Publications
Publications
- . . ‘Evolutionary genomics of socially polymorphic populations of Pogonomyrmex californicus.’ BMC Biology 22. doi: 10.1186/s12915-024-01907-z.
- . . ‘Individualized social niches in animals: Theoretical clarifications and processes of niche change.’ BioScience : 1–13. doi: 10.1093/biosci/biad122.
- . . ‘Molecular identification of polymorphic transposable elements in populations of the invasive ant Cardiocondyla obscurior.’ Biology Methods and Protocols bpae050. doi: 10.1093/biomethods/bpae050.
- . . ‘Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior.’ Genome Research 34, No. 6. doi: 10.1101/gr.278392.123.
- 10.1007/s13194-024-00602-8. . ‘Individualisation and individualised science across disciplinary perspectives.’ European Journal for Philosophy of Science 14: 41. doi:
- 10.1016/j.enceco.2024.02.001. . ‘Ants are no bees – Gaps in the assessment of relevant exposure routes to pesticides and plant incorporated protectants.’ Environmental Chemistry and Ecotoxicology 6: 71–80. doi:
- 10.1007/s00265-023-03347-1. . ‘Annual fitness costs may be balanced by a conservative life history strategy in groups of unrelated ant queens.’ Behavioral Ecology and Sociobiology 77, No. 7. doi:
- 10.1007/s00360-023-01488-3. . ‘Body mass and cuticular hydrocarbon profiles, but not queen number, underlie worker desiccation resistance in a facultatively polygynous harvester ant (Pogonomyrmex californicus).’ Journal of Comparative Physiology B: Biochemical Systemic and Environmental 193, No. 3. doi:
- 10.1007/s10682-023-10245-5. . ‘Conserved worker policing in African carpenter ants with drastically different egg chemotypes.’ Evolutionary Ecology 37, No. 5. doi:
- . . ‘Decoding the genetic and chemical basis of sexual attractiveness in parasitic wasps.’ eLife 12. doi: 10.7554/eLife.86182.
- 10.25849/myrmecol.news_033:077. . ‘Socio- and population-genetic analyses of two West-African ponerine species (Megaponera analis and Paltothyreus tarsatus) with winged and wingless queens (Hymenoptera: Formicidae).’ Myrmecological news 33: 77–89. doi:
- 10.1111/een.13271. . ‘Substantial fitness costs in terms of parasitization rates, offspring production and sex ratio of Wolbachia infection in Nasonia vitripennis without modified host preference.’ Ecological Entomology 48, No. 6: 765–774. doi:
- 10.25849/myrmecol.news_033:211. . ‘Harbouring Blochmannia incurs costs: a trade-off between the necessity of the obligate primary endosymbiont for brood development and its costs for adult carpenter ants (Hymenoptera: Formicidae).’ Myrmecological news 33. doi:
- . . ‘Tyramine and its Amtyr1 receptor modulate attention in honey bees (Apis mellifera).’ eLife 12. doi: 10.7554/eLife.83348.
- . . ‘How Individualized Niches Arise: Defining Mechanisms of Niche Construction, Niche Choice and Niche Conformance.’ BioScience 72, No. 6: 538–548. doi: 10.1093/biosci/biac023.
- 10.1098/rspb.2022.0336. . ‘Genetic and genomic architecture of species-specific cuticular hydrocarbon variation in parasitoid wasps.’ Proceedings of the Royal Society B: Biological Sciences 289, No. 1976. doi:
- 10.1073/pnas.2118971118. . ‘Supergenes, supergenomes, and complex social traits.’ Proceedings of the National Academy of Sciences of the United States of America 119, No. 2. doi:
- . . ‘Inhibition of HSP90 causes morphological variation in the invasive ant Cardiocondyla obscurior.’ Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 336, No. 4: 333–340. doi: 10.1002/jez.b.23035.
