫ 0,

Γ(z)Trs(Pk∆
−z) =

∫ 1

0

tz−1 Trs(Pke
−t∆Π⊥) dt(4)

+

∫ ∞

1

tz−1 Trs(Pke
−t∆Π⊥) dt

Proposition 2.7 implies further that the integral over (1,∞) is a holomorphic
function fk(z). Substituting Π⊥ = 1−Π, e−t∆Π = Π in (4) yields

(5) Γ(z)Trs(Pk∆
−z) =

∫ 1

0

tz−1 Trs(Pke
−t∆) dt− 1

z
Trs(PkΠ) + fk(z).
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Using the asymptotic expansion of Trs(Pke
−t∆) as t→ 0+, the integral on the

right-hand side has an analytic continuation (with simple poles) to a neigh-
borhood of p

2 + |k|, namely

M
∑

s=0

1

s−Nk + z
ψk,s +

∫ 1

0

tz−1RM (t) dt

for any M ≥ max(0, Nk − p
2 − |k| + 1), where RM (t) = o(tM−Nk) is the re-

mainder. The analytic continuations of the two sides of (5) must agree near
z = p

2 + |k|, and consequently, we may take residues of both sides, which gives
the result. Note in particular that, when p > 0, the second term on the right-
hand side of (5) is holomorphic near z = p

2 + |k| so does not contribute to the
residue. When p = 0 (so k = ∅), P∅ = a0 and the residue of the second term
is −Trs(a0Π). �

3. Dirac-type operators and Getzler order

This section is mostly expository. We describe Bismut’s generalization [3]
of the Lichnerowicz formula to Dirac-type operators D = DLC + c(B). We
then specialize to the case where B is a 3-form and briefly introduce a Getzler
symbol calculus “adapted to B”, which is a slight variation of the usual Getzler
calculus. The observation that a variation of the usual Getzler calculus is
appropriate for studying the heat operator e−tD2

is due to Bismut [3]. Our
discussion of Getzler calculus draws from the approaches in [2, 17], and as in
these references, we will only need a less elaborate version of Getzler’s original
calculus [7], sufficient for handling compositions of the form P ◦ Q, where P
is a differential operator and Q is a smoothing operator. Throughout, we will
work on a closed Riemannian spin manifold, the extension to operators acting
on general Clifford modules being well understood (cp. [2]).

3.1. Dirac-type operators. Let (Mn, g) be a closed Riemannian spin mani-
fold with Z2-graded spinor bundle S, and let c :Cl(T ∗M)

∼−→End(S) denote the
Clifford action. Equip S with a Hermitian structure such that, for v ∈ T ∗M ,
c(v) is skew-Hermitian. There is a canonical isomorphism (the Clifford sym-
bol map) of Z2-graded complex vector spaces Cl(T ∗

xM) ≃ ∧T ∗
xMC that sends

ei1 · · · eik ∈ Cl(T ∗
xM) to ei1 ∧ · · · ∧ eik ∈ ∧T ∗

xM , where e1, . . . , en is any or-
thonormal frame of T ∗

xM (cp. [2]), and we will use this isomorphism to identify
Cl(T ∗M) and ∧T ∗MC.

The Levi-Civita connection ∇LC on TM ≃ T ∗M determines a canonical
connection (the spin connection) on S that we also denote by ∇LC. The spin
Dirac operator DLC acting on smooth sections of S is the odd, essentially
selfadjoint, first-order differential operator given by the composition

(6) Γ(S)
∇LC

−−−→ Γ(T ∗M ⊗ S)
c−−−→ Γ(S).

More generally, a Dirac operator acting on smooth sections of S is an operator
given by a composition similar to (6), but allowing the spin connection ∇LC to

Münster Journal of Mathematics Vol. 16 (2023), 25–50
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be replaced with a connection of the form ∇LC +
√
−1a, where a is a R-valued

1-form (equivalently, twist S by a trivial Hermitian line bundle and couple
DLC to it using a possibly nontrivial Hermitian connection). In this article, by
a Dirac-type operator, we shall mean an odd, essentially selfadjoint first-order
differential operator D acting on smooth sections of S that differs from DLC

by a smooth bundle endomorphism. The most general such operator is of the
form

D = DLC + c(B),

where B ∈ Γ(∧T ∗MC) is a differential form of odd (possibly mixed) degree
satisfying c(B)∗ = c(B). When B is a 1-form, D is a Dirac operator in the
above sense.

For any B as above, there is a spectral triple (C∞
c (M),L2(M,S),D) satisfy-

ing all the hypotheses of the Connes–Moscovici theorem. All of these spectral
triples represent the same element in the K-homology group of the closed
manifold M , and hence, although their residue cocycles will differ, they are
guaranteed to be (b, B)-cohomologous. The operator ∆ = D2 is a general-
ized Laplacian in the sense of [2, Chap. 2]; hence the heat kernel e−t∆ has an
asymptotic expansion as t→ 0+ to which Proposition 2.8 applies.

3.2. Bismut’s Lichnerowicz formula. Let B ∈ Γ(∧T ∗MC) be a differential
form of odd degree such that c(B)∗ = c(B). Define a new connection

∇ : Γ(S) → Γ(T ∗M ⊗ S)

on S given by

(7) ∇X = ∇LC
X + c(ιXB), X ∈ X(M),

where ιX denotes contraction with the vector field X . (To avoid a possible
misconception, we mention that if e1, . . . , en is a local orthonormal frame, then
∑

i c(ei)∇ei = DLC + kc(B) if B ∈ Γ(∧kT ∗MC), which is not the operator D
unless k = 1. The operator D is however the Dirac operator associated to the
Clifford superconnection A =∇LC +B in the sense of [2, p. 116].) The formal
adjoint of ∇ with respect to the Riemannian L2 inner products is denoted
∇∗ : Γ(T ∗M ⊗ S) → Γ(S).

The odd differential form B gives rise to a collection Bj , j = 1, 2, 3, . . . , of
even degree differential forms (with degrees (k− 2j− 1)2 ifB has odd degree k),
given in terms of a local orthonormal frame e1, . . . , en by

Bj =
∑

i1<···<i2j+1

(

ι(ei1 ) · · · ι(ei2j+1
)B

)2
.

(The result is independent of the choice of local orthonormal frame.) Bismut
proved the following formula for the square of the Dirac-type operator D =
DLC + c(B).
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Proposition 3.3 ([3, Thm. 1.1]). Let D =DLC + c(B), where DLC is the spin
Dirac operator and B is an odd differential form. Let ∆ = D2. Then

∆ = ∇∗∇+
κ

4
+ c(dB) + 2

∑

j≥1

(−1)jjc(Bj),

where κ is the scalar curvature. When B ∈Γ(∧3T ∗M), the formula simplifies to

∆ = ∇∗∇+
κ

4
+ c(dB)− 2|B|2.

