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Erratum to: Classifying maps into

uniform tracial sequence algebras

Jorge Castillejos, Samuel Evington, Aaron Tikuisis, and Stuart White

(Communicated by Siegfried Echterhoff)

Abstract. We correct an argument in the original paper.

In the proof of [1, Thm. 2.6], we made an error in equation (2.44), where
we wrote

f (k)
n (Fn, θn, ψn) := max

j≤k

(

‖θn(ajbj)‖(2.44)

+ sup
τ∈T (B)

|τ(ψn(θn(xj)))− α(τ(xj))|
)

.

There is a typo, and instead of α(τ(xj)), we had meant to write α(τ)(xj).
However, this would still be incorrect: since α is a map from T (B∞) to Tam(A)
and we are quantifying over τ ∈ T (B), it does not make sense to take α(τ)(xj).

The correction involves representing the affine functionals on T (B∞) given
by τ 7→ α(τ)(xj) using self-adjoint elements in B∞. This idea, of representing
the action of the trace via an element of B∞, is already used (correctly) later
in the proof of [1, Thm. 2.6].

To obtain a correct proof, we need to define f
(k)
n differently. For each j ∈ N,

using [1, Prop. 1.2] (which is due to Cuntz and Pedersen), we may find a self-
adjoint element c(j) ∈ B∞ such that

τ(c(j)) = α(τ)(xj) for all τ ∈ T (B∞).

For each c(j), we choose a representative sequence (c
(j)
n )∞n=1 of self-adjoint

elements in B. We then define

f (k)
n (Fn, θn, ψn) := max

j≤k

(

‖θn(ajbj)‖(1)

+ sup
τ∈T (B)

|τ(ψn(θn(xj)))− τ(c(j)n )|
)

.
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Then one sees that [1, (2.45)] holds with the new definition of f
(k)
n since

lim sup
n→∞

sup
τ∈T (B)

|τ(ψ̃n(θ(xj)))− τ(c(j)n )|(2)

= sup
τ∈T∞(B)

|τ(ψ(θ(xj))) − τ(c(j))|

= sup
τ∈T∞(B)

|τ(ψ(θ(xj))) − α(τ)(xj)|

[1, (2.42)]

≤ ǫ.

Next, given a sequence (Fn, θn, ψn) ∈
∏∞

n=1 Xn satisfying [1, (2.46)], define
φn := ψn ◦ θn and let φ : A→ B∞ be the map induced by (φn)

∞
n=1. Then this

is the required φ. Indeed, to prove [1, (2.38)], it is enough to verify equality
on the dense subset {xj : j ∈ N} of Asa. For each j, we have

(3) τ ◦ φ(xj) = τ(c(j)) = α(τ)(xj)

for all τ ∈ T∞(B), hence for all τ ∈ T (B∞) by [1, Prop. 2.5], as required.

Acknowledgment. We thank Jamie Gabe for bringing this error to our at-
tention.
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