- 10.1016/j.ympev.2020.107036. . ‘Comprehensive phylogeny of Myrmecocystus honey ants highlights cryptic diversity and infers evolution during aridification of the American Southwest.’ Molecular Phylogenetics and Evolution 155. doi:
- 10.1371/journal.pone.0252457. . ‘Lack of parent-of-origin effects in Nasonia jewel wasp: A replication and extension study.’ PloS one 16. doi:
- 10.3389/fgene.2021.748135. . ‘Long-Read Assembly and Annotation of the Parasitoid Wasp Muscidifurax raptorellus, a Biological Control Agent for Filth Flies.’ Frontiers in Genetics 12. doi:
- 10.1111/eth.13217. . ‘The generalist parasitoid Nasonia vitripennis shows more behavioural plasticity in host preference than its three specialist sister species.’ Ethology 127, No. 11: 964–978. doi:
- . . ‘High-Quality Genome Assembly and Annotation of the California Harvester Ant Pogonomyrmex californicus (Buckley, 1867).’ G3: Genes, Genomes, Genetics 11, No. 1: jkaa019. doi: 10.1093/g3journal/jkaa019.
- . . ‘Seasonal variation in the diet of the serotine bat (Eptesicus serotinus): A high-resolution analysis using DNA metabarcoding.’ Basic and Applied Ecology 49: 1–12. doi: 10.1016/j.baae.2020.09.004.
- 10.1186/s12864-020-6764-0. . ‘Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum.’ BMC Genomics 21, No. 1. doi:
- 10.1073/pnas.1920554117. . ‘Individual learning phenotypes drive collective behavior.’ Proceedings of the National Academy of Sciences of the United States of America 117, No. 30: 17949–17956. doi:
- . . ‘The Power of Infochemicals in Mediating Individualized Niches.’ Trends in Ecology & Evolution 35, No. 11. doi: 10.1016/j.tree.2020.07.001.
- . . ‘Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits.’ Journal of Animal Ecology 88: 236–246.
- . . ‘Detection of very long-chain hydrocarbons by laser mass spectrometry reveals novel species-, sex-, and age-dependent differences in the cuticular profiles of three Nasonia species.’ Analytical and Bioanalytical Chemistry 411, No. 13. doi: 10.1007/s00216-019-01736-y.
- 10.1007/s00216-019-01736-y. . ‘Detection of very long-chain hydrocarbons by laser mass spectrometry reveals novel species-, sex-, and age-dependent differences in the cuticular profiles of three Nasonia species.’ Analytical and Bioanalytical Chemistry 411, No. 13: 2981–2993. doi:
- 10.3389/fgene.2019.00062. . ‘Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation.’ Frontiers in Genetics 10. doi:
- 10.1007/s00040-019-00687-y. . ‘Intraspecific variation in colony founding behavior and social organization in the honey ant Myrmecocystus mendax.’ Insectes Sociaux 66, No. 2: 283–297. doi:
- . . ‘Temporal variation in social structure and worker reproduction in the temporary social parasite Lasius fuliginosus (Hymenoptera: Formicidae).’ Myrmecological news 27: 75-85.
- 10.1007/s00265-017-2333-1. . ‘The ecological and genetic basis of annual worker production in the desert seed harvesting ant, Veromessor pergandei.’ Behavioral Ecology and Sociobiology 71, No. 8. doi:
- . . ‘The hologenome concept: we need to incorporate function.’ Theory in biosciences = Theorie in den Biowissenschaften 136, No. 3-4: 89–98. doi: 10.1007/s12064-016-0240-z.