In terms of a local orthonormal frame e = {e1, . . . , en},

∇∗∇ = −
( n
∑

i=1

∇2
ei

)

−∇νe , νe =

n
∑

i=1

∇LC
ei ei = −

n
∑

i=1

divg(ei)ei.

The formula in Proposition 3.3 appears slightly simpler than [3, Thm. 1.1]
because we have omitted twists by an auxiliary bundle.

Throughout the rest of the article, we restrict to the case where B is a
3-form. The condition c(B)∗ = c(B) implies B ∈ Γ(∧3T ∗M) is a real 3-form.
A special feature of the 3-form case is that the connection ∇ is the lift (via the
isomorphism on = son ≃ spinn) of a metric connection on the tangent bundle—
also denoted ∇ when there is no risk of confusion—given by the formula

(8) ∇ = ∇LC +Bo, Bo ∈ Ω1(M, o(TM)),

where, for any A ∈ Ωk(M), k ≥ 2, we define Ao ∈ Ωk−2(M, o(TM)) using the
metric

g
(

Ao(X1, . . . , Xk−2)Xk−1, Xk

)

= 2A(X1, . . . , Xk).

The lift property ensures that

[∇X , c(Y )] = c(∇XY ).

The extra skew-symmetry of (8) implies that the torsion T∇ of ∇ is skew-
symmetric,

g(T∇(X,Y ), Z) = 4B(X,Y, Z),

and ∇XX =∇LC
X X for all X ∈ X(M); hence ∇,∇LC have the same geodesics.

Remark 3.4. When dB = 0, there is an interesting perspective on ∇ coming
from generalized geometry in the sense of Hitchin, where ∇ may be thought of
as the analog of the Levi-Civita connection when doing geometry with a closed
3-form “background”; see for example [12, 9].

3.5. Getzler calculus. Let B ∈ Γ(∧3T ∗M) be a 3-form on M , and let ∇
denote the corresponding connection on TM (equation (8)) or its lift to S
(equation (7)). A key feature of the Getzler symbol calculus applied to the spin
Dirac operator DLC is that, by the Lichnerowicz formula, the square (DLC)2

has order 2. The appearance of the connection ∇ in Proposition 3.3 suggests
that, in the study of heat kernel asymptotics for the operator D, a variation
of the Getzler calculus that replaces the Levi-Civita connection ∇LC with ∇
should be used.
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Let

pr : TM →M, s :M ×M →M,

be respectively the bundle projection and projection map to the second factor
(i.e. the source map of the pair groupoid M ×M). The Riemannian expo-
nential map identifies a tubular neighborhood U of the 0-section in TM with
a neighborhood U of the diagonal in M ×M ,

(9) exp : v ∈ U ⊂ TM 7→ (expy(v), y) ∈ U ⊂M ×M,

where v ∈ TyM . The inverse of the diffeomorphism (9) is denoted

(10) x : U → U ⊂ TM.

The maps (9), (10) intertwine s|U , pr|U. For y ∈M , let Uy = U ∩ (M × {y}),
a geodesic ball around y, and let xy : Uy → TyM be the restriction of x to Uy.

Using ∇-parallel translation along radial geodesics, followed by the Clifford
symbol map, we obtain isomorphisms

(11) S ⊠ S∗|U ≃ s∗(S ⊗ S∗) = s∗ End(S) = s∗Cl(T ∗M) ≃ s∗∧T ∗MC.

Using the inverse of the exponential map (10) on the base combined with the
isomorphism (11) on the fibers, we obtain an isomorphism

(12) Γ(S ⊠ S∗|U ) ≃ Γ(pr∗∧T ∗MC|U )

that will be used frequently below.

Definition 3.6. An s-fibered differential operator on Γ(S⊠S∗|U ) is differential
operator T with smooth coefficients on Γ(S⊠S∗|U ) given by a family {Ty}y∈M ,
where Ty is a differential operator acting on Γ(S|Uy

⊠ S∗
y). The space of s-

fibered differential operators forms an algebra under composition. An s-fibered
differential operator T is said to vanish on the diagonal if T (Γ(S ⊠ S∗|U )) is
contained in the subspace of Γ(S ⊠ S∗|U ) consisting of sections that vanish on
the diagonal. Using the identification (12), T yields a differential operator

T : Γ(pr∗∧T ∗MC|U ) → Γ(pr∗∧T ∗MC|U )

given by a family {T y}y∈M of differential operators along the fibers of U →M .

We mention several examples that will appear frequently below.

Example 3.7. Any differential operator P on M acting on sections of S
determines an s-fibered differential operator by “copying” P on eachM ×{y}⊂
M ×M , and using the fact that s∗S∗|M×{y} ≃ M × S∗

y is canonically trivial
to extend P to act on sections of S ⊠ S∗|M×{y} = S ⊠ S∗

y . These operators are
examples of G-invariant families of differential operators on the source fibers
in the sense of [14, 15], for G = Pair(M) the pair groupoid of M .

Example 3.8. Smooth functions on U act by multiplication on Γ(S ⊠ S∗|U )
and hence determine s-fibered differential operators. One example that appears
frequently below is the function x2 = g(x,x) giving the squared distance to the
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diagonal. Further examples are the powers ̺r for r ∈ R, where by definition
the restriction ̺ry of ̺r to the normal coordinate chart Uy = U ∩ (M × {y}) is

̺ry(xy) = det(gab)
r
4 ,

where gab = g(∂a,∂b) are the components of the metric in the normal coordinate
system on Uy.

Example 3.9. Generalizing the previous example, any smooth section Q ∈
Γ(S ⊠ S∗|U ) determines an s-fibered differential operator, via the identification
Γ(S ⊠ S∗|U ) ≃ Γ(s∗End(S)), and letting Q|U act on sections of Γ(S ⊠ S∗|U ) ≃
Γ(pr∗2 End(S)) by pointwise composition of endomorphisms of S.

Example 3.10. Let E be the vector field on U ≃U corresponding to the Euler
vector field on U ⊂ TM under the exponential map, whose integral curves are
radial geodesics. Then ∇E is an s-fibered differential operator that vanishes
on the diagonal. The identification (11) trivializes the bundle S along radial
geodesics, and hence, instead of ∇E , we will often simply write E .

The inclusion TM ×C = pr∗∧0T ∗MC →֒ pr∗∧T ∗MC induces a map on sec-
tions η : C∞(TM) →֒ Γ(pr∗∧T ∗MC). If

T : Γ(pr∗∧T ∗MC|V ) → Γ(pr∗∧T ∗MC|V )

is a differential operator defined on some open set V ⊂ TM , then the compo-
sition

T ◦ η : C∞(V ) → Γ(pr∗∧T ∗MC|V )

is again a differential operator on V .

