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In this talk, we are concerned with the solution of infinite-horizon optimal control problems of the form
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subject to (u, y) solving the following linear switched input-output system
Mσ(t)

d
dtθ(t) +Aσ(t)θ(t) = Bσ(t)u(t) t ≥ 0

y(t) = Cσ(t)θ(t) t ≥ 0

θ(0) = θ◦.

(2)

and control constraints u ∈ Uad. Here σ : [0,∞) → {1, . . . , L} is a switching signal, that switches
through different system operators Mi,Ai,Bi, Ci for i = 1, . . . , L.
To approximate the solution of (1), we apply Model Predictive Control (MPC): the optimal control
problem is solved over smaller, receding time intervals (tn, tn + T ) for some prediction horizon T > 0
and the solutions are concatenated in the sampling interval (tn, tn+1) for 0 < tn+1 < tn + T . First,
we derive optimality conditions for these small-horizon problems and discuss their suboptimality w.r.t.
(1). The difficulty here is that the cost functional J is not differentiable in the classical sense, due to
the presence of the L1-regularization. Second, the repeated solution of small-horizon optimal control
problems motivates model reduction: we consider (Petrov-)Galerkin reduced-order models for (2) to
speed up the MPC process. To quantify the error, we do a full a posteriori error analysis for the optimal
control, optimal state, and optimal value function of the small-horizon problems, which allows us to
control the evolving error through the MPC iterations. These estimates are then used to construct
two certified ROM-MPC algorithms for the solution of (1), that are up to 10 times faster than the
MPC relying on the full-order model. This is joint work with Stefan Volkwein (U. Konstanz), Mattia
Manucci, and Benjamin Unger (U. Stuttgart).