- 10.1016/j.jinsphys.2015.12.003. . ‘The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees.’ Journal of Insect Physiology 86: 11–16. doi:
- 10.1111/mec.13700. . ‘Gene expression and variation in social aggression by queens of the harvester ant Pogonomyrmex californicus.’ Molecular Ecology 25, No. 15: 3716–3730. doi:
- 10.1111/mec.13700. . ‘Gene expression and variation in social aggression by queens of the harvester ant Pogonomyrmex californicus.’ Molecular Ecology null, No. null. doi:
- 10.1007/s00040-016-0497-8. . ‘Distribution and origin of intraspecific social variation in the California harvester ant Pogonomyrmex californicus.’ Insectes Sociaux 63, No. 4: 531–541. doi:
- 10.1186/s13059-015-0623-3. . ‘The genomes of two key bumblebee species with primitive eusocial organization.’ Genome Biol. 16. doi:
- 10.1093/molbev/msv165. . ‘How do genomes create novel phenotypes Insights from the loss of the worker caste in ant social parasites.’ Molecular Biology and Evolution 32, No. 11: 2919–2931. doi:
- 10.1002/ece3.1507. . ‘Phylogeography of Pogonomyrmex barbatus and P. rugosus harvester ants with genetic and environmental caste determination.’ Ecology and Evolution 5, No. 14: 2798–2826. doi:
- 10.1073/pnas.1519065112. . ‘Genetic architecture of key social trait differs significantly between primitive and advanced eusocial species.’ Proceedings of the National Academy of Sciences of the United States of America 112, No. 45: 13755–13756. doi:
- 10.1007/s00265-013-1618-2. . ‘Behavioral transitions with the evolution of cooperative nest founding by harvester ant queens.’ Behavioral Ecology and Sociobiology 68, No. 1: 21–30. doi:
- 10.1038/ncomms6495. . ‘Transposable element islands facilitate adaptation to novel environments in an invasive species.’ Nature Communications 5, No. null. doi:
- . . ‘Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality.’ Genome Research 23, No. 8: 1247. doi: 10.1101/gr.155408.113.
- 10.1111/evo.12080. . ‘Genetic And Developmental Basis Of F2 Hybrid Breakdown In Nasonia Parasitoid Wasps.’ Evolution 67, No. 7: 2124–2132. doi:
- 10.1534/g3.112.004739. . ‘Fine-scale mapping of the Nasonia genome to chromosomes using a high-density genotyping microarray.’ G3: Genes, Genomes, Genetics 3, No. 2: 205–215. doi:
- 10.1534/g3.112.004739. . ‘Fine-scale mapping of the Nasonia genome to chromosomes using a high-density genotyping microarray.’ G3: Genes, Genomes, Genetics 3, No. 2: 205–215. doi:
- 10.1111/jeb.12242. . ‘Cuticular hydrocarbon divergence in the jewel wasp Nasonia: Evolutionary shifts in chemical communication channels?’ Journal of Evolutionary Biology 26, No. 11: 2467–2478. doi:
- 10.1038/nature11838. . ‘Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones.’ Nature 494, No. 7437: 345–348. doi:
- 10.1038/nature11838. . ‘Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones.’ Nature 494, No. 7437: 345–348. doi:
- 10.1016/j.tig.2011.08.005. . ‘The genomic impact of 100 million years of social evolution in seven ant species.’ Trends in Genetics 28, No. 1: 14–21. doi:
- 10.1016/j.tig.2011.08.005. . ‘The genomic impact of 100 million years of social evolution in seven ant species.’ Trends in Genetics 28, No. 1: 14–21. doi:
- 10.1007/978-1-61779-785-9_16. . ‘Quantitative trait locus analysis in haplodiploid hymenoptera.’. doi:
- 10.1371/journal.pone.0042433. . ‘Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination.’ PloS one 7, No. 8. doi:
- . ‘Focus : Ant(gen)omics - What we have and what we need!’ Myrmecological news 16, No. null: 67–68.
- . ‘Focus : Ant(gen)omics - What we have and what we need!’ Myrmecological news 16, No. null: 67–68.
- 10.1002/jez.b.22001. . ‘Developmental Evolution in Social Insects: Regulatory Networks from Genes to Societies.’ Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 318, No. 3: 159–169. doi:
- . . ‘The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle.’ PLoS Genetics 7, No. 2: e1002007. doi: 10.1371/journal.pgen.1002007.
- . ‘Queen number and raiding behavior in the ant genus Myrmecocystus (Hymenoptera: Formicidae).’ Myrmecological news 15, No. null: 53–61.
- . ‘Queen number and raiding behavior in the ant genus Myrmecocystus (Hymenoptera: Formicidae).’ Myrmecological news 15, No. null: 53–61.