Definition 3.11 (compare [17, Ex. 12.31, Ex. 12.32] and [2, pp. 156–157]).
For a section α ∈ Γ(S ⊠ S∗|U ) ≃ Γ(pr∗∧T ∗MC|U ) and u ∈ R>0 define δuα ∈
Γ(pr∗∧T ∗MC|u−1U ) by

δuα(x) =

n
∑

k=0

u−kα[k](ux),

where α[k] is the component lying in the k-th exterior power. The operation
δu is the Getzler re-scaling for the connection ∇. For an s-fibered differential
operator T and m ∈ Z, define

(13) σG
m(T ) = lim

u→0+
umδu ◦ T ◦ δ−1

u ◦ η ∈ D(TM)⊗ ∧T ∗M

when the limit exists, where D(TM) → M is the bundle of algebras whose
fiber over y ∈ M consists of differential operators on TyM with polynomial
coefficients. In (13), δu ◦ T ◦ δ−1

u is to be viewed as a differential operator on
u−1 ·U ⊂ TM , which in the limit produces a differential operator on TM . If
the limit exists for somem∈Z, then T is said to haveGetzler order m (notation
oG(T ) =m), and (13) is them-th order Getzler symbol of T . The constant term
of the Getzler symbol, denoted σG,0

m (T ), is the element of Sym(TM)⊗∧T ∗M
(where Sym(TM) should be thought of as the bundle of constant coefficient
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differential operators along the fibers of TM) obtained by evaluating the poly-
nomial coefficients of σG

m(T ) along the zero section. Getzler order determines
a filtration of the algebra of s-fibered differential operators, and the Getzler
symbol satisfies (cp. [17, Prop. 12.22]) σG

m1+m2
(T1T2) = σG

m1
(T1)σ

G
m2

(T2) with

T1, T2 being s-fibered differential operators with Getzler orders oG(Ti) = mi.

Remark 3.12. The small deviation from the usual set-up was that ∇-parallel
translation was used in (11), not ∇LC-parallel translation.

To clarify the definition and for use in later calculations, we describe a num-
ber of examples.

Example 3.13. Let f ∈C∞(U) be a smooth function that vanishes to order k
on the diagonal. Then oG(f) = −k, and

σG
−k(f) = lim

u→0
u−kf(ux)

is a smooth function on TM which is polynomial along the fibers of TM →M
(it is the homogeneous k-th order Taylor polynomial of f in directions normal
to the diagonal). In particular, a function always possesses a 0-th order Getzler
symbol σG

0 (f) = pr∗(f |DiagM
).

Example 3.14. Let α = α1 · · · αk ∈ Γ(∧kT ∗M) be a decomposable k-form,
and let c(α) be the 0-th order operator on S given by the Clifford action.
We view c(α) as an s-fibered differential operator as in Example 3.7. Under
the isomorphism S ⊗ S∗ ≃ ∧T ∗MC, Clifford multiplication by αj ∈ ∧1T ∗MC

becomes ǫ(αj)− ι(αj), where ǫ (resp. ι) denotes exterior multiplication (resp.
contraction). It follows that oG(c(α)) = k and

σG
k (c(α)) = 1⊗ α ∈ D(TM)⊗ ∧T ∗M.

Example 3.15. Generalizing the previous two examples, any smooth section
Q ∈ Γ(S ⊠ S∗|U ) has Getzler order (at most) n = dim(M). Its n-th order
Getzler symbol is the n-form part of its restriction to the diagonal.

Example 3.16. The Getzler order is oG(E) = 0, and σG
0 (E) = E ⊗ 1 is the

Euler vector field on TM .

3.16.1. Getzler symbol of covariant derivatives. Let y ∈M , let e1, . . . , en be an
orthonormal basis of TyM , and let xy,a = g(xy, ea) be the corresponding normal
coordinates on Uy. By ∇-parallel translation along radial geodesics, extend
e1, . . . ,en to an orthonormal frame of TM |Uy

. Let ω=
∑

aωadxy,a ∈Ω1(Uy,on)
be the connection 1-form for ∇ on Uy relative to the frame e1, . . . , en. By
construction, ι(E)ω = 0, and using the Cartan formula, the Lie derivative is

(14) LEω = ι(E)R,
where R ∈ Ω2(Uy, on) is the curvature. Since ω vanishes at y (where xy = 0),
equation (14) implies (cp. [2, Prop. 1.18])

(15) ωa(xy) = −1

2

∑

b

R(∂a, ∂b)yxy,b +O(x2
y),
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where O(x2
y) denotes an on-valued smooth function vanishing to order 2 at the

point y. Via the isomorphism on = son ≃ spinn, the operator ∇∂a
on S is

∇∂a
= ∂a +

1

8

∑

b,i,j

(Rijab)yxy,bc(ei)c(ej) +O(x2
y).

Therefore, if X ∈ X(M) is a vector field, Xy =
∑

aXa∂a, then near y ∈M ,

∇X = X +
1

8

∑

a,b,i,j

(Rijab)yXaxy,bc(ei)c(ej) +O(x2
y).

It follows that (compare [2, Prop. 4.20]), at the point y ∈M ,

(16) σG
1 (∇X)y = Xy ⊗ 1 +

1

8

∑

a,b,i,j

(Rijab)yXaxy,b ⊗ eiej .

The sum over a, b, i, j in (16) is independent of the choice of the orthonormal
frame e1, . . . , en at the point y ∈M , and therefore, adopting the abstract index
notation convention, we may write

σG
1 (∇X) = X ⊗ 1 +

1

8

∑

a,b,i,j

RijabXaxb ⊗ eiej .

To make the resulting expression more transparent, we introduce the following
notation.

Definition 3.17. For any A ∈ Γ(∧2T ∗M ⊗ o(TM)), define

A⊤ ∈ Γ(∧2T ∗M ⊗ o(TM)) by g(A⊤(X,Y )W,Z) = g(A(W,Z)X,Y ).

When B = 0, one has R⊤ = R by a well-known property of the curvature of
the Levi-Civita connection. We also define R⊤

ab = g(R⊤eb, ea) ∈ ∧2T ∗M , the
matrix elements of R⊤ in the orthonormal frame.

In terms of R⊤, the Getzler symbol of ∇X reads

(17) σG
1 (∇X) = X ⊗ 1− 1

4

∑

a,b

Xaxb ⊗R⊤
ab.

3.17.1. Getzler symbol of ∆, ∆− c(dB).

Definition 3.18. Let D = DLC + c(B), where B ∈ Γ(∧3T ∗M) is a 3-form,
and recall that we defined ∆ to be the square D2. Let

∆̄ = ∆− c(dB) = ∇∗∇+
κ

4
− 2|B|2,

where the second expression is Proposition 3.3.