- 10.1111/j.1558-5646.2010.01170.x. . ‘Origin and evolution of the dependent lineages in the genetic caste determination system of pogonomyrmex ants.’ Evolution 65, No. 3: 869–884. doi:
- 10.1038/hdy.2010.157. . ‘Genetics of cuticular hydrocarbon differences between males of the parasitoid wasps Nasonia giraulti and Nasonia vitripennis.’ Heredity 107, No. 1: 61–70. doi:
- 10.1073/pnas.1007901108. . ‘Draft genome of the red harvester ant Pogonomyrmex barbatus.’ Proceedings of the National Academy of Sciences of the United States of America 108, No. 14: 5667–5672. doi:
- 10.1073/pnas.1008617108. . ‘Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile).’ Proceedings of the National Academy of Sciences of the United States of America 108, No. 14: 5673–5678. doi:
- . . ‘Functional and evolutionary insights from the genomes of three parasitoid nasonia species.’ Science 327, No. 5963: 343–348. doi: 10.1126/science.1178028.
- 10.1111/j.1365-2583.2009.00979.x. . ‘The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis.’ Insect Molecular Biology 19, No. null: 121–136. doi:
- 10.1111/j.1365-2583.2009.00915.x. . ‘The distribution of microsatellites in the Nasonia parasitoid wasp genome.’ Insect Molecular Biology 19, No. null: 91–98. doi:
- 10.1007/978-3-642-12425-9_10. . ‘Speciation in obligately plant-associated Crematogaster ants: Host distribution rather than adaption towards specific hosts drives the process.’ In Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity, edited by , 193–213. Springer VDI Verlag. doi:
- 10.1007/978-3-642-12425-9_10. . ‘Speciation in obligately plant-associated Crematogaster ants: Host distribution rather than adaption towards specific hosts drives the process.’ In Evolution in Action: Case studies in Adaptive Radiation, Speciation and the Origin of Biodiversity, edited by , 193–213. Springer VDI Verlag. doi:
- 10.1038/hdy.2009.160. . ‘Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial-Wolbachia sweep in North America.’ Heredity 104, No. 3: 318–326. doi:
- 10.1038/hdy.2009.160. . ‘Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial-Wolbachia sweep in North America.’ Heredity 104, No. 3: 318–326. doi:
- 10.1111/j.1365-2583.2010.00996.x. . ‘Erratum: Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia (Insect Molecular Biology (2010) DOI: 10.1371/journal.pone.0008597).’ Insect Molecular Biology 19, No. 2: 271. doi:
- 10.1038/hdy.2009.172. . ‘Contrasting patterns of selective constraints in nuclear-encoded genes of the oxidative phosphorylation pathway in holometabolous insects and their possible role in hybrid breakdown in Nasonia.’ Heredity 104, No. 3: 310–317. doi:
- 10.1111/j.1365-294X.2009.04438.x. . ‘Ant genomics: Strength and diversity in numbers.’ Molecular Ecology 19, No. 1: 31–35. doi:
- 10.1038/hdy.2009.185. . ‘A comparison of recombination frequencies in intraspecific versus interspecific mapping populations of Nasonia.’ Heredity 104, No. 3: 302–309. doi:
- 10.1111/j.1420-9101.2008.01677.x. . ‘Reproductive strategies under multiparasitism in natural populations of the parasitoid wasp Nasonia (Hymenoptera).’ Journal of Evolutionary Biology 22, No. 3: 460–470. doi:
- 10.1101/pdb.prot5251. . ‘Phase-unknown linkage mapping in ants.’ Cold Spring Harbor Protocols 4, No. 7. doi:
- 10.1016/j.anbehav.2009.01.010. . ‘Endocrine physiology of the division of labour in Pogonomyrmex californicus founding queens.’ Animal Behaviour 77, No. 5: 1005–1010. doi:
- 10.1101/pdb.prot5245. . ‘DNA isolation from ants.’ Cold Spring Harbor Protocols 4, No. 7. doi:
- 10.1101/pdb.prot5245. . ‘DNA isolation from ants.’ Cold Spring Harbor Protocols 4, No. 7. doi:
- 10.1371/journal.pone.0006394. . ‘Deciphering Proteomic Signatures of Early Diapause in Nasonia.’ PloS one 4, No. 7. doi:
- 10.1007/s00040-008-1034-1. . ‘Construction and characterization of a BAC-library for a key pollinator, the bumblebee Bombus terrestris L.’ Insectes Sociaux 56, No. 1: 44–48. doi:
- 10.1101/pdb.emo125. . ‘Ants (Formicidae): Models for social complexity.’ Cold Spring Harbor Protocols 4, No. 7. doi:
- 10.1111/j.1365-294X.2008.03912.x. . ‘Patterns and rates of nucleotide substitution, insertion and deletion in the endosymbiont of ants Blochmannia floridanus.’ Molecular Ecology 17, No. 19: 4382–4392. doi:
- 10.1111/j.1420-9101.2008.01608.x. . ‘Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps.’ Journal of Evolutionary Biology 21, No. 6: 1844–1851. doi:
- 10.1086/589895. . ‘Facultative sex ratio adjustment in natural populations of wasps: Cues of local mate competition and the precision of adaptation.’ American Naturalist 172, No. 3: 393–404. doi:
- 10.1534/genetics.107.080523. . ‘Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis.’ Genetics 178, No. 1: 413–426. doi:
- 10.1534/genetics.107.080523. . ‘Cytonuclear genic incompatibilities cause increased mortality in male F2 hybrids of Nasonia giraulti and N. vitripennis.’ Genetics 178, No. 1: 413–426. doi:
- 10.1038/sj.hdy.6800950. . ‘Variation in genomic recombination rates among animal taxa and the case of social insects.’ Heredity 98, No. 4: 189–197. doi:
- 10.1111/j.1558-5646.2007.00079.x. . ‘The genetic architecture of immune defense and reproduction in male Bombus terrestris bumblebees.’ Evolution 61, No. 4: 804–815. doi:
- 10.1603/0022-0493(2007)100[1033:SSPASS]2.0.CO;2. . ‘Species-diagnostic single-nucleotide polymorphism and sequence-tagged site markers for the parasitic wasp genus Nasonia (Hymenoptera: Pteromalidae).’ Journal of Economic Entomology 100, No. 4: 1033–1036. doi:
- 10.1007/s00040-007-0940-y. . ‘Potential and realized reproduction by different worker castes in queen-less and queen-right colonies of Pogonomyrmex badius.’ Insectes Sociaux 54, No. 3: 260–267. doi:
- 10.1007/s00040-007-0940-y. . ‘Potential and realized reproduction by different worker castes in queen-less and queen-right colonies of Pogonomyrmex badius.’ Insectes Sociaux 54, No. 3: 260–267. doi:
- 10.1007/s00040-007-0916-y. . ‘Population and colony structure and morphometrics in the queen dimorphic harvester ant, Pogonomyrmex pima.’ Insectes Sociaux 54, No. 1: 77–86. doi:
- 10.1111/j.1365-294X.2007.03234.x. . ‘Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris.’ Molecular Ecology 16, No. 6: 1327–1339. doi:
- 10.1007/s00265-007-0457-4. . ‘Low queen mating frequency in the seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima: Implications for the evolution of polyandry.’ Behavioral Ecology and Sociobiology 62, No. 2: 229–236. doi:
- 10.1007/s00265-007-0457-4. . ‘Low queen mating frequency in the seed-harvester ant Pogonomyrmex (Ephebomyrmex) pima: Implications for the evolution of polyandry.’ Behavioral Ecology and Sociobiology 62, No. 2: 229–236. doi:
- 10.1186/1742-9994-4-15. . ‘Clouded leopard phylogeny revisited: Support for species recognition and population division between Borneo and Sumatra.’ Frontiers in Zoology 4, No. null. doi:
- 10.1111/j.1471-8286.2007.01693.x. . ‘Characterization of 12 new microsatellite loci in Aenictus and Neivamyrmex army ants.’ Molecular Ecology Notes 7, No. 4: 688–690. doi:
- 10.1111/j.1471-8286.2007.01693.x. . ‘Characterization of 12 new microsatellite loci in Aenictus and Neivamyrmex army ants.’ Molecular Ecology Notes 7, No. 4: 688–690. doi:
- 10.1073/pnas.0606055103. . ‘Population-wide lineage frequencies predict genetic load in the seed-harvester ant Pogonomyrmex.’ Proceedings of the National Academy of Sciences of the United States of America 103, No. 36: 13433–13438. doi:
- 10.1073/pnas.0606055103. . ‘Population-wide lineage frequencies predict genetic load in the seed-harvester ant Pogonomyrmex.’ Proceedings of the National Academy of Sciences of the United States of America 103, No. 36: 13433–13438. doi:
- 10.1007/s10531-004-4248-1. . ‘Influence of habitat fragmentation on the genetic variability in leaf litter ant populations in tropical rainforests of Sabah, Borneo.’ Biodiversity and Conservation 15, No. 1: 157–175. doi:
- 10.1111/j.1420-9101.2006.01131.x. . ‘High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior.’ Journal of Evolutionary Biology 19, No. 5: 1475–1485. doi:
- 10.1016/j.tree.2005.11.014. . ‘Genetic sex determination and extinction.’ Trends in Ecology and Evolution 21, No. 2: 55–57. doi:
- 10.1016/j.tree.2005.11.014. . ‘Genetic sex determination and extinction.’ Trends in Ecology and Evolution 21, No. 2: 55–57. doi:
- 10.1890/0012-9658(2006)87[2201:BROGCD]2.0.CO;2. . ‘Behavioral regulation of genetic caste determination in a Pogonomyrmex population with dependent lineages.’ Ecology 87, No. 9: 2201–2206. doi:
- 10.1007/s00040-004-0797-2. . ‘A shift in colony founding behaviour in the obligate plant-ant Crematogaster (Decacrema) morphospecies 2.’ Insectes Sociaux 52, No. 3: 222–230. doi:
- 10.1111/j.1471-8286.2004.00790.x. . ‘Polymorphic microsatellite markers from the formicine ant Lasius (Dendrolasius) fuliginosus.’ Molecular Ecology Notes 4, No. 4: 716–718. doi:
- 10.1111/j.1471-8286.2004.00746.x. . ‘Polymorphic microsatellite markers for a solitary digger wasp, the European beewolf (Philanthus triangulum; Hymenoptera, Sphecidae).’ Molecular Ecology Notes 4, No. 4: 589–592. doi:
- 10.1016/j.ympev.2004.03.011. . ‘Phylogenetics of the new world honey ants (genus Myrmecocystus) estimated from mitochondrial DNA sequences.’ Molecular Phylogenetics and Evolution 32, No. 1: 416–421. doi:
- 10.1111/j.1365-294X.2004.02262.x. . ‘Extreme queen-mating frequency and colony fission in African army ants.’ Molecular Ecology 13, No. 8: 2381–2388. doi:
- 10.1007/s00265-004-0808-3. . ‘Extremely high mating frequency in the Florida harvester ant (Pogonomyrmex badius).’ Behavioral Ecology and Sociobiology 56, No. 5: 472–481. doi:
- 10.1046/j.1471-8286.2003.00565.x. . ‘Eleven microsatellite markers in Nasonia, ASHMEAD 1904 (Hymenoptera; Pteromalidae).’ Molecular Ecology Notes 4, No. 1: 43–45. doi:
- . ‘Cladistic analysis of paleo-island populations of the Florida harvester ant (Hymenoptera: Formicidae) based upon divergence of mitochondrial DNA sequences.’ Florida Entomologist 87, No. 4: 576–581.
- . ‘Cladistic analysis of paleo-island populations of the Florida harvester ant (Hymenoptera: Formicidae) based upon divergence of mitochondrial DNA sequences.’ Florida Entomologist 87, No. 4: 576–581.