If dB 6= 0, then by Example 3.14, oG(∆) = 4 and

σG
4 (∆) = 1⊗ dB ∈ D(TM)⊗ ∧T ∗M.
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More interesting is the operator ∆̄. By Proposition 3.3 and equation (17),
oG(∆̄) = 2 and

(18) σG
2 (∆̄) = −

∑

a

(

∂a ⊗ 1− 1

4

∑

b

xb ⊗R⊤
ab

)2

.

3.19. Heat kernels. It is well-known (cp. [2, Thm. 2.30]) that the heat oper-
ators e−t∆, e−t∆̄ have integral kernels Θt, Θ̄t ∈ C∞(M ×M × (0,∞), S ⊠ S∗)
depending smoothly on (x,y, t) ∈M ×M × (0,∞), with asymptotic expansions
on U as t→ 0+ (in the space Cℓ(U, S ⊠ S∗|U ) for any ℓ),

Θt(x) ∼ ht(x)
∑

j≥0

tjΘj(x),(19)

Θ̄t(x) ∼ ht(x)
∑

j≥0

tjΘ̄j(x),

where

ht(x) = (4πt)−
n
2 e−

x
2

4t

is the Euclidean approximation to the heat kernel. Moreover, the expansions
remain valid after differentiating both sides with respect to t any number of
times. It is convenient to let Θj = 0 when j < 0.

The Getzler orders and symbols of the heat kernel coefficients

Θ̄j ∈ C∞(U, S ⊠ S∗|U ), j = 0, . . . ,
n

2
,

can be computed using (18) and Mehler’s formula for the solution of the har-
monic oscillator. The result is as follows.

Theorem 3.20 ([2, Thm. 4.21]). For j = 0, . . . , n2 , the Getzler order is given
by oG(Θ̄j) = 2j, and the Getzler symbols are given by the generating function

n
2

∑

j=0

tjσG
2j(Θ̄j) =

(

1⊗ det
1
2

( tR⊤

2

sinh
(

tR⊤

2

)

))

(20)

· exp
(

− 1

4t

∑

a,b

xaxb ⊗ f(R⊤)ab

)

,

where f(z) = z
2 coth( z2 ) − 1 and R⊤ ∈ Γ(∧2T ∗M ⊗ o(TM)) is as in Defini-

tion 3.17.

The constant part of the Getzler symbol is obtained by setting x= 0 in (20),
resulting in the differential form

(21)

n
2

∑

j=0

tjσG,0
2j (Θ̄j) = det

1
2

( tR⊤

2

sinh
(

tR⊤

2

)

)

.

As mentioned in Definition 3.17, when B=0, R⊤ =R is the Riemann curvature
tensor of the metric g; hence upon setting t=1, the form (21) becomes the usual

Chern–Weil representative of the Â-class. In general, we have the following
formula for R⊤, which slightly generalizes [3, Thm. 1.6].
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Proposition 3.21. Let B be a 3-form. Let ∇=∇LC +Bo and ∇− =∇LC −Bo

with curvature tensors R, R− respectively. Then R⊤ = R− + (dB)o. In par-
ticular, when dB = 0, R⊤ = R−, and (21) is the Chern–Weil representative of

the Â-class (up to factors of 2πi) constructed using the connection ∇−.

Proof. Let d∇LC be the exterior covariant differential defined by the Levi-Civita
connection. Then

R = (d∇LC +Bo)
2 = RLC + d∇LCBo +B2

o
,

and thus

(22) R⊤ = RLC + (d∇LCBo)
⊤ + (B2

o
)⊤.

Let e1, . . . , en be a local orthonormal frame. Then

g
(

(B2
o
)⊤(W,X)Y, Z

)

= g
(

[Bo(Y ), Bo(Z)]W,X
)

= 4
∑

i

B(Y, ei, X)B(Z,W, ei)−B(Z, ei, X)B(Y,W, ei),

and if one expands g(B2
o
(W,X)Y, Z) in the same way, one finds the same ex-

pression (after using the antisymmetry of B to permute the entries). Therefore,
(B2

o
)⊤ = B2

o
. On the other hand, dB(W,X, Y, Z) is given by

(∇LC
W B)(X,Y,Z)− (∇LC

X B)(W,Y,Z) + (∇LC
Y B)(W,X,Z)− (∇LC

Z B)(W,X,Y ),

and since (∇LC
X B)o = ∇LC

X Bo, we find (grouping the four terms in the expres-
sion for dB in two groups of two)

(dB)o = d∇LCBo + (d∇LCBo)
⊤.

Thus equation (22) becomes

R⊤ = RLC − d∇LCBo +B2
o
+ (dB)o = R− + (dB)o. �

4. The residue cocycle for D = DLC + c(B)

Let D =DLC + c(B), where B ∈ Γ(∧3T ∗M) is a 3-form. In this section, we
study the residue cocycle for the spectral triple (C∞(M), L2(M, S), D). We
describe some constraints on what contributions can occur in general and show
how to calculate the cocycle completely when dB=0 using the Getzler calculus.
We will use notation introduced in the previous section. In particular, recall
∆ = D2, ∆̄ = ∆ − c(dB), as well as the heat kernels Θt, Θ̄t, the asymptotic
expansion coefficients Θj , Θ̄j , and the Euclidean approximation to the heat

kernel ht(x) = (4πt)−n/2e−x
2/4t.

According to Proposition 2.8 (and using [D,a] = c(da) for a ∈ C∞(M)), for
0 ≤ p ≤ n, the component ϕp(a0, . . . , ap), a0, . . . , ap ∈ C∞(M), of the residue
cocycle can be determined from the asymptotic expansion as t→ 0+ of

(23) Trs
(

Pk(a0, . . . , ap)e
−t∆

)

,

where k = (k1, . . . , kp) ∈ (Z≥0)
p, |k| ≤ n− p and

Pk = Pk(a0, . . . , ap) = a0
(

adk1

∆ c(da1)
)

· · ·
(

ad
kp

∆ c(dap)
)

.
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As p and a0, . . . , ap will be fixed, to simplify notation, we will write Pk instead
of Pk(a0, . . . , ap) below. It is also convenient to introduce the operator

P̄k = a0
(

adk1

∆̄
c(da1)

)

· · ·
(

ad
kp

∆̄
c(dap)

)

,

obtained by replacing ∆ with ∆̄ = ∆− c(dB).
The integral kernel of Pke

−t∆ is PkΘt, where the notation means that Pk,
Θt are composed as s-fibered differential operators. (See Example 3.7 for the
sense in which Pk is an s-fibered differential operator; another reasonable,
though cumbersome, notation would be Pk(x)Θt(x, y) to emphasize that Pk

acts along the first factor in the productM ×M .) The supertrace (23) is given
by integration of the pointwise supertrace of the kernel along the diagonal:

(24) Trs(Pke
−t∆) =

∫

M

trs(PkΘt|x=0) dV,

where dV is the Riemannian measure. Thus computing the asymptotic ex-
pansion of (23) amounts to studying the low-lying terms in the asymptotic
expansion in t of the integrand (24), and in particular, it is enough to work
in an arbitrarily small neighborhood of the diagonal in M ×M . Using the
asymptotic expansion (19) of Θt,

(25) trs(PkΘt|x=0) ∼ (4πt)−
n
2

∑

j≥0

tj trs(h
−1
t PkhtΘj|x=0),

and likewise for trs(P̄kΘ̄t|x=0).

Lemma 4.1. Let O be an s-fibered differential operator of order m. Then

(26) h−1
t Oht =

m
∑

ℓ=0

t−m+ℓOℓ,

where Oℓ is an s-fibered differential operator of order ℓ. For ℓ < ⌈m
2 ⌉, Oℓ

vanishes on the diagonal (in the sense of Definition 3.6).

Proof. Since ht(x) = (4πt)−n/2e−x
2/4t, the coefficient of t−m+ℓ comes from

applying m − ℓ derivatives to ht, leaving m − (m − ℓ) = ℓ derivatives. This
proves the claim regarding the order of Oℓ.

Let Ψ ∈ Γ(S ⊠ S∗|U ) and set O(t) = h−1
t Oht. Fix t and consider the re-

scaling φ0,u : t 7→ ut. Along the diagonal, the re-scaled section φ∗0,uO(t)Ψ|x=0

has an asymptotic expansion in u as u→ 0+, with some lowest power u−m+pΨ ,
where pΨ ≥ 0. Taking the infimum of −m + pΨ over all choices of Ψ yields
the lowest power −m+ p ∈ Z of t in (26) such that the s-fibered differential
operator Op does not vanish on the diagonal.

On the other hand, we may obtain a lower bound on −m+ p by considering
the growth rate of the section O(t)Ψ ∈ Γ(S ⊠ S∗|U ) (no restriction to the
diagonal x= 0) under the combined re-scaling φu : (t,x) 7→ (ut,u1/2x). Clearly,
φ∗ue

−x
2/4t = e−x

2/4t, and as O has order m, the section O(t)Ψ grows at most
at the rate u−m/2 under the re-scaling. Hence −m+ p ≥ −m

2 , and so p ≥ m
2 .

Since p is an integer, p ≥ ⌈m
2 ⌉. �
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In particular, the above lemma applies to the order |k| differential operators
Pk, P̄k. For the operator O = P̄k, we will also need the Getzler orders of the
operators P̄k,ℓ = Oℓ.

Proposition 4.2. In normal coordinates,

h−1
t ∆ht = ∆+

1

t
∇E +

n

2t
+

1

t
E(log ̺)− x2

4t2
,

where ̺ = |g|1/4 (see Example 3.8). The same formula holds with ∆ replaced
by ∆̄.

Proof. One has

h−1
t ∆ht = ∆+ h−1

t [∆, ht] = ∆− 2h−1
t ∇∇ht

+ h−1
t ∆ht.

On the other hand,

h−1
t ∇ht = − 1

2t
E ,

and a short calculation in normal coordinates (cp. [17, p. 100]) shows that

h−1
t (∆ht) = −x2

4t
+
n

2t
+

1

t
E(log ̺). �

Lemma 4.3. Let m > 0 and f ∈ C∞(M). On U ⊂M ×M , we have

adm
h−1
t ∆̄ht

(c(df)) = t−mO0 + t−m+1O1 + · · ·+ t0Om,

where Oℓ is an s-fibered differential operator with Getzler order oG(Oℓ) ≤ 2ℓ.

Proof. Proceed by induction on m. For the base case m = 1, we have

[h−1
t ∆̄ht, c(df)] = t−1[∇E , c(df)] + [∆̄, c(df)] = t−1O0 +O1.

The operator O0 = c(∇E df) has Getzler order oG(O0) = 1 − 1 = 0 since we
have oG(c(α)) = 1 for α ∈ Ω1(M), but E vanishes to order 1 on the diagonal
(contributing −1; see Example 3.13). Since oG(∆̄) = 2, oG(c(df)) = 1, we have
oG(O1) ≤ 3. But in fact oG(O1) = 2 because the Getzler symbols

σG
2 (∆̄) = −

∑

a

(

∂a ⊗ 1− 1

4

∑

b

xb ⊗R⊤
ab

)2

, σG
1 (c(df)) = 1⊗ df

commute. This establishes the base case. For the inductive step, suppose

adm−1

h−1
t ∆̄ht

(c(da)) = t−(m−1)O0 + t−(m−1)+1O1 + · · ·+ t0Om−1

=
∑

ℓ

t−(m−1)+ℓOℓ,

where oG(Oj) = 2j. Then

adm
h−1
t ∆̄ht

(c(df)) = t−(m−1)[h−1
t ∆̄ht,O0] + t−(m−1)+1[h−1

t ∆̄ht,O1]

+ · · ·+ t0[h−1
t ∆̄ht,Om−1].
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By Proposition 4.2, h−1
t ∆̄ht =∆̄+ t−1T + t−2F , where oG(T )= 0, oG(F )=−2.

The Getzler orders are oG([∆̄,Oℓ]) = 2ℓ+2, oG([T,Oℓ]) = 2ℓ and oG([F,Oℓ]) =
2ℓ− 2. Hence a typical term

t−(m−1)+ℓ[h−1
t ∆̄ht,Oℓ] = t−m+(ℓ+1)O′

ℓ+1 + t−m+ℓO′
ℓ + t−m+(ℓ−1)O′

ℓ−1

has Getzler orders as claimed, completing the inductive step. �

The following summarizes the result of applying the previous two lemmas
to Pk, P̄k.

Corollary 4.4. On U ⊂M ×M , we have

h−1
t Pkht =

|k|
∑

ℓ=0

t−|k|+ℓPk,ℓ,

where each Pk,ℓ is an s-fibered differential operator of order o(Pk,ℓ) = ℓ. For
ℓ < ⌈ |k|

2 ⌉, Pk,ℓ vanishes on the diagonal. There is a similar expansion for

h−1
t P̄kht, with the additional property the Getzler order oG(P̄k,ℓ)≤ 2ℓ+N=0(k),

where 0 ≤ N=0(k) ≤ p is the number of indices i such that ki = 0.

Proof. The claims regarding the order of Pk,ℓ and its vanishing along the di-
agonal are immediate consequences of Lemma 4.1. By Lemma 4.3, the Getzler
order oG(P̄k,ℓ) is 2ℓ if ki 6=0 for all i=1, . . . , p. For each index i such that ki =0,
the Getzler order count becomes 1 larger than this because oG(c(dai)) = 1 in-
stead of 0. �

Corollary 4.5. There is an asymptotic expansion

Trs(Pke
−t∆) ∼ (4π)−

n
2 t−

n
2
−⌊ |k|

2
⌋
∑

j≥0

⌊ |k|
2

⌋
∑

r=0

tj+r

∫

M

trs(Pk,r+⌈ |k|
2

⌉Θj |x=0) dV.

The component ϕp of the residue cocycle is given by

ϕp(a0, . . . , ap) =
∑

|k|≤n−p

c′pk
(4π)

n
2

n−p

2
−⌈ |k|

2
⌉

∑

j= n−p
2

−|k|

∫

M

trs(Pk, n−p

2
−jΘj |x=0) dV.

Proof. The expansion for Trs(Pke
−t∆) follows from substituting the expansion

from Corollary 4.4 into (25) and making the change of variables r = ℓ− ⌈ |k|
2 ⌉.

The formula for ϕp is an immediate consequence of Proposition 2.8. �

Theorem 4.6. If dB = 0, then

ϕp(a0, . . . , ap) =
(2πi)−

n
2

p!

∫

M

a0 da1 · · · dap · det1/2
( R−

2

sinh
(R−

2

)

)

[n−p]

,

where R− is the curvature of the connection ∇− = ∇LC −Bo.
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Proof. Let Ψj,k = Pk,(n−p)/2−jΘj |U ∈ Γ(S ⊠ S∗|U ). The n = dim(M) order
Getzler symbol of Ψj,k is the n-form part of the Clifford symbol of Ψj,k|x=0.
By [2, Prop. 3.21],

trs(Ψj,k|x=0) = (−2i)
n
2 B(σG,0

n (Ψj,k)),

where B : ∧nT ∗M → M × R is the Berezin integral [2, p. 40] determined by
the orientation and the metric. Therefore, by Corollary 4.5,

ϕp(a0, . . . , ap) =
∑

|k|≤n−p

c′pk(2πi)
−n

2

n−p

2
−⌈ |k|

2
⌉

∑

j=n−p
2

−|k|

∫

M

B(σG,0
n (Ψj,k)) dV.

When dB = 0, Pk = P̄k, Θj = Θ̄j ; hence by Theorem 3.20, oG(Θj) = 2j. By
Corollary 4.4, oG(Pk,ℓ) = 2ℓ+N=0(k), where 0 ≤N=0(k) ≤ p is the number of
indices i ∈ {1, . . . , p} such that ki = 0. Therefore,

oG(Ψj,k) ≤ n− p+N=0(k).

When at least one ki 6= 0, N=0(k) < p and oG(Ψj,k) < n, and so σG
n (Ψj,k) = 0.

Otherwise, if k = (0, . . . , 0), then c′pk = 1
p! , and by Example 3.14 and (21),

σG,0
n (Ψj,k) = a0 da1 · · ·dap · det

1
2

( R⊤

2

sinh
(

R⊤

2

)

)

[n−p]

.

The result follows from this and Proposition 3.21. �

When Theorem 2.5 is specialized to the triple (C∞(M), L2(M,S), D) and
the idempotent e = 1, the result is the Atiyah–Singer formula

index(D) = ϕ0(1) = (2πi)−
n
2

∫

M

det
1
2

( R−

2

sinh
(R−

2

)

)

.

5. Residue cocycle calculations when n = 4

In this section, we compute the Connes–Moscovici cocycle completely for the
operator D=DLC + c(B), B ∈ Γ(∧3T ∗M) when dB 6= 0 and for the dimension
n = 4. The case p = 4 may be disposed of immediately: by Corollary 4.5, only
the |k| = 0, j = 4−4

2 = 0 term contributes; thus

ϕ4(a0, a1, a2, a3, a4) =
(2πi)−2

4!

∫

M

a0 da1 da2 da3 da4.

The remaining two components ϕ0, ϕ2 of the residue cocycle are computed in
the sections below.
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5.1. Recursion relation for the heat kernel coefficients. There are well-
known recursion relations for the heat kernel asymptotic expansion coefficients
Θj , Θ̄j that we briefly recall here. The set-up of Section 3.5 will be used in the
calculations. In particular, we use the inverse of the Riemannian exponential
map to identify U ⊂M ×M with a neighborhood of the 0-sectionU⊂TM , and
∇-parallel translation along radial geodesics is used to identify S ⊠ S∗|U with
s∗ End(S). Thus for example Θj , Θ̄j, c(dB) are identified with End(pr∗S)-
valued smooth functions on U. Under the identifications, the operator ∇E

becomes E . The operators ∆, ∆̄, c(dB) are viewed as s-fibered differential
operators (see Example 3.7). With this understanding, the recurrence relation
satisfied by the coefficients Θj is (cp. [2, Thm. 2.26])

EΘj + (j + E(log ̺))Θj = −∆Θj−1, j ≥ 1; Θ0 = ̺−1,

where recall ̺ = |g|1/4, with |g| the determinant of the Riemannian metric in
normal coordinates (see Example 3.8). The solutions are given recursively by
the formula

Θj(x) = −̺−1(x)

∫ 1

0

tj−1̺(tx)∆Θj−1(tx) dt.

Of course, the same equations hold with Θj , ∆ replaced by Θ̄j , ∆̄. Using
∆ = ∆̄ + c(dB), for the first few terms j = 0, 1, 2, we find

(27) Θ0 = Θ̄0 = ̺−1, Θ1 = Θ̄1 +ΘB
1 ,

where

ΘB
1 (x) = −̺−1(x)

∫ 1

0

c(dB)tx dt,(28)

Θ2(x) = −̺−1(x)

∫ 1

0

t̺(tx)(∆Θ1)(tx) dt(29)

= Θ̄2(x)− ̺−1(x)

∫ 1

0

t̺(tx)
(

c(dB)txΘ̄1(tx) + (∆ΘB
1 )(tx)

)

dt.

In a normal coordinate neighborhood Uy = U ∩ (M × {y}), the Laplacian
∆ is given by

∆ = −
n
∑

i=1

(

(ei + ω(ei))
2 − (∇eiei + ω(∇eiei))

)

+
κ

4
+ c(dB)− 2|B|2,

where ω ∈ Ω1(Uy,End(Sy)) ≃ Ω1(Uy,Cl(T
∗
yM)) is the connection 1-form rela-

tive to the identification S|Uy
≃ Uy × Sy given by ∇-parallel translation along

radial geodesics, and e1, . . . , en is a local orthonormal frame on Uy obtained
from an orthonormal basis of TyM by ∇-parallel translation along radial
geodesics. In particular, at the origin xy = 0 of the chart, ω(ei)|xy=0 = 0,
∇eiei|xy=0 =0, eiω(ei)|xy=0 =0 (this last follows from (15) and skew-symmetry
of R), and hence, near y ∈M ,

(30) ∆ = −
n
∑

i=1

e2i +
κy
4

+ c(dB)y − 2|By|2 +O(|xy |∂),
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where O(|xy |∂) denotes a first-order differential operator with coefficients that
vanish at y. The operator ∆̄ has a similar expression, leaving out the c(dB)y
term.

5.2. Computation of ϕ0 (p=0). When p=0, Pk = a0 and the commutators
(indexed by k = (k1, . . . , kp)) are absent. By Corollary 4.5,

ϕ0(a0) = (4π)−2

∫

M

a0 trs(Θ2|x=0) dV.

The pointwise supertrace trs(Θ2|x=0) can be computed explicitly in terms of
the differential forms R⊤ (see Definition 3.17) and B, leading to the following.

Theorem 5.3. Let dim(M) = 4 and D = DLC + c(B), where B ∈ Γ(∧3TM).
The component ϕ0 of the residue cocycle is

ϕ0(a0) = (2πi)−2

∫

M

a0

(

det
1
2

( R⊤

2

sinh
(

R⊤

2

)

)

+
( κ

12
− 2|B|2

)

dB +
1

6
d d∗ dB

)

,

where κ is the scalar curvature and R⊤ is the differential form of Defini-
tion 3.17.

Proof. The term involving R⊤ in the statement of Theorem 5.3 comes from
trs(Θ̄2|x=0); see the proof of Theorem 4.6. On the other hand, (Θ2 − Θ̄2)(x)
is given by (29):

(31) −̺−1(x)

∫ 1

0

t̺(tx)
(

c(dB)txΘ̄1(tx) + (∆ΘB
1 )(tx)

)

dt.

Evaluating at x = 0, using ̺(0) = 1 and performing the integral over t, (31)
becomes

(32) (Θ2 − Θ̄2)|x=0 = −1

2

(

c(dB)Θ̄1|x=0 + (∆ΘB
1 )|x=0

)

.

We calculate the supertrace of the two terms I, II of (32) in turn.

Term I. We claim that

− (4π)−2

2
trs

(

c(dB)Θ̄1|x=0

)

=
(2πi)−2

2

( κ

12
− 2|B|2

)

B(dB),

where B : ∧nT ∗M →M ×R is the Berezin integral. To show this, we compute
at y ∈M using equations (27), (30),

Θ̄1|xy=0 = −∆̺̄−1
y |xy=0 =

4
∑

i=1

(ei)
2̺−1

y |xy=0 −
κy
4

+ 2|By|2.

Using the Taylor series of gij in normal coordinates (cp. [2, Prop. 1.28]), one
has

(33)
4

∑

i=1

(ei)
2̺−1

y

∣

∣

xy=0
=
κy
6
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at any y ∈M . Thus, taking the supertrace (using [2, Prop. 3.21]),

trs
(

c(dB)Θ̄1|x=0

)

= (−2i)2
(κ

6
− κ

4
+ 2|B|2

)

B(dB)

= −(−2i)2
( κ

12
− 2|B|2

)

B(dB),

which gives the claim.

Term II. We claim that

− (4π)−2

2
trs(∆ΘB

1 )|x=0 =
(2πi)−2

2

( κ

12
− 2|B|2

)

B(dB)

+
(2πi)−2

6
B(d d∗ dB).

To verify this, we compute at y ∈M using (28), (30),

∆ΘB
1 |xy=0 =

(

−
∑

i

e2i +
κy
4

+ c(dB)y − 2|By|2
)

(34)

·
(

̺−1
y

∫ 1

0

c(dB)txy
dt
)∣

∣

∣

xy=0

= −
∑

i

e2i c(dB)|xy=0

∫ 1

0

t2 dt

+
(κy
12

+ c(dB)y − 2|By|2
)

c(dB)y

=
1

3
c(d d∗ dB)y +

(κy
12

+ c(dB)y − 2|By|2
)

c(dB)y ,

where to obtain the second equality, we used ̺y|xy=0 = 1, ei̺y|xy=0 = 0, (33),

and for the third equality, we used that −∑

i e
2
i ν|xy=0 = (dd∗ν)y on 4-forms ν

(since dim(M) = 4). Another consequence of dim(M) = 4 is that c(dB)2 is
scalar; hence − trs(c(dB)2) = 0. Taking the supertrace of (34) as in the com-
putation of term I gives the claim. �

By expressing R⊤ in terms of the curvature R− of ∇− =∇LC −Bo, further
simplification of the expression in Theorem 5.3 is possible.

Theorem 5.4. Let dim(M) = 4 and D = DLC + c(B), where B ∈ Γ(∧3TM).
The component ϕ0 of the residue cocycle is

ϕ0(a0) = (2πi)−2

∫

M

a0

(

det
1
2

( R−

2

sinh
(R−

2

)

)

+
1

6
d d∗ dB

)

.

Proof. Using the identities

det
1
2

( R⊤

2

sinh
(

R⊤

2

)

)

[4]

= − 1

48
tr(R⊤,2)

and (see the proof of Proposition 3.21)

R⊤ = R− + (dB)o, R− = RLC − d∇LCBo +B2
o
,
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one has

det
1
2

( R⊤

2

sinh
(

R⊤

2

)

)

[4]

= − 1

48
tr
(

R2
− + 2(RLC − d∇LCBo +B2

o
)(dB)o + (dB)2

o

)

.

By a short calculation, one finds that tr((dB)2
o
) = 0, tr((d∇LCBo)(dB)o) = 0,

while
tr(RLC(dB)o) = 2κ dB, tr(B2

o
(dB)o) = −48|B|2 dB. �

5.5. Computation of ϕ2 (p = 2). By Corollary 4.5,

(35) ϕ2(a0, a1, a2) =
∑

|k|≤2

c′2k
(4π)2

1−⌈ |k|
2

⌉
∑

j=1−|k|

∫

M

trs(Pk,1−jΘj |x=0) dV,

and the sum ranges over k = (k1, k2) with k1, k2 ≥ 0.

Lemma 5.6. The k = (0, 0) contribution in (35) is

(2πi)−2

2

∫

M

a0g(da1, da2) dB.

Proof. If |k| = 0, then we only have the j = 1 term in (35), which reads

(4π)−2

2

∫

M

a0 trs
(

c(da1)c(da2)Θ1|x=0

)

dV.

We may write Θ1 = Θ̄1 + (Θ1 − Θ̄1). The contribution of Θ̄1 was computed in
Theorem 4.6 and is trivial in this case because the dimension is n= 4: da1 da2
is a 2-form and det1/2((R⊤/2)/ sinh(R⊤/2)) has vanishing 2-form component.
On the other hand, by equation (28) and since ̺|x=0 = 1,

(Θ1 − Θ̄1)|x=0 = c(dB).

Taking the supertrace yields

trs
(

c(da1)c(da2)c(dB)
)

= (−2i)2g(da1, da2)B(dB),

which gives the lemma. �

Lemma 5.7. The |k| = 2 contribution in (35) vanishes.

Proof. The contribution involves the supertrace trs(Pk,1Θ0|x=0). The s-fibered
differential operators Pk, P̄k have order |k| and the same symbol (in the classical
sense); hence Pk − P̄k is an s-fibered differential operator of order |k| − 1. By
Lemma 4.1 applied to P = Pk − P̄k, it follows that the s-fibered differential
operator Pk,1 − P̄k,1 vanishes on the diagonal, and hence trs(Pk,1Θ0|x=0) =
trs(P̄k,1Θ0|x=0). But Θ0 = Θ̄0, and so this supertrace vanishes by the Getzler
order calculations in Theorem 4.6. �

Theorem 5.8. Let dim(M) = 4 and D = DLC + c(B), where B ∈ Γ(∧3TM).
The component ϕ2 of the residue cocycle is

ϕ2(a0, a1, a2) =
(2πi)−2

6

∫

M

a0g(da1, da2) dB.
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Proof. The k= (0,0) term of (35) was calculated in Lemma 5.6. By the lemmas
above, the only remaining contributions in (35) come from k = (1,0), (0,1) and
j = 0. We have

P(1,0),1 = P̄(1,0),1 + a0[c(dB), c(da1)]c(da2),

P(0,1),1 = P̄(0,1),1 + a0c(da1)[c(dB), c(da2)].

Inserting these expressions in (35), the supertraces involving P̄k,1 vanish by
the Getzler order considerations in the proof of Theorem 4.6. On the other
hand, [c(dB), c(da)] = −2c(da)c(dB) since dim(M) = 4 and dB is a 4-form.
Consequently,

(4π)−2 trs(P(1,0),1Θ0|x=0) = −2(2πi)−2a0g(da1, da2)B(dB),

(4π)−2 trs(P(1,0),1Θ0|x=0) = 2(2πi)−2a0g(da1, da2)B(dB).

Combining these terms with the combinatorial prefactors

c′1,(1,0) = −1

6
, c′1,(0,1) = −1

3

and adding to the k = (0, 0) term from Lemma 5.6 yields the result. �

5.9. Applications of the n = 4 cocycle. It is generally known (cp. [5])
that the inclusion of currents Ω•(M) into the (b,B)-bicomplex of continuous
cochains for C∞(M) via

∫

: Ωk(M) → Homcont(C∞(M)⊗(k+1),C),

(

∫

C
)

(a0, . . . , ak) = 〈C, a0 da1 · · · dak〉

allows one to compute the periodic cyclic cohomology as HCP •(C∞(M)) ≃
H•(M), the de Rham homology of M . In particular, every (b,B)-cocycle is
(b,B)-cohomologous to the image

∫

C of some closed current (possibly of mixed
degree) C. Examining the cocycle (ϕ0,ϕ2,ϕ4,0, . . .) computed in Theorems 5.4
and 5.8, a short calculation shows that the bilinear functional on C∞(M),

ψ1(a0, a1) =
(2πi)−2

6

∫

M

a0 da1 d
∗ dB +

1

2
g(da0, da1) dB,

satisfies

(ϕ0, ϕ2, ϕ4, 0, . . .) = (b + B)ψ1 +

∫

C,

where C is the current given by integration against the mixed degree form

(2πi)−2 det
1
2

( R−

2

sinh
(R−

2

)

)

.

Thus the periodic cyclic cohomology classes of (ϕ0,ϕ2,ϕ4,0, . . .) and
∫

C are the
same. However, we emphasize that our cocycle (ϕ0,ϕ2,ϕ4,0, . . .) is not equal to
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a closed current at the level of (b,B)-cochains. Indeed, by inspection, the multi-
linear functional

∫

C defined by a current C of degree k ≥ 2 is necessarily anti-
symmetric in a1, . . . , ak, whereas the ϕ2 term in our cocycle (see Theorem 5.8)
does not satisfy this condition (it is symmetric in a1, a2).

6. Residue cocycle calculations when n = 6

In this brief section, we describe the outcome of our calculations of the ϕ0

component of the residue cocycle for the operator D = DLC + c(B) (dB 6= 0)
in dimension n = 6. In a sense, ϕ0 is the most involved to compute because it
depends on the greatest number of terms in the asymptotic expansion of the
heat kernel. Already in this dimension, the calculations are considerably more
involved than in the previous section.

The ϕ0 term is given in terms of the third term Θ3 in the asymptotic
expansion of the heat kernel e−t∆:

ϕ0(a0) = (4π)−3

∫

M

a0 trs(Θ3|x=0) dV.

As in Section 5, Θ3 = Θ̄3 +ΘB
3 , where Θ̄3 is the asymptotic expansion coeffi-

cient for ∆̄ =∆− c(dB). In fact, trs(Θ̄3|x=0) = 0 in this case as
(

x
2

)

/sinh
(

x
2

)

is
an even function; hence the top part of the Chern–Weil form representing the

Â-class vanishes for degree reasons. We computed ΘB
3 directly using the re-

cursion relations in Section 5.1. A useful basic Clifford algebra fact that allows
to eliminate several terms is that if α1, α2 ∈ Ω4(M) (and dim(M) = 6), then
c(α1)c(α2) = c(α), where α is an inhomogeneous sum of forms with degrees
0, 2, 4; moreover, if α1 = α2, then only degrees 0, 4 appear. Thus for example
the operators c(dB)2, c(dB)3 (amongst others involving the curvature form,
etc.) do not appear in the resulting formula as they have vanishing local su-
pertrace. Another ingredient in the calculation is the method explained in
[2, Prop. 1.18, Prop. 1.28], [1, App. II] for computing the Taylor expansion
coefficients of the metric and connection in a synchronous frame over a geo-
desic coordinate patch. The result of the calculations is expressed here using
abstract index notation (on o(TM) indices) and the summation convention.

Theorem 6.1. In dimension n = 6, the ϕ0 term in the residue cocycle for the
operator D = DLC + c(B) is

ϕ0(a0) =
(2πi)−3

18

∫

M

a0g
abgcd

(1

2
∇aR

⊤
bc + gefBaceR

⊤
bf

)

∧∇d dB.

Acknowledgments. We thank Nigel Higson for suggesting this question and
for many helpful conversations.
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