- 10.1159/000078019. . ‘Chromosomal anchoring of linkage groups and identification of wing size QTL using markers and FISH probes derived from microdissected chromosomes in Nasonia (Pteromalidae: Hymenoptera).’ Cytogenetic and Genome Research 105, No. 1: 126–133. doi:
- 10.1111/j.1471-8286.2004.00668.x. . ‘Characterization of microsatellite markers for plant-ants of the genus Crematogaster subgenus Decacrema.’ Molecular Ecology Notes 4, No. 3: 409–411. doi:
- 10.1111/j.1471-8286.2004.00668.x. . ‘Characterization of microsatellite markers for plant-ants of the genus Crematogaster subgenus Decacrema.’ Molecular Ecology Notes 4, No. 3: 409–411. doi:
- 10.1073/pnas.1533499100. . ‘The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes.’ Proceedings of the National Academy of Sciences of the United States of America 100, No. 16: 9388–9393. doi:
- 10.1007/s00040-003-0642-z. . ‘Sociobiology of hypogaeic army ants: Characterization of two sympatric Dorylus species on Borneo and their colony conflicts.’ Insectes Sociaux 50, No. 2: 139–147. doi:
- 10.1016/S1055-7903(02)00449-9. . ‘Molecular phylogeny of Crematogaster subgenus Decacrema ants (Hymenoptera: Formicidae) and the colonization of Macaranga (Euphorbiaceae) trees.’ Molecular Phylogenetics and Evolution 27, No. 3: 441–452. doi:
- . ‘Genetic evidence for intra- and interspecific slavery in honey ants (genus Myrmecocystus).’ Philosophical Transactions of the Royal Society B: Biological Sciences 270, No. 1517: 805–810.
- 10.1046/j.1365-294X.2003.01853.x. . ‘Determinants of intracolonial relatedness in Pogonomyrmex rugosus (Hymenoptera; Formicidae): Mating frequency and brood raids.’ Molecular Ecology 12, No. 7: 1931–1938. doi:
- . ‘The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera; Pteromalidae): Major quantitative trait loci and epistasis.’ Genetics 161, No. 2: 673–684.
- . ‘The genetic basis of the interspecific differences in wing size in Nasonia (Hymenoptera; Pteromalidae): Major quantitative trait loci and epistasis.’ Genetics 161, No. 2: 673–684.
- . ‘The emergence of hymenopteran genetics.’ Genetics 160, No. 2: 375–379.
- 10.1046/j.1471-8286.2002.00311.x. . ‘Isolation of polymorphic microsatellite markers in the new world honey ant Myrmecocystus mimicus.’ Molecular Ecology Notes 2, No. 4: 540–541. doi:
- 10.1073/pnas.112222099. . ‘Genetic determination of the queen caste in an ant hybrid zone.’ Proceedings of the National Academy of Sciences of the United States of America 99, No. 12: 8157–8160. doi:
- 10.1046/j.1365-2540.2001.00919.x. . ‘A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae).’ Heredity 87, No. 2: 234–242. doi:
- 10.1046/j.1365-2540.2001.00919.x. . ‘A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae).’ Heredity 87, No. 2: 234–242. doi:
- . ‘Genome organization and social evolution in hymenoptera.’ Naturwissenschaften 87, No. 2: 87–89.
- . ‘Genome organization and social evolution in hymenoptera.’ Naturwissenschaften 87, No. 2: 87–89.
- . ‘Systematics, distribution, and ecology of an endemic California Camponotus quercicola (Hymenoptera: Formicidae).’ Annals of the Entomological Society of America 92, No. 4: 514–522.
- . ‘Mapping of hybrid incompatibility loci in Nasonia.’ Genetics 153, No. 4: 1731–1741.
- 10.1007/s000400050043. . ‘Mating frequency of Leptothorax nylanderi ant queens determined by microsatellite analysis.’ Insectes Sociaux 44, No. 3: 219–227. doi:
- . ‘Isolation of DNA suitable for PCR for field and laboratory work.’ Biotechniques 23, No. 2: 228–229.
- . ‘The ant host (Hymenoptera: Formicidae) and hitherto unknown female of Menozziola obscuripes (Diptera: Phoridae).’ Sociobiology 28, No. 2: 177–181.
- 10.1007/BF01138560. . ‘Genetic variability in the ant Camponotus floridanus detected by multilocus DNA fingerprinting.’ Naturwissenschaften 81, No. 1: 34–36. doi: