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Abstract 

Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its 
clinical manifestations which cause deterioration of cognition, intelligence, and emotions – the very capacities 
that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late 
stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin 
of an individual who turns into a being with lower mental and physical capacities than less evolved species. A 
human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that 
life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, 
the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, 
controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements 
geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and 
linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and 
multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain 
aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal 
brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in 
most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a 
few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis 
of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same 
line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of nor-
mal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an 
inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a 
few individuals in other species. The progression of the process has devastating effects in a relatively low per-
centage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the 
search for a different approach in the study of human brain aging at the first stages of the biological process, and 
advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain 
aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices. 
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Summary 

This is a comprehensive historical and up-dated 
review on the pathogenesis of Alzheimer’s disease 
(AD) in relation to intrinsic process of natural brain 
aging. The study covers, in addition to β-amyloid and 
tau pathology, alterations in multiple merging mo-
lecular pathways and sub-cellular structures under-
pinning brain aging and AD. 

Familial AD (fAD) is rare and linked to altered 
genetic information associated with three genes. 
Sporadic AD (sAD) is much more common and mul-
tifactorial. A major point of clinical discussion has 
been, and remains, establishing the differences be-
tween brain aging and sAD. This is not a trivial ques-
tion, as the neuropathological and molecular char-
acteristics of normal brain aging and the first ap-
pearance of early stages of sAD-related pathology 
are not easily distinguishable in most individuals. 
Another important point is confidence in assigning 
responsibility for the beginning of sAD to a few trig-
gering molecules, without considering the wide 
number of alterations that converge in the patho-
genesis of aging and sAD. Recognized genetic risk 
factors covering multiple molecular signals are in-
creasing in number. Molecular alterations of lipid 
rafts, protein synthesis from the nucleolus to the ri-
bosome, protein phosphorylation, kinase activation, 
purine metabolism, epigenetic regulation of DNA 
and RNA, mitochondria and energy metabolism, in-
flammation, oxidative stress, cell-cycle re-entry, and 
cell death precede, in some regions (i.e., frontal cor-
tex), abnormal tau deposition and amyloid plaques. 
Human brain aging and sAD do not follow a linear 
logic based on the assumption that a cause results in 
one or several effects; several separate alterations 
converge and potentiate each other to incorporate 
anomalies in additional pathways. Tau seeding and 
spreading are active intercellular and intracellular 
processes that explain, only in part, disease progres-
sion. Cell and region vulnerability are essential ele-
ments. Brain aging with neurofibrillary tangles 
(NFTs) restricted to the temporal lobe and selected 
nuclei of the brain stem, primary age-related 
tauopathy, preclinical AD, mild cognitive impair-
ment (MCI) of Alzheimer type, typical AD, rapid pro-
gressive AD, and AD subtypes, are forms of sAD 
modulated by individual genetic and molecular fac-
tors. As in atherosclerosis, the progression of the 

process has devastating effects in a relatively low 
percentage of human beings. Future modulation of 
human brain aging and sAD will require the com-
bined application of Artificial Intelligence, brain DNA 
editing, external electrical or wave-based signals to 
reduce energy consumption, and optimization of mi-
tochondrial function, together with implantation of 
microdevices, to facilitate cooperative human-ma-
chine operation, pharmacological protection of li-
pid-protein interactions, high-throughput molecular 
technology, and resetting during sleep stages. 

1. Introduction 

The clinical and neuropathological characteris-
tics and clinical correlates of Alzheimer disease (AD) 
have been described in several recent reviews (1-9). 
However, the study of AD has generated a fascinat-
ing and complex compendium of theories, hypothe-
ses, controversies, fashion swings, and passionate 
clashes, together with tremendous efforts and 
achievements geared to improve understanding of 
the pathogenesis and treatment of the disorder. The 
present paper is a critical review of brain aging and 
AD that includes molecular abnormalities and early 
metabolic alterations beyond β-amyloid and tau pa-
thology. These changes, together with genetic fac-
tors, converge in the pathogenesis of AD. Learning 
about early molecular modifications preceding by 
many years the appearance of clinical symptoms, 
when present, will serve to improve understanding 
of brain aging and the AD continuum. 

Until the beginning of the last century, cogni-
tive impairment and dementia were considered nat-
ural features of old age. Multiple brain infarcts were 
common in old people, and vascular dementia due 
to arteriopathy was thought to be the main cause of 
senile dementia. However, microscopic study of 
post-mortem brains stained with the dyes available 
at that time revealed the presence of certain struc-
tural anomalies in aged individuals. Paul Block and 
Georges Marinesco (10) described “amas ronds”, 
and Emil Redlich (11) “miliare Sklerose” in the neu-
ropil, interpreted at that time as nodules of glial scle-
rosis, which we now know as senile plaques (SPs). 
The introduction of the Max Bielschowsky silver 
method allowed visualisation of argyrophilic struc-
tures in neurons. Using this method, Alois Alzheimer 
described for the first time large numbers of argyr- 
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Figure 1: Dystrophic neurites of SPs and NFTs in the frontal cor-
tex of a 76-year-old woman with dementia. Paraffin section, 
Gros-Bielschowsky silver method without counterstaining, black 
and white figure, bar = 25µm. 

ophilic neurofibrillary tangles (NFTs) and aggregates 
of dystrophic neurites in the brain of a 51-year-old 
woman who had suffered from progressive demen-
tia and hallucinations in the previous four and half 
years (12). Other cases were published shortly after-
wards (13). The term Alzheimer’s pre-senile demen-
tia was introduced by Emil Kraepelin (14) to define 
the combination of pre-senile (before the age of 65) 
dementia in individuals with the morphological le-
sions described by Alzheimer. Oskar Fischer (15), us-
ing the same method, described the presence of 
‘Drusen’ or ‘drusige Nekrosen’ in 16 cases of senile 
dementia characterized by loss of memory and 
sense of location, disorientation, and confabulation. 
Subsequent Fischer reports (16, 17) detailed the 
morphology of abnormal fibrils and abnormal neu-
rites, and their stages of formation, in a large series 
of older individuals. The term ‘‘senile plaque’’ (SP) 
for these structures was proposed by Simchowitz 
(18). Fischer also described “drusige Entartung der 
Gefässe” which corresponds to amyloid angiopathy. 
Interestingly, Fischer also reported and illustrated 
the presence of NFTs in the same cases with demen-
tia (19). Hundreds of articles appeared in the suc-
ceeding years. Alzheimer focused on NFTs as the 
main cause of dementia, whereas Fischer thought 
that SPs were the main substrate of dementia in 
older cases. Moreover, Alzheimer contemplated 
NFTs as aggregates of abnormal neurofibrils, while 
Fischer considered dystrophic neurites of SPs com-
posed of abnormal neurofibrils, and NFTs a particu-

lar abnormality of nerve cells (19). Bielschowsky pro-
posed a link between tangles and neuritic changes 
(20) (Figures 1 and 2). NFTs and SPs are now consid-
ered AD-related pathology or AD-neuropathologic 
change (ADNC) (https://www.alz.org/media/Docu-
ments/alzheimers-facts-and-figures.pdf). 

 

Figure 2: Neurofibrillary tangles in the CA1 region of the hippo-
campus of a man aged 69 years with no apparent cognitive im-
pairment. Paraffin section, Gallyas staining, lightly counter-
stained with haemtoxylin, bar = 25µm. 

 

The term Pick’s disease (PiD) was coined in 1926 to 
distinguish AD from PiD primary frontotemporal de-
generative atrophy (21). As late as the 1960s, AD and 
PiD were considered early dementias, whereas pure 
senile dementia, vascular dementias, and mixed 
(vascular and degenerative) were classified as de-
mentias in old age (22). The frontiers between AD 
and pure senile dementia were not clear, as the on-
set of clinical symptoms in many cases classified as 
AD was after the age of sixty (23). It was not until the 
1970s that Alzheimer’s pre-senile dementia and se-
nile dementia with changes of Alzheimer type were 
considered to be within the same spectrum (24-27). 
The inclusive term “Alzheimer-Fischer dementia” 
was never contemplated. 

The first approach toward a clinical consensus 
on AD was made in 1984; clinical diagnosis of AD was 
set up in three categories – possible, probable, and 
definite (requiring neuropathological verification) 
(28). Definite AD was fixed as a neurodegenerative 
disease manifested by progressive dementia with a 
neuropathological substrate characterized by brain 
atrophy, neuronal death, and a particular distribu-
tion of abundant SPs and NFTs in the brain. 
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In contrast to AD dementia, well-tolerated pro-
gressive slower processing, memory loss particularly 
related to recent events, more trouble multitasking, 
slight cognitive decline, sleep disorder, emotional 
changes, slight or moderate depression, and bilate-
ral brain activation for memory functions develo-
ping around the sixties are all consistent with “nor-
mal brain aging”. Neuropathological alterations in 

normal old-aged individuals are NFTs in the hippo-
campus, entorhinal cortex, and inferior temporal 
cortex, and very rarely in the frontal neocortex; the 
distribution of SPs, if present, is more heterogene-
ous (29-35). 

Clinical and neuropathological criteria to iden-
tify borderline cases between AD and cognitive im-
pairment due to normal brain aging yielded only a 

Box 1: Clinical classification of Alzheimer’s disease (https://www.alz.org/media/Documents/alzheimers-
facts-and-figures.pdf). 

Preclinical Alzheimer’s disease 

In this phase, individuals may have measurable brain changes that indicate the earliest signs of AD (bi-
omarkers), but they have not yet developed symptoms such as memory loss. 

Mild cognitive impairment due to Alzheimer’s disease 

People with MCI due to AD have biomarker evidence of Alzheimer’s brain changes plus new but subtle symp-
toms such as problems with memory, language and thinking. These cognitive problems may be noticeable to 
the individual, family members and friends, but not to others, and they may not interfere with individuals’ 
ability to carry out everyday activities. 

Mild Alzheimer’s dementia 

In the mild stage of Alzheimer’s dementia, most people are able to function independently in many areas but 
are likely to require assistance with some activities to maximize independence and remain safe. Handling 
money and paying bills may be especially challenging, and they may need more time to complete common 
daily tasks. They may still be able to drive, work and participate in their favorite activities. 

Moderate Alzheimer’s dementia 

In the moderate stage of Alzheimer’s dementia, which is often the longest stage, individuals experience more 
problems with memory and language, are more likely to become confused, and find it harder to complete 
multistep tasks such as bathing and dressing. They may become incontinent at times, and they may start 
having personality and behavioral changes, including suspiciousness and agitation. They may also begin to 
have problems recognizing loved ones. 

Severe Alzheimer’s dementia 

In the severe stage of Alzheimer’s dementia, individuals’ ability to communicate verbally is greatly diminished, 
and they are likely to require around-the-clock care. Because of damage to areas of the brain involved in 
movement, individuals become bed-bound. Being bed-bound makes them vulnerable to physical complica-
tions including blood clots, skin infections and sepsis, which triggers body-wide inflammation that can result 
in organ failure. Damage to areas of the brain that control swallowing makes it difficult to eat and drink. 
Because of this, food particles may be deposited in the lungs and cause lung infection. 
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limited consensus (36, 37). A few years later, CERAD 
proposed a neuritic plaque score based on the num-
ber of plaques per mm2 and the age of the individual 
to categorize AD in comparison to normal brain ag-
ing (38, 39). 

Evidence of a clinical progression and post-
mortem neuropathological observations showing a 
concatenation of AD-related changes in old age and 
sAD (29-32, 40-43) prompted a clinical redefinition 
of AD at the beginning of the second decade of this 
century. 

A crucial approach was the combination of clin-
ical criteria, biochemical biomarkers in body fluids, 
and neuroimaging techniques to define the diagno-
sis of preclinical AD, mild cognitive impairment 
(MCI) due to AD, and AD (44-50). 

More precise clinical definitions have been pro-
posed to categorize different stages of AD (51). The 
classification shown in Box 1 is a summarized tran-
scription of the Alzheimer’s association report: 2022 
Alzheimer’s disease facts and figures 
(https://www.alz.org/media/Documents/alz-
heimers-facts-and-figures.pdf). 

The American Academy of Neurology esti-
mates that MCI is present in about 8% of people age 
65 to 69, in 15% of 75- to 79-year-olds, in 25% of 
those age 80 to 84, and in about 37% of people 85 
years of age and older. About 7.5% will develop de-
mentia in the first year after diagnosis of MCI; about 
15% will develop dementia in the second year; 
about one third will develop dementia due to AD 
within five years (52, 53). The prevalence of demen-
tia in 65-69-year-olds is approximately 0.01% of in-
dividuals; the prevalence of dementia doubles with 
increments of five years; thereby, between 25% and 
50% of individuals over the age of 85 suffer from de-
mentia (2). It is estimated that between 50% and 
80% of cases with dementia have AD (2). Age, gen-
der, race, living conditions, and genetic factors mark 
differences in the duration of preclinical and demen-
tia stages in sAD (54, 55). 

2. β-amyloid and Tau 

Electron microscopic studies revealed that 
NFTs were composed of paired helical filaments 
(PHFs) that disrupted the architecture of the cyto-

skeleton. SPs were forged from a core of compact 
fibrils consistent with amyloids surrounded by dys-
trophic neurites filled with altered mitochondria, 
vesicles, numerous pleomorphic residual bodies, 
and PHFs (56-61) (Figure 3). 

 

Figure 3: Electron microscopy of an SP showing the central core 
of amyloid fibrils (asterisk) and peripheral dystrophic neurites 
(black arrows) filled with vesicles, dense bodies, abnormal mito-
chondria, and paired helical filaments; bar = 5µm. 

2a. β-amyloid (Aβ) 

Subsequently, molecular studies identified β-
amyloid as the main component of cerebral amyloid 
in β-amyloid angiopathy and SPs (62-66). 

The amyloid precursor protein (APP) is a trans-
membrane protein which modulates brain cell adhe-
sion, synaptic plasticity, and multiple intracellular 
signaling through the small endodomain of the mol-
ecule. APP processing is regulated by cytoplasmic 
phosphorylation (67). Cleavage of APP occurs 
through the combined action of α-, β-, and δ-secre-
tases. β-secretase (BACE) is a GPI-anchored aspartyl 
protease (68). γ-secretase is a coprotein complex 
mainly composed of presenilin 1 (PSEN1) and prese-
nilin 2 (PSEN2); components of the γ-secretase com-
plex aph-1 homolog A; γ-secretase subunit (APH1A); 
APH1B; nicastrin (NCT/NCSTN); and presenilin en-
hancer γ-secretase subunit (PEN2/PSENEN), to-
gether with the modulators neprilysin (NEP/MME) 
and insulin-degrading enzyme (IDE). The γ-secretase 
complex is considered the “proteasome of the mem-
brane” because of its capacity to act as a protelytic 
enzyme on more than 90 substrates (69-71). Cleav-
age of APP through α- and δ-secretase leads to the 
non-amyloidogenic pathway of APP degradation, 
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whereas the combined action of β- and δ-secretases 
generates small truncated C-teminal peptides at po-
sitions 42 (Aβ1-42 or Aβ42) or 40 (Aβ1-40 or Aβ40), de-
pending on the thickness of the membrane, and 
many other small forms are amyloidogenic as well 
(72-75). Local cholesterol content affects the various 
secretase activities (76), including cholesterol de-
rived from astrocytes (77). 

Low physiological concentrations of Aβ seem 
necessary for long-term potentiation induction and 
for memory formation, probably acting on cAMP 
and cGMP (78). However, in aging and AD there is 
not only abnormal production of β-amyloid. Aβ is ag-
gregated and accumulates in the extracellular space 
due to its hydrofobicity, facility for oligomerization, 
and transformation from an α-helix to a β-sheet con-
formation (66, 73, 74). Several enzymes can degrade 
β-amyloid such as neprilysin, plasmin, endothelin-
converting enzymes, angiotensin-converting en-
zymes, insulin-degrading enzyme, several matrix 
proteinases, and cathepsins A and B (79, 80). Soluble 
Aβ is drained across the lymphatic wall, binding to 
low-density lipoprotein receptor-related protein 
(LRP-1). The expression levels of some of these en-
zymes and transporters are reduced in AD (81-85). 
Impaired lymphatic drainage and altered blood ves-
sel walls impair the elimination of soluble β-amyloid 
via the circulatory system (86, 87) (see section 13). 

Astrocytes followed by neurons are the main 
source of clusterin in brain; clusterin is then released 
to the extracellular space (88). Clusterin expression 
is increased in AD (87, 88), and co-localizes with β-
amyloid deposits (91), more specifically with Aβ1-40 
(92). Clusterin may act as an extracellular chaperone 
(93) and it contributes to early stages of β-amyloid 
plaque pathology (94). In addition to being involved 
in Aβ aggregation and clearance and in the modula-
tion of Aβ transport across the blood brain barrier 
(BBB) (95-97), clusterin is also known to reduce Aβ 
toxicity (98, 99). In addition, clusterin seems to in-
teract with bridging integrator protein 1 (BIN1) and 
tau (100). 

The main β-amyloid that circulates in brain intersti-
tial fluid and cerebrospinal fluid (CSF) is soluble Aβ40. 
β-amyloid deposits in AD are categorized as primi-
tive or immature plaques, mature or neuritic 
plaques (classical SPs), compact or burned-out, cot-

ton-wool plaques, diffuse plaques, subpial β-amy-
loid deposits, β-amyloid angiopathy, and perivascu-
lar plaques (dyshoric angiopathy) (Figure 4). β-amy-
loid can also be found in the cytoplasm of neurons, 
and in astrocytes at the periphery of SPs. β-amyloid 
is composed of a mixture of peptides of different 
molecular weight: Aβ40 and Aβ42 are predominant in 
SPs, while Aβ40 is mainly located at the core of SPs 
and Aβ42 at their periphery. Diffuse plaques contain 
Aβ42 and truncated forms Aβ17-42. Subpial β-amyloid 
deposits are mainly composed of amino-terminal 
truncated species. β-amyloid species have different 
aggregation properties. N-terminal truncated Aβ 
with pyroglutamate modification at position 3 and 
Aβ phosphorylated at serine 8 show enhanced ag-
gregation into oligomers and fibrils. These forms ap-
pear at late stages (biochemical stages 2 and 3) of β-
amyloid formation, whereas soluble and insoluble 
aggregates composed of non-modified Aβ are found 
at early stages (stage 1) (101, 102). 

 

Figure 4: β-amyloid deposits in the temporal cortex. Paraffin 
section, β-amyloid immunohistochemistry, slight hematoxylin 
counterstaing, bar = 50µm. 

Soluble β-amyloid oligomers (AβOs) and amy-
loid-β derived diffusible ligands (ADDLs), acting 
through specific cell surface receptors rather than fi-
brils, are toxic and cause neurodegeneration (103-
115). High-molecular-weight β-amyloid oligomer 
levels are elevated in the CSF in AD (116). Yet in the 
cerebral tissue, the ratio of Aβ oligomer levels to 
plaque density distinguishes demented from non-
demented patients (117). 

Several membrane receptors can bind to Aβ ol-
igomers. These receptors include the cellular prion 
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protein (PrPC); the α7 nicotinic acetylcholine recep-
tor (α7nAChR); Fcγ receptor II-b (FcγRIIb); the p75 
neurotrophin receptor (p75NTR); the paired immu-
noglobulin-like receptor B (PirB); the PirB human 
orthologue receptor (LilrB2); the β-adrenergic re-
ceptors (β-ARs); and the Eph receptors (118), among 
others. PrPC is one of the binding partners for Aβ ol-
igomers (119-125), and PrPC mediates impairment 
of synaptic plasticity by Aβ oligomers (124). 

Besides β-amyloid species, several molecules 
are also components of SPs including metal ions, li-
pids, mucopolysaccharides, immunoglobulins, 
members of the complement system, molecules 
linked to lipid metabolism and lipid transport, blood 
coagulation/haemostasis factors, proteins linked to 
metabolism and molecular transport, neural, cell ad-
hesion and extracellular matrix proteins, proteogly-
cans, and other cellular proteins (126, 127). The 
large amount of proteins in SPs is likely the conse-
quence of co-aggregation and alteration of associ-
ated biochemical processes by which β-amyloid for-
mation leads to neurodegeneration (127). Moreo-
ver, PrPC co-localizes with Aβ in SPs (128). 

β-amyloid plaques are associated with variable 
alteration of neuronal processes, reactive astro-
cytes, and microglia. Altered synaptic protein depo-
sition with a granular pattern is found in diffuse 
plaques (129). Neurotransmitter-containing and 
peptidergic dystrophic neurites precede those con-
taining paired helical filaments within SPs (130-132). 
Altered neuronal structure, accumulation of abnor-
mal molecules, and abnormal organelles and debris 
are characteristic of dystrophic neurites of mature 
SPs (133, 135). In addition to synaptic proteins, com-
ponents of dense-core vesicles accumulate in dys-
trophic neurites of SPs (129, 135-138). Immuno-
histochemical studies have shown that dystrophic 
neurites of SPs contain 3Rtau and 4Rtau; several 
phospho-tau species; MAP2-P; phosphorylated neu-
rofilaments light; medium and heavy chains; and ac-
tive kinases p38, SAPK/JNK, GSK3β, and CK1-δ, in ad-
dition to markers of the ubiquitin-proteasome sys-
tem (UPS) and autophagy (139). Mitochondria are 
altered in dystrophic neurites of SPs with variable 
vulnerability of the mitochondrial complexes of the 
respiratory chain (140, 141). 

Dystrophic neurites are likely derived from ax-
ons arising from diverse neuronal populations, as re-
vealed by specific neuronal markers (130-132, 142-
146) therefore indicating that neuronal vulnerability 
is not restricted to a single cellular population. 

Pyramidal cells in the vicinity of SPs show dis-
torted dendrites and loss of dendritic spines (147-
149). 

2b. Tau 

The microtubule-associated protein tau, en-
coded by MAPT, participates in microtubule stabil-
ity, cellular polarity, and anterograde and retro-
grade axonal transport of organelles and vesicles. In 
addition to microtubules and actin, tau interacts 
with a large number of proteins and lipids in the cy-
toplasm, cell membranes, and synapses, and with 
DNA and proteins involved in DNA protection, 
among many other substrates (150, 151). The vari-
ous functions of tau require interaction with multi-
ple partners (151-157). 

The main constituent of NFTs dystrophic neurites of 
SPs and neuropil threads is abnormal tau (158-173) 
(Figures 5, 6, and 7). A combination of all six hyper-
phosphorylated brain tau isoforms (3Rtau and 4Rtau 
expressed in brain), generated from alternative tau 
splicing, is characteristic of AD tau (163, 174, 175). 
The amount of 3Rtau is similar to 4Rtau in the hu-
man adult brain and in AD. However, possible varia-
tions in the ratio of 3Rtau/4Rtau among cell types in 
the human brain have not been adequately as-
sessed. Abnormal tau in AD includes several species 
resulting from hyper-phosphorylation at different 
sites, acetylation, glycosylation, altered confor 
mation, truncation at glutamic acid 391 and at as-
partic acid 421 (mediated by caspase 3), oligomeri-
zation, and β-sheet-rich fibril aggregation, among 
others (171-173, 176-196). The site of tau phosphor-
ylation and other post-translational modifications in 
tau have commonalities and differences among 
tauopathies (197, 198). Tau inclusions in glial cells 
are not found in AD, unless accompanied by other 
tau co-morbidities including aging-related tau astro-
gliopathy (ARTAG) and argyrophilic grain disease 
(AGD) which are 4Rtau-only tauopathies. 
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Figure 5: Neurofibrillary tangles in the CA1 region of the hippo-
campus. Paraffin section, AT8 immunohistochemistry, slight 
haematoxylin counterstaining, bar = 25µm. 
 

 

Figure 6: Dystrophic neurites of SPs in the entorhinal cortex con-
taining hyper-phosphorylated tau. Paraffin section, AT8 im-
munohistochemistry, slight haematoxylin counterstaing, bar = 
25µm 
 

 

Figure 7: Immunoelectron microscopy showing phospho-tau de-
posits (black dots) in paired helical filaments. AT8 antibody, bar 
= 0.2µm. 

Tau hyper-phosphorylation, the first step in 
NFT formation, is geared by the activation of specific 
kinases, and probably also by accompanying inhibi-
tion of phosphatases (171, 199). Several kinases are 
implicated in both the physiological and the patho-
logical phosphorylation of tau, including glycogen 
synthase kinase 3β (GSK3β); cyclin-dependent ki-
nase 5 (CDK5); protein kinase A (PKA); JUN N-termi-
nal kinase (JNK); p38; and others (200). Co-localiza-
tion of selected active kinases and tau deposits can 
be visualized in brain tissue (201-203). G-protein-
coupled receptor (GPCR) kinases are also associated 
with NFTs and β-amyloid plaques in AD (204). 

These alterations are cumulative but not ho-
mogeneous. More than one tau species may be pre-
sent in a particular neuron. Furthermore, distinct 
defects may result depending on the type of accu-
mulated tau, ranging from reversible dysfunction to 
irreversible disruption of the cytoskeleton, altered 
axonal transport, undermined cell signaling, synap-
tic dysfunction, and cell death. Tau-linked altera-
tions can be the direct result of toxic species or the 
interactions of multiple partners (156). Soluble and 
insoluble tau oligomers, both phosphorylated and 
non-phosphorylated, may be involved in neuro-
degeneration (191, 205). 

The association of tau with the plasma mem-
brane is determined by its phosphorylation pattern. 
Tau associated with the plasma membrane can 
move to the cytosol upon tau hyper-phosphorlation 
(206, 207). The phosphorylation of tau also depends 
on phosphatidyl choline and phosphatidyl serine 
(208). Therefore, the composition of lipids at the 
membrane may modify the phosphorylation of tau 
and its capacity to shift its binding with actin and cy-
tosolic proteins (209-211). Tau interactions with the 
membrane have several implications (155, 212). In 
addition to stabilizing membrane-cytosol interac-
tions, tau is secreted associated to vesicles, or vesi-
cle-free, key features in tau transmission (213-215). 

Morphologically, abnormal neuronal tau de-
posits in AD are manifested as perinuclear tau de-
posits, granular cytoplasmic deposits, diffuse cyto-
plasmic deposits (all considered pre-tangle stages), 
neurofibrillary tangles (classical NFTs), ghost tangles 
(remains of NFTs in the neuropil), dystrophic neu-
rites of SPs, and neuropil threads. The redistribution 
of abnormal tau from axons to the somatodendritic 
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compartment of neurons and dendritic spines is a 
characteristic consequence of tau pathology in AD 
and other tauopathies. PHFs induce tau accumula-
tion into aggresomes that gather misfolded proteins 
when the protein degradation system is overloaded 
(216). 

The structure of tau filaments in the different 
tauopathies largely depends on tau composition 
(3Rtau and 4Rtau) and on post-translational modifi-
cations including conformation and truncation, as 
revealed by transmission electron microscopy, and 
more recently by optimized cryo-electronmicros-
copy and mass spectrometry (193, 217-222). The dif-
ferent structure of tau aggregates in tauopathies in-
dicates the formation of different tau strains which 
are specific to each tauopathy (223). The accumula-
tion rate of tau aggregates is greater in females and 
younger β-amyloid-positive subjects (224). In-
creased expression of 19 genes in chromosome X is 
associated with tau burden and slower cognitive de-
cline in women but not in men, suggesting that spe-
cific X chromosome factors could confer risk or resil-
ience in aging and AD (225). 

In addition to abnormal tau, NFTs contain nu-
merous proteins. Total tau interacts with a good 
number of proteins in AD (226, 227). Laser-capture 
micro-dissection of NFTs and liquid chromatog-
raphy-/tandem mass spectrometry (LC-MS/MS) 
analysis in sAD followed by affinity purification mass 
spectrometry revealed that seventy-five proteins 
present in NFTs interacted with PHF1-immunoreac-
tive phosphorylated tau (228). NFTs also contain 
markers of the sequestosome/p62, ubiquitin, and 
mutant ubiquitin (229, 230). 

Increased PrPC expression downregulates tau 
protein (231-234). Conversely, reduction or ablation 
of PrPC levels induces an increase in tau 3Rtau/4Rtau 
balance through downregulation of GSK3β activity, 
thus indicating that PrPC plays a role in tau exon 10 
inclusion through the inhibitory capacity of GSK3β 
(235). Increased PrPC levels at early and middle 
stages of NFT pathology yields lower tau and  hos-
phor-tau. In contrast, PrPC levels decrease at ad-
vanced stages of NFT pathology, which correlates 
with increased amounts of tau and  hosphor-tau. 
Taken together, these observations suggest a pro-
tective role for PrPC in early stages of AD (236). 
These observations linking an interaction of prion 

protein and tau may have implications in certain fa-
milial prion diseases grouped under the term Gerst-
mann-Sträussler-Scheinker disease, in which abun-
dant PRPRes-amyloid deposits are accompanied by 
extensive tau pathology (see section 3). 

3. Familial AD (fAD; early-onset famil-
ial Alzheimer’s disease: EOFAD), and 
the β-amyloid cascade hypothesis 

From the early nineties, mutations in the genes 
APP (β-amyloid precursor protein), PSEN1 (prese-
nilin1), and PSEN2 (presenilin2), all of them involved 
in the production of β-amyloid, have been identified 
in several families with pre-senile dementia of Alz-
heimer’s type (early-onset familial Alzheimer dis-
ease: EOFAD, or fAD); increased APP dosage was 
also causative of AD and β-amyloid angiopathy (237-
244). Recent genetic studies of the first Alzheimer’s 
case identified that the patient carried a mutation in 
PSEN1. These groundbreaking discoveries led to the 
“β-amyloid cascade hypothesis”, which supports the 
idea that the production of β-amyloid species is the 
primary factor triggering NFT formation and AD pro-
gression (245). The amyloid cascade hypothesis was 
further supported by the production of β-amyloid in 
transgenic mice bearing human mutations causative 
of AD. Yet mutations in these genes did not result in 
NFT formation in transgenic mice, although a few 
small hyper-phosphorylated tau deposits did appear 
in dystrophic neurites around β-amyloid plaques. At 
most, the joint production of SPs and tau deposits 
similar to NFTs in mice requires the cumulative ex-
pression of different mutated genes involved in hu-
man AD and tauopathies (246-248). However, in 
vitro and in vivo studies have shown the capacity of 
β-amyloid to phosphorylate tau and enhance tau ag-
gregation, thus giving a boost to the β-amyloid cas-
cade hypothesis (249). The β-amyloid cascade hy-
pothesis fits with fAD linked to mutations of APP, 
PSEN1, and PSEN2. 

Another genetic condition linked to increased 
risk of AD is Down syndrome. Middle-aged individu-
als (MA) with Down syndrome have neuropatholog-
ical lesions of AD. Amyloid deposits may start as 
early as 12 years of age and they are universal by the 
age of 31. NFTs appear later in the entorhinal cortex, 
hippocampus, and neocortex (250-253). 
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The discovery of β-oligomers and cumulative 
evidence of their toxicity has led to modification of 
the “β-amyloid cascade” hypothesis, leading to the 
“amyloid-β oligomer hypothesis” (103-108). Accord-
ing to the new proposal, it is not the presence of fi-
brillar β-amyloid and deposition into definite aggre-
gates, but rather soluble β-oligomers that are caus-
ative of cell damage and that trigger the process of 
neurodegeneration in AD (103-106, 254-257). 

However, several points are still obscure. The 
level of insoluble Aβ rises with age and is further in-
creased in AD whereas the total level of Aβ40 in both 
soluble and insoluble fractions and the level of Aβ42 
in the soluble fraction decline with age before about 
50 years. Differential production or retention of Aβ40 
and Aβ42 likely contributes to the influence of age on 
the risk of sporadic AD, but the levels of soluble Aβ 
concentrations, higher in young adults than in older 
individuals and in subjects with AD, do not match 
the proposed toxic role of oligomers in AD (258, 
259). 

Tau deposits, other than those located in dys-
trophic neurites of SPs, are largely independent of β-
amyloid. Other factors, including apolipoprotein E 
(ApoE), the endocytic system, cholesterol metabo-
lism, and microglial activation, are regulators of tau 
pathology (260). Neurons derived from induced plu-
ripotent stem cell (iPSC) lines from sAD and fAD 
linked to PSEN1 mutations show increased phos-
phorylation of tau at different sites, increased levels 
of active GSK3β, and a significant upregulation of 
APP synthesis and APP carboxy-terminal fragment 
cleavage. However, significantly increased Aβ1-

42/Aβ1-40 ratios are observed in fAD but not in sAD 
(261). 

Other amyloids are the main constituents, in 
combination with NFTs, of different genetic neuro-
degenerative diseases causing dementia. Familial 
British dementia (FBD) and familial Danish dementia 
(FDD) are linked to specific mutations in the BRI2 
gene; the cleavage of Integral membrane protein 2B 
(BRI2) produces ABri and ADan amyloidogenic pep-
tides, respectively. Amyloid plaques and amyloid an-
giopathy, and NFTs with a tau composition identical 
to AD tau, are found in both diseases (262, 263). 
Gerstmann-Sträussler-Scheinker disease (GSS) is 
linked to mutations in the prion protein gene (PRNP) 
that cause a prionopathy. Depending on the muta-

tion, GSS is manifested pathologically by a combina-
tion of abundant prion-immunoreactive plaques 
surrounded by dystrophic neurites, together with 
numerous NFTs indistinguishable from AD-NFTs 
(264-266). Interestingly, APP, BRI2, and prion are 
proteins located at the cell membrane, and they in-
teract with each other in normal conditions. The 
non-fibrillar, soluble BRI2-derived amyloids are also 
toxic, and probably play a central role in the patho-
genesis of BRI2-linked dementias (267). The com-
mon structure of soluble amyloid oligomers sug-
gests a common mechanism of pathogenesis (109, 
113). Despite the differing genetic nature of these 
disorders, plaques and NFTs do not appear until 
middle age. Understanding of the mechanisms that 
control the metabolic pathways, that delay the be-
ginning of the molecular and clinical manifestations 
of the disease for years, is a major challenge in neu-
rodegenerative diseases linked to mutations in spe-
cific genes. 

In contrast to mutations linked to β-amyloid 
production, mutations in MAPT are causative of fa-
milial tauopathy and are never associated with β-
amyloid or other amyloid deposits (170, 171).  

4. Sporadic AD (sAD; Late-onset Alz-
heimer disease: LOAD) 

Most cases of AD (more than 95%) are sporadic 
(sAD) and occur in older individuals (late-onset Alz-
heimer’s disease: LOAD). sAD has an insidious onset 
and a progressive course leading to death about 10-
15 years after the first clinical symptoms of demen-
tia. Aging is the main contributory factor. sAD is fa-
voured by individual or combined low penetrating 
genetic factors, mainly allele ε4 of ApoE (268-271). 
Genome-wide association studies (GWAS) have 
identified other risk genes of sAD: LDL receptor re-
lated protein 1 (LRP1); low density lipoprotein pro-
tein receptor 1 (LDLR); interleukin 1a; clusterin 
(CLU); phosphatidylinositol binding clathrin assem-
bly protein (PICALM); complement component 
(3b/4b) receptor 1 (CR1); bridging integrator 1 
(BIN1), involved in synaptic vesicles and endocyto-
sis; triggering receptor expressed on myeloid cells 2 
(TREM2); sortilin-related receptor 1 (SORL1), in-
volved in endocytosis and sorting; ADAM metallo-
peptidase domain 10 (ADAM10), involved in the 
cleavage of several proteins; ATP binding cassette 

https://doi.org/10.17879/freeneuropathology-2022-3806


Free Neuropathology 3:17 (2022) Isidro Ferrer 
doi: https://doi.org/10.17879/freeneuropathology-2022-3806 page 13 of 99 
  
 

 

subfamily A member 7 (ABCA7); Spi-1 proto-onco-
gene (SPI1); paired immunoglobin like type 2 recep-
tor alpha (PILRA); membrane-spanning 4-domains 
subfamily A (MSA4), linked to inflammation; CD2-as-
sociated protein (CD2AP) that regulates actin cyto-
skeleton; and ephrin receptor A1 (EPHA1), among 
others (272-288). 

The regional and areal distribution of NFTs and 
SPs in the cerebral cortex is not homogeneous. In 
the hippocampal complex, NFTs predominate in the 
CA1 region and subiculum, the CA2, CA3 and hilus 
are less affected, and the dentate gyrus is spared in 
pure sAD cases. In the entorhinal cortex, NFTs are 
more abundant in layers II and V, whereas in the ne-
ocortex, NFTs predominate in layers III and V, with 
marked regional variations (the primary motor and 
sensory cortices have fewer NFTs than the associa-
tion areas). NFTs are found more abundant in the 
temporal cortex, followed by the frontal and parietal 
cortex, and the occipital cortex. In subcortical re-
gions, NFTs are localized in the basal nucleus of Me-
ynert and nuclei of the basal forebrain, amygdala, 
hypothalamic nuclei, relay neurons within in-
tralaminar and limbic thalamic nuclei, ventral teg-
mental area, raphe nuclei, locus ceruleus, and olfac-
tory bulb. The cerebellar cortex is spared of NFT pa-
thology. Cortical neurons with NFTs are mainly sub-
populations of large pyramidal glutamatergic neu-
rons (289-291). This is consistent with the observa-
tion that neurons with high content of neurofila-
ments are more susceptible to NFT formation (290-
295). 

GABAergic neurons are more resistant to NFT 
pathology, although the density of GABAergic neu-
rons decreases and GABA-uptake is impaired in sAD 
(296-300) (see section 6 for details). Somatostain, 
which is expressed in a subpopulation of inhibitory 
neurons, and somatostatin receptors are also re-
duced in sAD (296, 301, 302). 

Calcium-binding proteins parvalbumin (PV), 
calbindin D28K (CB) and caretinin (CR) are expressed 
in subpopulations of GABAergic neurons (303-305). 
PV-positive neuron numbers in the temporal, visual, 
and prefrontal cortex are preserved in AD (306-309), 
but PV-immunoreactive neurons are decreased in 
the entorhinal cortex and hippocampus in sAD (310-
316). CB-immunoreactive neurons in the hippocam-
pus, entorhinal cortex, and cortical layers V and VI 

are vulnerable, whereas CB-positive neurons in the 
occipital cortex and upper layers of the frontal cor-
tex are resistant (309, 314, 314, 317). CR-positive 
neurons are not affected in the prefrontal, tem-
poral, and visual cortices (309, 319, 320), but their 
number is reduced in the hippocampus and entorhi-
nal cortex (314, 321). PV and somatostin, together 
with neuropeptide Y, cholecystokinin and substance 
P, are found in dystrophic neurites of SPs, thus evi-
dencing the involvement of inhibitory and peptider-
gic neurons in SPs (130, 144). 

Neuron loss is negligible in cognitively normal 
subjects, but the number of neurons decreases in 
the hippocampus and entorhinal cortex with NFT 
progression (322-324). The rate of this process is ex-
tremely variable among individuals. 

A major achievement in improving our under-
standing of the progression of sAD pathology was 
the staging of NFTs and SPs in the post-mortem 
brain of large cohorts of non-demented and de-
mented individuals covering a natural human popu-
lation. In the telencephalon, the first NFTs appear in 
the entorhinal and transentorhinal cortex (stages I-
II), followed by the hippocampus, temporal cortex, 
and other nuclei of limbic system (stages III-IV), and 
then continue on to most areas of the neocortex 
(stages V-VI). The spreading of NFTs is accompanied 
by a dramatic increase in the number of neurons 
with NFT pathology across stage progression (41, 
325-327). About 85% of individuals aged 65 have 
NFT pathology, at least restricted to stages I-III (41, 
325, 328, 329). All of them, excluding those having 
concomitant pathologies, are considered “cogni-
tively normal for age” (330). Some individuals at 
stage IV-V suffer from moderate cognitive impair-
ment; only about 5% have dementia. However, de-
mentia of AD type accounts for about 25%-30% of 
the population at the age of 85 years, all of them cat-
egorized as NFT stages V-VI (331). Regional- and 
stage-dependent neuropathological alterations in 
sAD are accompanied by specified patterns of al-
tered gene expression, that extend beyond the 
genes implicated in tau and β-amyloid pathology 
(332). 

The Braak staging scheme does not rule out the 
occurrence of exceptions that do not fulfil the strict 
neuropathological criteria. These untypical cases are 
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considered AD subtypes: hippocampal sparing, lim-
bic-predominant, and minimal atrophy sAD sub-
types might account for about 25% of cases (333). In 
addition, several clinical sAD variants including non-
amnestic, corticobasal syndromal, primary progres-
sive aphasia, posterior cortical atrophy, behav-
ioral/dysexecutive, and mild dementia variants have 
been categorized (334). 

The olfactory bulb and tract, and several nuclei 
of the brain stem including the raphe nuclei and the 
locus coeruleus, are affected by NFT formation at 
the first stages of NFT pathology. The involvement 
of the olfactory bulb and tracts may contribute to 
the altered olfaction arising in sAD. Damage to se-
lected nuclei of the brainstem, which are the origin 
of major serotoninergic and noradrenergic innerva-
tion of the entire brain, underlies a large series of 
clinical symptoms including impaired arousal, loss of 
attention and memory, impaired decision making, 
apathy, depression, anxiety, and altered reward pro-
cessing, among others (335-340). Considered to-
gether, NFT generation and neuron loss largely de-
pend on the specific cell and regional vulnerability of 
specific neuronal populations. Moreover, the simul-
taneous presence of NFT lesions in separate brain 
regions indicates that there is no single origin of NFT 
pathology that spreads through the brain, but rather 
various and cumulative original sources of tau pa-
thology in the aging brain. Additionally, the rates of 
NFT progression, although variable from one individ-
ual to another, appear slowly at early NFT stages and 
progress rapidly at advanced stages of the disease 
(41). 

The distribution of SPs differs from NFTs in the 
cerebral cortex in patients with sAD (341). Assessing 
the same series of cases for the study of NFT pro-
gression evidenced that the localization and distri-
bution of SPs largely differ from NFT staging. The 
majority of individuals at NFT stages I-II and almost 
half of those at stage III do not have SPs or β-amyloid 
deposits (41, 342). Stages 0, A, B, C of Braak define 
the progression of SPs through the neocortex. The 
phases of Thal represent, from phase 1 to 6, the pro-
gressive and cumulative appearance of SPs from the 
neocortex, allocortex, diencephalic nuclei, striatum, 
and cholinergic nuclei of the basal forebrain, the 
brainstem, and the cerebellum (343). 

The early appearance of tau pathology com-
pared with the later appearance of β-amyloid 
plaques in a series of 2366 cases from children to 
centenarians has been recently revisited (344). 
Based on the results of these observations and many 
previous studies, the paper hypothesizes that tau 
pathology is an initiating factor in sAD (344). 

Indeed, the lack of temporal and regional con-
cordance between NFTs and SPs in sAD is intuitively 
barely consistent with the β-amyloid cascade hy-
pothesis, unless non-identified soluble or other spe-
cies of β-amyloid interact with neurons, thus trigger-
ing NFT pathology (345). 

These comments do not mean that there is no 
interaction between the two proteins. Tauopathy 
fuelled by β-amyloid in a synergetic mechanism is 
well documented in AD (346-348). 

The arguments between supporters of β-amy-
loid and of tau as the primal origin of sAD have con-
sumed a great deal of effort, time, and financial in-
vestment (349). There is no doubt about the new ac-
quisition of knowledge generated regarding sAD 
pathogenesis, but exclusive hypotheses have not 
produced the anticipated unequivocal results. 

Cognitive impairment and dementia correlate 
with tau deposition and NFT pathology rather than 
with β-amyloid deposits and SPs (331, 350-358). 
Neuron loss occurs largely in parallel with tau pa-
thology rather than with SPs in most regions (359). 
However, neuron degeneration and neuron loss are 
not restricted to neurons with NFTs (see section 10). 

Recently, a classification of AD has been pro-
posed: AD autosomal dominant (fAD), ApoEε4 sAD, 
and non-ApoEε4 sAD (360). This categorization is 
not new, but rather recovers and further empha-
sizes the well-known relative importance of β-amy-
loid deposition in the different AD categories de-
pending on genetic factors involved in the produc-
tion of β-amyloid. 

5. NFTs and SPs in non-human brain 
aging 

β-amyloid plaques and β-amyloid angiopathy 
may be found in old-aged animals in some species 
including non-human primates, monkeys, dolphins 
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and other cetaceans, dogs, cats, bears, and pinniped 
species, among others; deposits are usually diffuse 
whereas core plaques surrounded by tau-containing 
dystrophic neurites are exceptional (361-372). 

Phosphorylated-tau deposits in neurons are 
rarely encountered in most mammals, and they usu-
ally have the characteristics of pre-tangles rather 
than NFTs, as in a few vulnerable aged mouse lemurs 
(362). Intracytoplasmic tau inclusions in neurons, as-
trocytes, and oligodendrocytes may occur in aged 
baboons (373, 374), aged gorillas (369), and chim-
panzees (371). Tau accumulation in the brain of old 
sea lions, seals, and walruses forms argyrophilic fi-
brillar 3Rtau and 4Rtau aggregates in the neuronal 
somata and neurites, and olny few tau aggregates 
are found in oligodendrocytes and microglia (372). 
Importantly, these changes are linked to aging, but 
they are not the only expression of brain aging (375, 
376). 

Hyperphosphorylated tau accumulation in neu-
rons, intraneuronal β-amyloid deposits, and diffuse 
amyloid plaques may occur in the brain of aged do-
mestic cats (377, 378). The characteristics and distri-
bution of tau lesions in a few cats are reminiscent of 
sAD including the deposition of 4Rtau and 3Rtau 
(379). A unique 4Rtauopathy without β-amyloid de-
posits mainly involving neurons of the neocortex but 
not the hippocampus, accompanied by widespread 
coiled bodies in the cerebral white matter, has been 
reported in aged domestic cats (380). 

These observations show that β-amyloid depo-
sition and tau pathology may occur with high species 
variability, in aged mammals, and, particularly, in 
non-human primates and pinnipeds. However, we 
do not have evidence at present on whether these 
species show changes in the same way as human be-
ings. In aged cynomolgus monkeys, β-amyloid 
plaques combine with 4Rtau deposits in pre-tangle 
neurons and coiled bodies in glial cells with a re-
gional pattern reminiscent of progressive supranu-
clear palsy (370). Therefore, the old hypothesis sug-
gesting that sAD is a phylogenetic disease (381) has 
a relative relevance unless applied to the search for 
mechanisms modulating similarities and differences 
between non-humans and humans regarding the 
tremendous prevalence, widespread localization, 
particular regional distribution, and composition 

and structure of tau deposits in humans in compari-
son with other species. 

6. Synapses 

Synaptic alterations were described in the 
1960s in the seminal electron microscopic studies of 
AD (382). These findings were followed by the ob-
servation of decreased numbers of dendritic spines 
on cortical neurons assessed with the Golgi method 
in post-mortem and biopsy samples at a time when 
cerebral biopsies were still considered appropriate 
tools for diagnosis of dementia (383-389). Synaptic 
loss is the major morphological correlate of cogni-
tive impairment (390). For this reason, AD is consid-
ered as the consequence of a synaptic failure (391). 
Subsequent studies have refined synaptic altera-
tions using different methods (392; 393), including 
the use of intraneuronal dyes in post-mortem tis-
sues (394, 395). 

The Golgi method also provided evidence of 
dendritic degeneration and dendritic sprouting and 
re-growth in several brain regions in AD (396-401). 
Dendritic sprouting is reinforced by the presence of 
growth-associated protein 43 (GAP-43), a marker of 
neuritic growth and sprouting around SPs (143, 
402). Aberrant sprouting seems to be triggered by 
pre-amyloid species and neurotrophic factors (401). 
Aberrant sprouting involves neurites, dendrites, and 
synapses, and it affects distinct connections in AD 
(401). Cycles of aberrant synaptic sprouting and 
neurodegeneration are common in AD (403). 

Spine loss occurs mainly in clusters linked to 
tau pathology (404, 405). Immunohistochemistry 
also reveals altered expression of synaptic markers 
not only around SPs but also in diffuse plaques, sug-
gesting a close relationship between synapses and 
β-amyloid deposition (129, 406, 407). Abnormal pre- 
and post-synaptic tau and tau oligomers damage the 
synapses and produce altered synaptic function 
(150, 408, 409). 

Double-labeling of neurons also shows a direct 
relationship between tau deposition and loss of den-
dritic spines on cortical pyramidal neurons in AD 
(404). Abnormal tau and β-amyloid oligomers act 
synergistically to disrupt synaptic function (409). 
However, synaptic loss also appears not to be de-
pendent on fibrillar β-amyloid in a murine model of 
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β-amyloid deposition (149). Abnormal neuronal ex-
pression of APP and cytoskeletal proteins in early 
stages of the disease might be involved in the mech-
anisms of synaptic pathology in AD (410). 

Synaptic proteins are important components 
associated with β-amyloid in SPs (127). It has re-
cently been postulated that altered synapses are the 
origin of amyloid plaques in AD (411; see also sec-
tion 2a). Both β-amyloid and abnormal tau are accu-
mulated at the synapses (412-421). Recent neuroim-
aging studies further support the association of tau 
pathology, synaptic loss, and altered synaptic func-
tion (422). It has been proposed that synaptic tau 
pathology is an early event, and synaptic tau seeding 
precedes tau pathology in sAD (423). Other factors 
are also important such as cytoskeletal actin dysreg-
ulation (424), and oxidative stress lipid and protein 
damage (425). No less significant is the association 
between cell-cycle dysfunction and failure of synap-
tic plasticity in AD (426). 

Synaptic alterations include abnormalities in 
the synaptic and postsynaptic delivery of neuro-
transmitters and neuromodulators, and the selec-
tive vulnerability and responses of their receptors 
(see section 7). 

Finally, lipid and protein alterations at the cell 
membrane, and altered cytoskeletal proteins, may 
affect synaptic integrity and function (see sections 
22c and 22h). 

In addition, synapses are organelles with high 
energy consumption, and therefore they are vulner-
able to deficits in energy production linked to mito-
chondrial failure (427) (see section 22d). 

7. Neurotransmitters, neuromodula-
tors, and related receptors 

An early relevant biochemical observation was 
the discovery of the involvement of the Meynert nu-
cleus in AD, the correlation of this involvement with 
the number of plaques and cognitive impairment, 
and the accompanying impairment of cholinergic in-
nervation in the cerebral cortex (428-430). The “cho-
linergic hypothesis” stated that AD was a disorder of 
cholinergic innervations (430, 431). The enthusiasm 
for the cholinergic theory was supported by the 

prior discovery of dopamine deficiency in the sub-
stantia nigra pars compacta in Parkinson’s disease, 
and the success of L-dopa treatment for this disor-
der which is still in use 50 years later (432). Cholin-
ergic drugs were used although their benefits were 
clearly lower than initially expected. 

Later, the glutamatergic theory stated that ex-
citotoxicity resulting from excessive synaptic or ex-
trasynaptic activation of N-methyl-D-aspartate 
(NMDA) subtype of ionotropic L-glutamate recep-
tors might enhance vulnerability of neurons in AD 
(433, 434). The role of glutamate in the pathogene-
sis of AD was driven, in part, by the discovery of al-
tered glutamate transport and increased excitotoxi-
city in amyotrophic lateral sclerosis (435), and the 
interest at that time in excitatory amino acid neuro-
toxicity in the pathogenesis of neurodegenerative 
diseases (436). Glutamate overload increases mito-
chondrial Ca2+ influx and oxidative stress and leads 
to mitochondrial dysfunction (437). However, 
NMDA receptor blockers may also have undesirable 
effects due to their double effects on cell death as 
well as cell survival and plasticity (438). Now, neuro-
protective therapies aim to both enhance the effect 
of synaptic activity and disrupt extrasynaptic 
NMDAR-dependent death signaling (438). 

Cholinergic and glutamatergic neurotransmit-
ter alterations play a significant role in the patho-
genesis of brain aging and sAD (439-442). Other neu-
rotransmitters and receptors are involved as well. 

The important point is that alterations are not 
homogeneous; they depend on the type of neuro-
transmitter, the cells of origin, and the kind of recep-
tor; not all receptors of a given neurotransmitter are 
equally vulnerable to aging and sAD. 

In addition to the neurotransmitters, neuro-
modulators, and receptors discussed below, general 
aspects of GPCR, amylin receptors, netrin receptors, 
and dopamine receptors in sAD are detailed in other 
reviews (443, 444). Endorphins, enkephalins, dy-
norphins, and endomorphins are endogenous opi-
oid peptides that bind to opioid receptors. β-endor-
phin has opioid activity through µ-receptors, but α-
endorphin and γ-endorphin lack affinity for opiate 
receptors. Endorphins interact with the γ- aminobu-
tyric acid (GABA), which in turn modulates the re-
lease of dopamine. The expression of endogenous 
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opioids and receptors is altered in human brain ag-
ing and sAD (445-448). 

Many olfactory and taste receptors and mole-
cules involved downstream are expressed in the hu-
man brain (449). Their ligands and functions remain 
unknown, although both olfactory and taste recep-
tors might contribute to intercellular and intracellu-
lar cell signaling. The expression of some olfactory 
receptors is altered in sAD and other neurodegener-
ative diseases (450). 

7a. Acetylcholine (Ach) and acetylcholine recep-
tors (AChR) 

ACh is synthesized in neurons by choline acetyl 
transferase (ChAT). ACh acts upon nicotinic acetyl-
choline receptors (nAChRs) and muscarinic acetyl-
choline receptors (mAChRs). ACh is degraded by ac-
etylcholinesterase (AChE). Nicotinic receptors are 
ionotropic ligand-gated receptors, and muscarinic 
receptors are GPCR (451). The nAChRs are arranged 
into homomeric or heteromeric subunits consisting 
of a diverse set of complex subtypes including α1-7, 
α9-10, β14, γ, δ, and ε. Allosteric modulation of nA-
ChRs increases pre-synaptic ACh levels and en-
hances the cholinergic nicotinic neurotransmission. 
α7 and α4β2 nAChR mediate the presynaptic release 
of ACh. nAChRs are also expressed in astrocytes and 
microglia (452, 453). 

Through its receptors TRkA and p75NTR, the 
nerve growth factor (NGF) plays an essential role in 
the survival and maintenance of cholinergic neurons 
in the basal forebrain (454-457). 

Loss of basal forebrain cholinergic neurons oc-
curs at early stages of NFT pathology (428, 458, 459). 
Pretangle pathology within cholinergic nucleus ba-
salis neurons coincides with local neurotrophic and 
neurotransmitter receptor gene dysregulation 
(460). Loss of cholinergic neurons in the basal fore-
brain leads to reduced ACh levels and ChAT upregu-
lation (461). In addition, nAChRs, particularly α7nA-
ChRs, are altered in sAD (462-465). Importantly, nic-
otine and nAChRs also participate in the regulation 
of Aβ. On the one hand, nicotine inhibits the for-
mation of Aβ1-42 fibrils and disrupts preformed Aβ fi-
brils (466). On the other hand, Aβ1-42 binds to α7nA-
ChR and inhibits the release of ACh (467). Finally, α7 

nAChRs mediate Aβ-induced neurotoxicity (468, 
469). and Aβ-induced tau phosphorylation (470). 

α7nAChRs also participate in microglial activa-
tion (471). Astrocytic and microglial nAChRs modu-
late Aβ phagocytosis and degradation, Aβ-related 
oxidative stress, and neurotoxicity (472). 

The metabotropic mAChRs are classified into 
five M1-M5 subtypes (473). M1, M3, and M5 recep-
tors interact with the Gq/11 protein, stimulate phos-
pholipase C (PLC), phosphatidylinositol trisphos-
phate (PI3P), and activate protein kinase C (PKC). M2 
and M4 receptors interact with Go/i proteins, inhibit 
adenylyl cyclase (AC) and protein kinase A (PKA), and 
decrease cAMP levels (474-476). There are no 
changes in the number of mAChRs in sAD; however, 
the interaction of Gq/11 protein is altered in sAD 
compared with controls (477). M1 muscarinic ago-
nists reduce β-amyloid and tau pathology, whereas 
M1 muscarinic antagonists or deletion of M1 sub-
type augment β-amyloid and tau pathology in in 
vitro and in vivo murine models of AD (478-480). 

SPs have low levels of AChE, but the activity of 
AChE increases around β-amyloid plaques (481, 
482). AChE inhibitors such as donepezil, galanta-
mine, tacrine, and rivastigmine are administered at 
the initial stages of sAD. 

7b. Glutamate and glutamate receptors (GluRs) 

Glutamate is released from synaptic terminals 
and acts on post-synaptic ionotropic glutamate re-
ceptors (iGluRs). This mechanism mediates fast ex-
citatory synaptic transmission. Glutamate can also 
act on metabotropic glutamate receptors (mGluRs). 
The mechanism modulates various effects by cou-
pling to G proteins with subsequent recruitment of 
second messenger systems. There are three families 
of iGluRs: NMDA (N-methyl-D-aspartate receptor), 
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxa-
zolepropionic acid), and KA (kainate) receptors: 
NMDAR, AMPAR, and KAR, respectively. NMDARs 
are composed of different subunits encoded by 
GluN1 (NR1), GluN2A (NR2A), GluN2B (NR2B), 
GluN2C (NR2C), GluN2D (NR2D), GluN3A (NR3A), 
and GluN3B (NR3B). AMPARs are composed of com-
binations of GluA1 (GluR1), GluA2 (GluR2), GluA3 
(GluR3) and GluA4 (GluR4); and KARs by GluK1 
(GluR5), GluK2 (GluR6), GluK3 (GluR7), GluK4 (KA-1) 
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and GluK5 (KA-2). In NMDARs, the binding of gluta-
mate and glycine is necessary to activate glutamate-
gated ion channels. The removal of magnesium ions 
(Mg2+) block permits the entry of calcium ions 
(Ca2+) and synaptic signaling (483, 484). 

Both iGluRs and mGluRs are also localized pre-
synaptically acting as auto-receptors and hetero-re-
ceptors. This localization facilitates neurotransmis-
sion in the short term and depresses neurotransmis-
sion in the long term (485). GluRs are localized non-
synaptically and are also expressed by astrocytes 
and oligodendrocytes (486). 

Glutamate binding to NMDARs, AMPARs, and 
KARs is reduced in the aging brain and sAD mainly in 
the cerebral cortex and hippocampus. These 
changes are receptor-, region-, and layer-depend-
ent, thus indicating variable vulnerability. Altered 
expression is likely dependent on several factors and 
not necessarily correlated with local NFTs and SPs, 
although loss of neurons and reduced neuronal con-
nectivity may account, in part, for the decreased re-
ceptor expression (440). The localization of the re-
ceptors also plays a cardinal role. NMDARs contain-
ing GluN2A subunits are located at synaptic sites and 
are implicated in the protective pathways. In con-
trast, GluN2B subunits are located mainly at extra-
synaptic sites, and they increase neuronal vulnera-
bility. β-amyloid activates GluN2B-containing 
NMDARs (487-489). In addition, NMDARs are neces-
sary for synaptic targeting of Aβ oligomers (490) and 
neuronal Aβ production (491). NMDAR alterations 
are implicated in synaptic dysfunction in sAD (492, 
493). NMDARs also participate in redox-mediated 
synaptic function impairment in brain aging and sAD 
(494). 

Memantine, an NMDAR antagonist, is currently 
used at the middle clinical stages of AD to reduce the 
hyperactivity of glutamate, resulting in transient and 
limited success. 

AMPARs are consistently endocytosed. The in-
crease in the rate of AMPA endocytosis induces 
long-term depression and synaptic degeneration 
(495). Soluble Aβ oligomers are involved in synaptic 
damage via the subunit GluA3 AMPAR (496). Aβ also 
induces AMPAR ubiquitination and degradation 
(497). 

Glutamate abnormalities in aging and sAD are 
not restricted to alterations in glutamate production 
and its effects on synaptic receptors in neurons and 
glial cells. Furthermore, glutamate effects in normal 
and pathological conditions also depend on gluta-
mate transport by specific neuronal and glial trans-
porters (498). 

Excitatory amino acid transporters (EAATs) re-
uptake glutamate from the synaptic cleft and extra-
synaptic sites, and transfer glutamate to glial cells 
and neurons. Vesicular glutamate transporters 
(VGLUTs) move glutamate from the cell cytoplasm 
into synaptic vesicles. EAATs can also transport L-as-
partate and D-aspartate. EAAT1 and EAAT2 (SLC1A3 
and SLC1A2, respectively) are localized in astrocytes 
whereas EEAT3 (SLC1A1), EAAT4 (SLC1A6) and 
VGLUTs 1/2/3 (SLC17A7, SLC17A6, SLC17A8, respec-
tively) are found in neurons. Loss of EAAT2 occurs in 
many neurodegenerative diseases, including sAD 
(see section 12a). Abnormal expression of VGLUTs 
and EAATs may contribute to neuronal excitotoxicity 
and neuron demise in sAD (499-501). 

mGluRs are G-coupled proteins that act upon 
different effector systems, including PLC and AC. 
mGluRs are classified into three groups based on 
their pharmacological profiles, molecular proper-
ties, and transduction mechanisms. Group I recep-
tors (mGluR1, mGluR5) are coupled to PLC activation 
through Gq/11 proteins, whereas groups II and III 
are coupled to AC inhibition through Gi/o proteins. 
mGluR1/5 are primarily excitatory, and mGluR2/3 
and mGluR4/5/6,7/8 are inhibitory (502-505). 
mGluRs, determined by radioligand binding assays, 
and expression levels of mGluR1, detected by west-
ern blotting, are significantly decreased in the 
frontal cortex in sAD. This decrease is already ob-
served at NFT stages I-II and III-IV not involving the 
frontal cortex, and further decrease with the ap-
pearance of NFTs in the frontal cortex with disease 
progression. The expression levels of phospholipase 
Cβ1 (PLCβ1) isoform, which is the effector of group I 
mGluRs, is decreased in parallel. PLCβ1 decrease, in 
turn, is associated with reduced GTP- and l-gluta-
mate-stimulated PLC activity in sAD. These results 
show that group I mGluRs/PLC signaling is downreg-
ulated and desensitized in the frontal cortex at the 
first stages of NFT pathology, and that these modifi-
cations worsen with the progression of sAD (506). 
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7c. γ-aminobutyric acid (GABA) and GABA recep-
tors 

The inhibitory neurotransmitter GABA is gener-
ated by α-decarboxylation from L-glutamate in neu-
rons by the action of glutamic acid decarboxylase 
(GAD). GABA is then incorporated into the synaptic 
vesicles by vesicular GABA transporter (VGAT). After 
release from synaptic vesicles, GABA binds to iono-
tropic GABAA and metabotropic GABAB receptors. 
GABAA receptor activation opens chloride ion chan-
nels; GABAB acts through G proteins, reduces cal-
cium ion channels, and inhibits AC and intracellular 
production of cAMP (507-510). GABAA receptors are 
composed of combinations of five different subu-
nits, α1-α6, β1-β3, γ1-γ3, δ, ε, θ, π, and ρ1-ρ2. The 
most frequent pentamers are 2α:2β:1γ (507). GABAB 
receptors are heterodimers composed of R1 and R2 
subunits (508). GABA at the synapses is picked up by 
astrocytes that catalyze it to glutamine, which is 
then transported into neurons and converted to glu-
tamate (511, 512). The involvement of astrocytes in 
GABA metabolism has suggested a potential role of 
astrocytes in GABA gliotransmission (513). 

Several studies have shown inconsistent results 
regarding total GABA levels in sAD but there is a 
trend toward stressing abnormal GABAergic func-
tion (514-516). Reduced GABA, glutamate, and glu-
tamine levels are observed in individuals with MCI 
and AD as revealed by magnetic resonance spectros-
copy (517-520). 

Regarding GABA receptors, electrophysiologi-
cal studies reveal a reduction in GABA currents in the 
temporal cortex in sAD. This is associated with 
mRNA downregulation of α1 and γ2 subunits and 
upregulation of α2, β1, and γ1 transcripts (521). α1 
and α5 subunit protein-immunoreactive levels are 
decreased in the CA1 region of the hippocampus 
(521-524), whereas α3, β1, β2, β3, and γ2 subunits 
are unaffected. In contrast, α1 subunits are in-
creased in the CA3 region, granule cell layer, and hi-
lus of the dentate gyrus in sAD (523-527). β3 subunit 
expression is decreased in the stratum oriens, radia-
tum of CA2 and CA3, and stratum moleculare (527), 
whereas γ1/3 subunits are upregulated in the hippo-
campus in sAD (525, 527). 

Aβ induces the downregulation of GABAA re-
ceptors, inhibitory dysfunction, and sprouting of GA-
BAergic axons (528-532). 

7d. Serotonin and 5-hydroxytryptamine (5-HT) 
receptors 

5-Hydroxytryptamine (5-HT) derives from the 
amino acid tryptophan via the intermediate 5-hy-
droxytryptophan and decarboxylation to form sero-
tonin. In the brain, 5-HT is mainly produced in the 
raphe nuclei of the brain stem that constitutes part 
of the reticular formation. Ascending serotoninergic 
fibres innervate the whole telencephalon. Descend-
ing projections innervate the cerebellum and the 
spinal cord (443). Serotonin is stored at the synaptic 
vesicles and released into the synapse, where it 
binds to post-synaptic and auto-pre-synaptic recep-
tors. Serotonin is then re-uptaken via serotonin 
transporters and reused or degraded by monoamine 
oxidase. 5-HT receptors are categorized into 
metabotropic and ionotropic receptors. Metabo-
tropic GPCR are 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6, 
and 5-HT7. The only ionotropic receptor is 5-HT3, 
permeable to sodium, potassium, and calcium ions. 
5-HT1 and 5-HT5 receptors bind to Gαi/o proteins, 
inhibit AC, and decrease cAMP levels. 5-HT2 recep-
tors bind with Gαq/11, activate PLC, generate PI3P, 
and activate PKC (533-541). 

5-HT and receptors interact with the choliner-
gic, glutamatergic, noradrenergic, GABAergic, endo-
cannabinoid, and glial cell systems (542-545). Orex-
ins regulate serotonin neurons in the raphe nucleus 
(546). 

The serotoninergic system is altered in aging 
and sAD (443, 547-549). The main alteration of the 
serotoninergic system in brain aging and sAD results 
from neuronal damage and NFT formation in the ra-
phe nuclei in the independent origin of NFT pathol-
ogy at early stages of AD-related pathology. Damage 
to the serotoninergic system contributes to mood 
changes and depression which are characteristic 
non-cognitive clinical manifestations of brain aging 
and sAD (443, 550-553). 

Serotonin is linked to decreased β-amyloid pro-
duction and modulation of soluble β-amyloid pre-
cursor protein (sAPPβ) (554-557). In addition, 5-HT4 
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receptors inhibit the secretion of β-amyloid pep-
tides (558-560). 

Due to the multiple facets of serotonin, seroto-
nin receptors, and their interaction with other neu-
rotransmitters, agonists, antagonists of the different 
5-HT receptors, and principally selective serotonin 
re-uptake inhibitors are useful pharmacological 
agents to improve cognition and reduce depression 
in aging and sAD (444, 552, 561-568). 

7e. Noradrenergic system 

Norepinephrine or noradrenaline is synthe-
sized from dopamine by the enzyme dopamine β-hy-
droxylase (DBH). Norepinephrine is metabolized by 
mono-amino oxidase (MAO) and catechol-O-me-
thyltransferase (COMT). Norepinephrine is trans-
ported from the cytosol to the synaptic vesicles by 
the vesicular monoamino transporter (VMAT) (569, 
570). Norepinephrine can bind both to metabo-
tropic pre- and post-synaptic α1, α2, β1, β2, and β3 
receptors. α1 are Gq-coupled and activate PLC; α2 
are coupled to Gi/G0 proteins and inhibit AC; β1, β2, 
and β3 are coupled to Gs proteins and activate AC 
(571-574). 

The locus coeruleus, which contains about 
15,000 neurons in primates, is the principal source 
of brain noradrenaline. Noradrenergic terminals in-
nervate the hippocampus, amygdala, cerebral neo-
cortex, and hypothalamus (575-577). Post-synaptic 
α1 receptors are excitatory, whereas perisomatic 
and pre-synaptic α2 receptors are inhibitory (578). 
Adrenergic receptors are widely distributed in the 
brain (579, 580). Neurons of the locus coeruleus ex-
cite the cerebral cortex principally through α1 re-
ceptor signaling (581, 582). The locus coeruleus-nor-
adrenergic system has a major role in arousal, atten-
tion, and stress responses. In the brain, norepineph-
rine may also contribute to long-term synaptic plas-
ticity, pain modulation, motor control, and energy 
homeostasis (583). Noradrenergic terminals are also 
in contact with glial cells and blood vessels (584-
586). Due to these connections, noradrenergic in-
nervations also modulate inflammation and cerebral 
blood flow (583, 587-589). 

In addition, the noradrenergic system interacts 
with the cholinergic and GABAergic systems (576, 

590-592). Moreover, the locus coeruleus and the ra-
phe nuclei are interconnected (593, 594). Finally, 
orexin/hypocretin, histamine and noradrenaline 
converge in the dorsal raphe nucleus (593). 

The locus coeruleus is damaged at early stages 
of AD-related pathology (443, 595-598) (see also 
section 4). At these first stages, NFTs accompany 
neuron loss, but SPs only appear in some cases at 
advanced Thal phases of β-amyloid deposition. In 
contrast to the massive loss of noradrenergic neu-
rons, calbindin-immunoreactive neurons are pre-
served in the locus coeruleus even at advanced 
stages of NFT pathology (599). Early neuronal alter-
ations in the locus coeruleus are accompanied by ab-
normalities in the ascending noradrenergic system 
(600-602). Increased α2A adrenergic receptor pro-
tein occurs in the amygdala and hippocampus in par-
allel with early NFT pathology in the locus coeruleus 
(338). In contrast, reduced DBH activity is found in 
the post-mortem hippocampus and neocortex, 
probably as a compensatory mechanism to nora-
drenaline lessening (603, 604). DBH levels are also 
reduced in plasma at early stages of AD (605). More-
over, connectivity between norepinephrine and do-
pamine brainstem centers is disrupted in sAD (606). 

The orexin system is compromised in sAD, thus 
contributing, in combination with the noradrenergic 
and serotonin decay, to altered sleep in sAD (607-
611). 

7f. Adenosine receptors 

Adenosine is transported across the plasma 
membrane based on: a) its concentration gradients, 
and b) active Na+-dependent transporters that carry 
adenosine against its concentration gradient. 

Adenosine receptors are purinergic GPCR clas-
sified into A1, A2A, A2B, and A3 receptors. A1 and 
A3 receptors inhibit AC through Gi/o proteins, while 
A2A and A2B receptors stimulate AC through Gs pro-
teins (612, 613). Adenosine receptors are present in 
subpopulations of neurons, astrocytes, oligodendro-
cytes, and microglia (614-616). Adenosine receptors 
modulate the release of glutamate, GABA, acetyl-
choline, noradrenaline, and serotonin (616-623). 
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Early autoradiographic studies showed de-
creased A1 expression in the hippocampus at ad-
vanced stages of sAD (624-627). However, A1 recep-
tors accumulate in neurons with NFTs in sAD (628). 
More recent studies at first stages of NFT pathology 
have shown upregulation of adenosine receptors 
and sensitization of their specific signaling pathways 
preceding NFTs and SPs in the frontal cortex (629). 

7g. Endocannabinoids and cannabinoid receptors 
(CBRs) 

CBRs are classified as type 1 (CB1R) and type 2 
(CB2R) (630). Anandamide (N-arachidonoyl ethano-
lamine, AEA) and 2-arachidonoyl glycerol (2-AG) are 
the main endogenous ligands of CBRs (631-634). 
Both endocannabinoids derive from arachidonic 
acid (AA). They are synthesized and metabolized by 
different pathways and induce specific biological 
functions. In the human brain, CB1Rs are mainly ex-
pressed in the limbic system. CB1Rs localize in the 
pre-synapses modulating glutamate and GABA neu-
rotransmission (635-641). CB2Rs are expressed in 
microglia, and participate in inflammation and phag-
ocytosis (642, 643). Low levels of CB2R expression 
have also been identified in some neurons (644-
646). 

Cannabinoid compounds may also bind to 
other receptors, such as GPR55, peroxisome prolif-
erator-activated receptors PPARα and PPARγ, and 
transient receptor potential vannilloid-1 channels 
(647, 648). The study of expression of CB1Rs and 
mediators in sAD has yielded variable results (649). 
In contrast, increased CB2R expression in microglia 
surrounding SPs is consistently documented (650, 
651). A few studies have shown altered expression 
levels of endocannabinoids and enzymes linked to 
their metabolism in sAD (652-654). Therefore, the 
endocannabinoid system plays a role in sAD alt-
hough its precise contribution remains largely un-
known. Treatment with exogenous cannabinoids 
and modulation of CBRs in murine models of AD has 
shown beneficial effects including reduction of β-
amyloid plaques and β-amyloid burden, reduced tau 
phosphorylation, reduced inflammation, excitox-
icity, mitochondrial dysfunction, and oxidative 
stress, and relief of cognitive impairment (649). 

8. Trophic factors and receptors 

The expression of trophic factors, particularly 
brain-derived neutrophic factor (BDNF) and nerve 
growth factor (NGF) and their receptors, is altered in 
sAD (655-659). 

BDNF mRNA and protein are decreased in the 
frontal cortex and hippocampus in AD (660-662). 
BDNF immunoreactivity is reduced in tangle-bearing 
and non-tangle-bearing neurons, whereas immuno-
reactivity to full-length TrkB (the high affinity recep-
tor for BDNF, neurotrophin-3 and neurotrophin-4) is 
reduced in tangle-bearing neurons. Strong BDNF im-
munoreactivity is observed in dystrophic neurites 
surrounding SPs, and strong TrkB in reactive glial 
cells, including those surrounding SPs. Truncated 
TrkB immunoreactivity occurs in individual neurons 
and reactive glial cells in the cerebral cortex and 
white matter in sAD (661). The cause of abnormal 
TrkB immunoreactivity in sAD is not known but β-
amyloid modulates TrkB alternative transcript ex-
pression (663). ProBDNF is increased in sAD, and it is 
modified by reactive oxygen species (ROS)-derived 
advanced glycation end products, which prevent the 
processing of proBDNF to mature BDNF (664). Ab-
normal proBDNF/BDNF signaling impairs axonal 
transport, decreases trophic effects, and increases 
pathogenicity and cell death (661, 664, 665). 

In contrast, the expression of NGF is increased 
in sAD (655, 666), but NGF-containing neurons in the 
basal forebrain are lost in sAD (454, 667). ProNGF is 
also increased in sAD (668, 669). This has relevant 
implications as proNGF induces processing and nu-
clear translocation of the intracellular domain of 
p75NTR (the low affinity neurotrophin receptor for 
NGF, BDNF, neurotrophin 3, and neurotrophin 4) 
and induces cell death in association with cofactor 
sortilin, a member of the Vps10p sorting receptor 
family (670-672). 

9. Endoplasmic reticulum stress 

The accumulation of abnormally misfolded 
proteins in the endoplasmic reticulum (ER) causes 
ER stress which is manifested by activation of one or 
more of the three signaling pathways of the mis-
folded protein response (UPR) (673). Glucose-re-
lated protein 78 (GRP78/BiP) is the master protein 
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that regulates the UPR (674). The cytosolic domains 
of the transmembrane ER proteins PKR-like endo-
plasmic reticulum kinase (PERK), inositol-requiring 
protein 1 (IRE1), and activating transcription factor 
(ATF)-6, trigger specific pathways once activated. 
PERK activates ATF-4, and the activation of ATF6 in-
volves its displacement from the ER to the Golgi ap-
paratus to be cleaved into ATF6c. IRE1 dimers phos-
phorylate and lead to the production of X-box bind-
ing protein 1 (XBP-1) which increases the ER capacity 
of protein folding and the degradation of abnor-
mally folded proteins in the ER, thus reducing ER 
stress. IRE1 may also bind to the TRAF2 (TNF recep-
tor-associated factor 2) adaptor molecule and acti-
vate the apoptosis signal-regulating kinase 1 (ASK1), 
which in turn causes the phosphorylation of c-Jun N-
terminal kinase (JNK), thereby triggering cell death. 
ATF-4, truncated ATF6, and XBP-1, through down-
stream target genes, modulate ER homeostasis or 
apoptosis, depending on the saturation of the sys-
tem (673, 675). The expression of several UPR com-
ponents is altered in aging and sAD (676-679). ER 
stress also generates ROS which, together with mi-
tochondrial ROS, is a major cause of oxidative stress 
damage. Mitochondrial dysfunction and ER stress 
are relevant promoters of apoptosis in sAD (680). ER 
stress is also linked to brain inflammation (681, 682). 
Moreover, β-amyloid may activate the UPR, either 
mediated by glutamate receptors and calcium up-
take, or linked to mitochondrial dysfunction and ROS 
production; ER stress may also be induced by abnor-
mal tau (683-685). Moreover, PERK, IRE1 and ATF6 
signaling pathways activate autophagy (686-688). 

10. Failure to remove debris: the ubiq-
uitin-proteasome system (UPS) and 
autophagy in sAD 

Autophagy and UPS are the two main mecha-
nisms of intracellular protein degradation. There is a 
certain relationship between these two mecha-
nisms, and there are some molecules in common 
that initiate compensatory effects to prevent dis-
ease progression (689, 690). 

Autophagy includes macroautophagy, micro-
autophagy, and chaperone-mediated autophagy 
(691). Microautophagy and chaperone-mediated 

autophagy involve lysosomal membrane invagina-
tion and chaperon recognition (692). Macroautoph-
agy is mediated by autophagosome protein assem-
bly of Beclin 1-Vps34 lipid kinase, Atg9-WIPI-1, 
Atg12 conjugation system, microtubule-associated 
protein light chain 3 (LC3), and Unc-51-like autoph-
agy activating kinase 1 protein kinase. Lysosomal-as-
sociated membrane protein 1 (LAMP-1) is a trans-
membrane glycoprotein enriched in the membrane 
of lysosomes (693-695). Material digested by au-
tophagy is incorporated into lysosomes. 

Autophagy is impaired in brain aging and sAD 
(696-706). Altered macroautophagy in sAD is mani-
fested in dystrophic neurites of SPs, in which mito-
chondria, dense bodies, and vesicles are common 
targets, and in synapses and granulovacuolar degen-
eration (see section 11). Autophagy is also involved 
in β-amyloid metabolism and clearance (707). 

UPS activity is initiated by the conjugation of 
ubiquitin to the substrate following a three-step cas-
cade to tag the protein into the proteasome. The 
20S proteasome is a hetero-oligomer formed by 
heptameric rings organized into a structure resem-
bling a hollow cylinder which has three main pepti-
dase activities: chymotrypsin-like, trypsin-like, and 
peptidylglutamyl peptide hydrolyzing activities. The 
20S proteasome can associate, in the presence of 
ATP, with two caps or 19S complexes, thereby form-
ing the 26S proteasome complex. The 19S complex 
serves in the recognition of ubiquitylated proteins, 
protein unfolding, and translocation of the unfolded 
polypeptide to the inner chambers of the 20S pro-
teasome for hydrolysis. The 20S proteasome can in-
teract with other complexes. The PA28α/β activator 
(11S regulator) can also bind to 20S proteasome to 
form the PA28-proteasome complex. Additionally, 
the three catalytic β subunits of the 20S proteasome 
in response to γ-interferon are replaced by inducible 
homologous proteins LMP2, LMP7, and MECL1, 
forming the immunoproteasome (689). The im-
munoproteasome has a role in peptide production 
for antigen presentation by the major histocompat-
ibility complex in most settings, but it is also involved 
in the clearance of oxidatively damaged proteins 
(708). 

The UPS is altered in brain aging and AD (709-
712). Impaired removal of altered proteins is mani-
fested by the deposition of hyper-phospohorylated, 

https://doi.org/10.17879/freeneuropathology-2022-3806


Free Neuropathology 3:17 (2022) Isidro Ferrer 
doi: https://doi.org/10.17879/freeneuropathology-2022-3806 page 23 of 99 
  
 

 

abnormally conformed, and truncated ubiquitinated 
tau species resistant to UPS degradation in NFTs, 
dystrophic neurites, and threads (197). In addition 
to ubiquitin, mutant ubiquitin is expressed in the ag-
ing brain and at early stages of sAD, whereas mis-
framed ubiquitin contributes to the blockade of the 
proteasome by NFTs and other tau inclusions (229, 
230, 713-716). Yet, mutant ubiquitin reduces Aβ 
plaque formation (717, 718). 

The immunoproteasome is activated in AD and 
APP/PS1 double-transgenic mice (719-721). The rea-
sons for immunoproteasome activation are not fully 
understood, but the presence of advanced glycation 
end products (AGEs) appears to induce activation of 
the immunoproteasome; the inhibition of AGE re-
ceptor (RAGE), and the downstream signalling Jak2 
(Janus kinase 2)/STAT1 (signal transducer and acti-
vator of transcription 1) abolishes AGE-induced acti-
vation of the immunoproteasome (722). 

11. Granulovacuolar degeneration 
(GVD) 

GVD is characterized by the presence of vacuo-
lar cytoplasmic lesions with a dense central core, 
mainly in CA1 hippocampal neurons (18). GVD is 
common in the hippocampus in the aging human 
brain and present in the majority, if not all cases, of 
sAD (Figure 8). GVD first appears in neurons of the 
hippocampal subfields CA1 and CA2, and the subic-
ulum; this is followed by the entorhinal cortex, and 
CA4 neurons in stage 2, temporal neocortex in stage 
3, amygdala and/or the hypothalamus in stage 4, 
and cingulate, frontal, and parietal cortices in stage 
5 (723). GVD appears in relation to hippocampal 
phosphorylated tau accumulation in various neuro-
degenerative disorders, particularly AD (724). The 
most widely accepted model of AGD generation fol-
lows the scheme: abnormal tau in pretangles in-
duces abnormal reticulum stress responses, which 
in turn trigger endocytic and autophagic pathways in 
the face of impaired proteolysis and altered function 
of the UPS. This scenario is consistent with the idea 
that GVD is the final stage of an active process linked 
to failed degradation of abnormal protein aggre-
gates in the cytoplasm of a subpopulation of neu-
rons (677, 725-727). Immunohistochemistry to 
 

 

Figure 8: Granulovacuolar degeneration (black arrows) in neu-
rons of the hippocampus. Paraffin section, p38-P immunohisto-
chemistry, slight haematoxylin counterstaining, bar = 25 µm. 

 

casein kinase 1δ (CK1-δ) and AT8 and laser microdis-
section have identified the proteomes of neurons 
containing GVD and NFTs, respectively, using label-
free LC-MS/MS (728). A significant change in the 
abundance of 115 proteins in GVD-containing neu-
rons and 197 in NFT-containing neurons was ob-
served compared to control neurons (728). Differ-
ences in protein composition between NFTs and 
neurons with GVD are further supported by the 
demonstration of different activation of kinases and 
different profiles of phosphorylated proteins (139). 
Nonetheless, the same study of phosphoprotein ex-
pression showed that abnormal phosphorylation of 
various substrates is common at the first stages of 
NFT and GVD generation (139). These observations 
suggest that GVD is not restricted to tau pathology 
but rather involves a varied number of proteins. 
Since GVD is common in the older human popula-
tion, it is not surprising to find a correlation between 
GVD pathology and cognitive impairment. However, 
when analysis is controlled for other associated neu-
ropathologies, the associations between GVD and 
dementia lose significance (729). 

12. Glial alterations in aging and sAD 

Glial cells are altered in aging and sAD. Changes 
in glial cells have multiple facets, including cell se-
nescence, astrocytic gliosis, microgliosis, activated 
inflammatory responses, and calcium homeostasis, 
among others. Astrocytes are key players in AD 
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modulating β-amyloid turnover, calcium homeost-
hasis, tripartite synaptic function, neuroinflamma-
tion, oxidative stress responses, and BBB dysfunc-
tion (730-734). Microglia and astrocytes, together 
with neurons and blood vessels, participate in the 
process of activation of inflammatory responses in 
aging and sAD (735-737). Moreover, microglia have 
the capacity to transform a subset of reactive astro-
cytes through the combination of IL-1α, TNF, and 
C1q (738). Both microglia and astrocytes are key par-
ticipants in neuroinflammation in AD (739). 

12a. Astrocytes 

Astrocytes are key elements in the mainte-
nance of the central nervous system (CNS) due to 
their role in brain homeostasis at all levels of organ-
ization from molecular to the whole organ (740). As-
trocytes express neurotransmitter receptors, 
pumps, and transporters at their plasmalemma, 
along with transporters in the endoplasmic reticu-
lum and mitochondria that regulate the cytosolic 
levels of ions which underlie most, if not all, as-
troglial homeostatic functions (741). 

With aging, astrocytes show accumulation of 
lipofuscin, hypertrophy of cytoplasmic filaments, in-
creased expression of glial fibrillary acidic protein 
(GFAP), S100β and vimentin, and modifications in 
morphology and number (742-744). Senescent as-
trocytes also exhibit senescence-associated secre-
tory phenotype manifested by increased production 
of pro-inflammatory cytokines together with oxida-
tive damage and increased superoxide production 
(745). Perivascular astrocyte senescence leads to al-
tered BBB (746,747). This is accompanied by re-
duced expression of efflux transporter and in-
creased expression of influx transporter receptors 
for AGEs. Abnormal transport of proteins through 
blood vessels affects the transfer of β-amyloid, lead-
ing to its accumulation in blood vessels (748, 749). 
Water aquaporin 1 (AQP1) expression in astrocytes 
is also altered in the frontal cortex at NFT stages I-II, 
suggesting early impairment of water transport 
linked to AD-related pathology (750). AQP4 expres-
sion is altered with aging and sAD; loss of AQP4 is 
associated with increased levels of β-amyloid and 
tau, suggesting that loss of AQP4 impairs the BBB 
and the gliolymphatic barrier (751). 

Astrogliosis and astrocyte atrophy are rela-
tively early events in AD (752-756). Reduced branch-
ing and reduced connexin 43 expression occur in 
sAD (757) which may compromise the extent of cov-
erage domain and synaptic function in neighboring 
neurons (758). β-amyloid peptides also induce mito-
chondrial dysfunction and oxidative stress in astro-
cytes (759). Transcriptomics of laser-captured mi-
crodissection using GFAP as a marker revealed 
marked dysregulation of insulin, phosphatidylinosi-
tol 3-kinase (PI3K)/Akt, and mitogen-activated pro-
tein kinase (MAPK) signaling pathways at advanced 
Braak stages of the disease; minor and different ab-
normalities were observed at earlier stages, indicat-
ing different responses of astrocytes along disease 
progression (760). Recent transcriptomic studies in 
sAD have shown upregulation of genes related to 
perisynaptic astrocytic processes and downregula-
tion of genes encoding endolysosomal and mito-
chondrial proteins; downregulation of astrocytic mi-
tochondrial genes inversely correlates with the dis-
ease stages defined by Braak and CERAD scoring 
(761). 

Reactive astrocytes are found mainly around 
Aβ deposits in SPs and blood vessels (752, 762, 763) 
and in areas without plaques then distributed in a 
layered pattern (762, 764). In response to vascular 
β-amyloid deposition, astrocytes produce cytokines, 
metabolizing enzymes, and ROS which in turn con-
tribute to altered BBB and perivascular astrocytic 
function (765-769). Reactive astrocytes may contain 
Aβ (770-772) and N-terminal truncated β-amyloid 
(773), and they have the capacity to internalize and 
degrade β-amyloid fibrils (774). Activation of metal-
loproteinases (765, 775) and lysosomal degradation 
(776, 777) are the main complementary mecha-
nisms by which astrocytes degrade β-amyloid. In ad-
dition, BACE may be expressed in astrocytes under 
appropriate conditions, facilitating the generation of 
β-amyloid in these cells (752, 778). Acquisition of a 
pro-inflammatory profile along with activation of 
the β-amyloidogenic pathway further potentiates 
toxicity of a subpopulation of astrocytes in AD (779). 
Curiously, β-amyloid seems to impair the phagocy-
tosis of dystrophic synapses by astrocytes (780). 

Astrocytes bearing β-amyloid show abnormal 
calcium homeostasis (758, 759, 781-783). In addi-
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tion, β-amyloid-induced glutamate release by astro-
cytes may contribute to neuronal excitatory damage 
(784). De-regulation of specific metabotropic gluta-
mate receptors in astroglia is also a putative harmful 
effect of β-amyloid (785). 

NMDARs are expressed in a sub-population of 
astrocytes in the cortex and spinal cord. These re-
ceptors are composed of two GluN1, one GluN2C or 
D, and one GluN3 subunits. This composition makes 
astroglial NMDARs operational, modulating resting 
membrane potential (786). 

EAAT2 clears excess extracellular glutamate 
from the synaptic cleft and extrasynaptic sites via 
glutamate re-uptake by glial cells and neurons to 
prevent neuronal hyperexcitability and excitotoxi-
city. Oxidative damage, splice variants, and altered 
solubility of EAAT2 may lead to functional altera-
tions of glutamate transporters in AD (787-789). 
Moreover, EAAT2 expression is reduced with dis-
ease progression in parallel with increased GFAP ex-
pression in sAD (762, 790, 791). Furthermore, astro-
cytes surrounding SPs show altered immunopro-
teasome markers, and augmented expression of cy-
tokines and mediators of the immune response 
(721, 735, 792, 793). Reactive astrocytes in sAD also 
have higher levels of complement component C3 
which is required for both classical and alternative 
complement activation pathways (794). 

Changes in the morphology of astrocytes are 
accompanied by alterations in the regulation and ex-
pression of GFAP and other astrocyte markers in 
cases with MCI and in pre-clinical AD (791, 795-797). 
These changes are preceded by expression of vari-
ous cytokines and components of the inflammatory 
response (793, 798). Astrocytic responses are not 
homogeneous but rather variable, even in the same 
region (799-801). As for M1 and M2 suggested phe-
notypes for microglia (see section 12b), A1 and A2 
astrocyte phenotypes have been proposed depend-
ing on their transcriptional profiles: A1 are neuro-
toxic and A2 neuroprotective (738, 802). However, 
this categorization is difficult to apply in the context 
of sAD (801-803). 

Glucose hypometabolism is a characteristic 
metabolic feature associated with cognitive impair-
ment in AD (804-807). Furthermore, neurons utilize 
lactate as a source of energy, and astrocytes are the 

main local source of neuronal lactate (808-811). Lac-
tate levels are reduced in the brain of AD transgenic 
murine models (812). In the brain, the local source 
of ketone bodies results from fatty acid oxidation in 
astrocytes (813). In addition, astrocytes can produce 
ketones from amino acids (814). Considering that 
about 20% of cerebral ATP is generated from fatty 
acids (815), it may be inferred that impaired energy 
metabolism in astrocytes negatively impacts on neu-
ronal energy metabolism, including maintenance of 
the energy requirements of the synapses (803, 816-
818). 

12b. Microglia 

Microglial cells are multifunctional cells that re-
spond to different stimuli leading to either beneficial 
or harmful effects depending on the production of 
specific molecules. Several studies have dealt with a 
proposed polarization of microglia into two types. 
M1 phenotype is stimulated by interferon-γ (IFN-γ) 
for the expression of pro-inflammatory cytokines, 
and M2 phenotype by IL-4/IL-13 for resolution of in-
flammation and tissue repair (819). However, the di-
vision between M1 and M2 microglial phenotypes 
with opposing effects in pathological conditions is 
probably a simplification, as complex microglial re-
sponses occur in the same setting, particularly in AD 
(820, 821). The term neuroinflammation, although 
widely used, sheds little light on the molecular con-
sequences of microglial (and astrocytic) responses in 
any particular setting (822-824). 

Microglia are modified in aging and AD (825-
828). Dystrophic (senescent) microglia precede acti-
vated microglia in aging and sAD (826). Increased 
numbers of activated microglial cells occur in paral-
lel with the production of β-amyloid and tau pathol-
ogy (829). Microglial cells are found associated with 
SPs in contact with dystrophic neurites and internal 
to reactive astrocytes (7). Diffuse microgliosis in-
volving the cerebral cortex and subcortical white 
matter occurs as well. 

Microglial activation in AD is associated with 
upregulation of a large number of cytokines, chem-
okines, members of the complement system, and 
other mediators of the immune system (736, 830-
837). Importantly, the inflammatory response is not 
homogeneous but is largely region and stage de-
pendent (838). Inflammatory responses also occur 
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in transgenic mouse models of AD with specific re-
gion and stage profiles. Yet, the regulation of differ-
ent components of brain inflammation and the im-
mune system differ in transgenic mice when com-
pared with sAD (838, 839). This is an important 
point, as inflammatory responses vary in different 
regions with disease progression; protective and 
deleterious microglia-associated effects may occur 
simultaneously in any individual at any stage of the 
disease. 

Another relevant point is the role of lipids in ac-
tivated microglia; increased expression of ApoE, trig-
gering receptor expressed on myeloid cells 2 
(TREM2), and lipoprotein lipase (LP2), is found in ac-
tivated microglia (840). 

A link between β-amyloid and microglia is well 
documented (829, 841, 842). A cell surface receptor 
complex for fibrillary-amyloid mediates microglial 
activation (843). Microglia, in turn, mediates the 
clearance of soluble Aβ through fluid phase 
macropinocytosis (844). Microglia-mediated synap-
sis loss in AD is enhanced by fibrillar Aβ and oligo-
meric Aβ aggregation onto neuronal post-synaptic 
terminals, complement deposition, C3 receptor 
(CD11b/CD18) activation, microglial activation, and 
synapsis phagocytosis (821, 845-849). 

Microglia activation also correlates with tau pa-
thology and NFT staging (829, 850-852). Positron 
emission tomography (PET)-based studies have also 
shown a correlation between tau pathology pro-
gression and microglial activation across Braak 
stages (853, 854). Abnormal tau at the synapsis also 
favors synapsis pruning and elimination by micoglial 
phagocytosis (855). 

The notion that two types of microglial cells, 
unrelated to the proposed M1 and M2 subtypes, 
may play different roles in sAD is supported by re-
cent observations. Using single nuclei RNA sequenc-
ing (snRNAseq) of isolated microglial nuclei in sAD 
brains, the abundance of phagocytic/activated 
named AD1-microglia correlates with tissue β-amy-
loid load and localizes with β-amyloid plaques; AD2-
microglia are more abundant in association with tau 
pathology (856). 

Microglial and altered expression of inflamma-
tory markers is observed in children with Down syn-

drome, and it is modified in parallel with the appear-
ance of tau and β-amyloid pathology and through 
disease progression. Microglial responses in Down 
syndrome with AD pathology differ from those of 
sAD (857-859). The profile of brain inflammatory re-
sponses also differs in human cases with AD-resilient 
pathology; levels of trophic factors are increased, 
whereas expression levels of chemokines are de-
creased (860). 

The inflammasome is a multi-protein complex 
containing a member of the NOD-like family, such as 
pyrin-domain containing 3 (NLRP3R) that interacts 
with the inflammasome-adaptor protein ASC. The 
immune response elicited by β-amyloid functions 
through complex crosstalk between the toll-like re-
ceptor 4 (TLR4), complement, and inflammasome 
signaling pathways (861). The activation of the in-
flammasome in microglia triggers a cascade that in-
volves caspase 1, and maturation of several cyto-
kines including IL-1β and IL-18. The inflammasome 
in microglia participates in the nucleation of β-amy-
loid plaques and enhances tau pathology (862, 863). 
Aβ aggregates, and soluble Aβ oligomers and proto-
fibrils, activate the NLRP3 inflammasome (864-866). 
Conversely, activation of NLRP3-ASC inflammasome 
aggravates amyloid pathology (867). Aggregated tau 
also activates NLRP3/ASC and exacerbates tau pa-
thology (868). Loss of NLRP3 inflammasome func-
tion reduces tau hyperphosphorylation and aggre-
gation by regulating tau kinases and phosphatases. 
Conversely, tau activates the NLRP3 inflammasome. 
Moreover, the intracerebral injection of fibrillar β-
containing brain homogenates has been shown to 
induce tau pathology in an NLRP3-dependent man-
ner (869). 

Microglial and inflammatory responses are de-
pendent on genetic factors in sAD (280, 870-872). 
ApoE status is a modifier of the inflammatory re-
sponse (873, 874). CD33, TREM2, and other genes 
linked with inflammation are expressed in microglia 
(871, 875, 876). Carriers of AD-associated risk vari-
ants in TREM2 show a reduction in plaque-associ-
ated microglia, and an increase in dystrophic neu-
rites and overall pathological tau compared with 
age- and disease stage-matched sAD patients with-
out TREM2 risk variants (877). Another study shows 
that TREM+ control cases have no pathological hall-
marks of sAD, whereas TREM2+ sAD cases show 
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amoeboid microglia and upregulation of inflamma-
tory markers when compared with TREM2+ controls 
and TREM2- sAD cases. These findings suggest that 
TREM2 influences, but does not trigger, the micro-
glial responses in sAD (878). 

12c. Oligodendrocytes 

Myelin generation and maintenance, and ax-
onal nurture in the CNS, are carried by oligodendro-
cytes. Oligodendrocytes may contain abnormal pro-
tein deposits in various neurodegenerative diseases 
with abnormal protein aggregates. Yet alterations in 
oligodendrocytes may occur without accompanying 
abnormal deposits. Oligodendrogliopathy is used to 
stress the role of altered oligodendrocytes in the 
pathogenesis of certain neurological diseases with 
or without abnormal oligodendroglial deposits 
(879). 

Oligodendrocytes suffer a functional decline in 
aging and AD as revealed by combined morphologi-
cal, biochemical, and neuroradiological methods. 
Neuroimaging and neuropathological studies have 
shown reduced white matter (WM) volume, WM le-
sions, and altered WM integrity and cortical discon-
nection in aging human brain (880-884). WM 
changes are associated with disruption of myelin 
and axons (885, 886). Alterations in the number of 
oligodendrocytes and oligodendroglial precursor 
cells (OPCs/NG2-positive cells) have been reported 
in aged primates and rodents (887). Neuroimaging 
studies show reduced WM size, WM hyper-lucen-
cies, and myelin and axon damages in patients with 
MCI and dementia of Alzheimer’s type (883, 888-
896). WM atrophy, decreased myelin density, and 
demyelination are also observed in post-mortem 
neuropathological studies (881, 896, 897). Break-
down of WM integrity is considered a contributor to 
the loss of neuronal tract connectivity in aging and 
sAD (898, 899). Recent neuropathological studies 
have shown preservation of MBP, PLP1, CNP, MAG, 
MAL, MOG, and MOBP mRNA expression levels in 
the WM of the frontal cortex at NFT stages I-II/0-A 
when compared with MA individuals without NFT 
pathology, but a significant decrease at stages III-
IV/0-C. This is accompanied by reduced expression 
of NG2 and PDGFRA (platelet-derived growth factor 
receptor A) mRNA, reduced numbers of NG2-, 

Olig2-, and HDAC2 (histone deacetylase 2)-immuno-
reactive cells, and reduced glucose transporter im-
munoreactivity at stages III-IV/0-C. Curiously, partial 
recovery of some of these markers occurs at stages 
V-VI/B-C. These changes show that myelin loss is ac-
companied by reduced transcription of myelin-re-
lated proteins in the WM of the frontal cortex at 
middle-stages of AD (342). 

Early myelin loss, decreased numbers of oli-
godendrocytes, and region-specific alterations, fol-
lowed by partial reparative responses, also occur in 
transgenic mouse models of AD (900-903). 

13. The neurovascular system in AD 

The first highlighting of the role of vascular pa-
thology in AD was in 1989 (904). The “vascular hy-
pothesis” of sAD has been supported more recently 
(905-908). Interestingly, denervation probably due 
to the loss of inputs from the locus coeruleus and 
basal forebrain was initially considered a key factor 
(909); altered innervation of the cerebral blood ves-
sels linked to cholinergic deficiency is still postulated 
as contributing to cerebral blood flow (CBF) reduc-
tion (910, 911). 

There are hundreds of papers dealing with β-
amyloid angiopathy and its effects on neurovascular 
function, as well as the role of lipid transporters and 
vascular receptors in the clearing of β-amyloid in the 
cerebral blood vessels (912-923). Yet, there is also 
overwhelming evidence of altered neurovascular 
functioning in sAD beyond that expected in associa-
tion with β-amyloid angiopathy. Neurovascular dys-
function in individuals with MCI and advanced AD is 
manifested by reduced CBF (cerebral hypoperfu-
sion), reduced cerebral glucose transport, impaired 
BBB function, altered lymphatic function, and al-
tered structure of the capillaries (80, 910, 924-935). 

In addition to atherosclerosis and small blood 
vessel disease that are common in the elderly, pri-
mary involvement of arterioles and capillaries is 
common in brain aging and sAD. Primary blood ves-
sel damage in sAD is characterized by atrophy and 
irregularities of capillaries and arterioles, edema and 
increased numbers of pynocytotic vesicles in endo-
thelial cells and pericytes, atrophy of smooth muscle 
fibers, thickening and focal disruption of the basal 
membrane, increase in collagen IV, heparan sulfate, 

https://doi.org/10.17879/freeneuropathology-2022-3806


Free Neuropathology 3:17 (2022) Isidro Ferrer 
doi: https://doi.org/10.17879/freeneuropathology-2022-3806 page 28 of 99 
  
 

 

proteoglycans, and laminin in the basal membrane, 
increased aquaporin expression in perivascular as-
trocytes, and gliovascular dysfunction, among other 
defects (910, 936-941). Degeneration of endothelial 
cells is further supported by reduced staining of en-
dothelial cell markers (942) accompanied by aber-
rant angiogenesis (943). Pericytes are decreased in 
number and show abnormal mitochondria, pinocy-
totic vesicles, and disorganization and accumulation 
of osmiophilic material in aging with cumulative 
damage with sAD progression (944-947). Aβ oligo-
mers constrict human capillaries in AD by signaling 
to pericytes (948). Pericyte degeneration and im-
paired BBB function reduce Aβ clearance and in-
crease β-amyloid accumulation in the brain. Im-
portantly, pericyte alteration occurs at early stages 
of sAD and probably it has a determining role in the 
altered capillary permeability (949-950). It is difficult 
to ascertain the weight of each one of the vascular 
pathologies in the eventual neurovascular failure in 
a particular individual. Atherosclerosis, small blood 
vessel disease, β-amyloid angiopathy, brain hy-
poperfusion, altered BBB, and primary AD-linked 
non-amyloidotic angiopathy have cumulative ef-
fects (951, 952). 

The timing and development of neurovascular 
failure in sAD is not a simple process. The “two-hit 
vascular hypothesis” suggests that early vascular 
damage leads to increased accumulation of Aβ de-
posits in the brain, which in turn provokes additional 
vascular damage. ApoE is one of the factors that 
modulate cerebrovascular integrity (953). 

Impaired glucose uptake is an early event in 
pre-symptomatic fAD (954), and BBB breakdown is 
an early biomarker of human cognitive dysfunction 
(955), suggesting that the neurovascular system is 
dysfunctional at early stages of AD. Reduced expres-
sion of glucose transporter 1 (GLUT1) is manifested 
at early stages of sAD, and it impairs blood glucose 
uptake and vasculo-neuronal function (956, 957). Al-
tered glucose transport accounts, in part, for the 
more complex brain glucose metabolism dysregula-
tion in AD (958). More precise information has been 
obtained from the study of mouse models of cere-
bral β-amyloidosis mimicking β-amyloid deposits in 
AD (959). In the majority of these mice, cerebral 
blood vessels are altered and there is often impaired 
BBB at early stages of Aβ plaque deposition, usually 

preceding or in the absence of β-amyloid angiopathy 
(959). These observations are in line with the role of 
Aβ in the pathogenesis of neurovascular damage in 
AD (928). Unfortunately, little is known about the 
occurrence of different soluble, insoluble, and oligo-
meric amyloid species in these models. 

The possible deleterious effects of abnormal 
tau on the integrity of the cerebral blood vessels 
have also been assessed (960). Tau expression is ac-
companied by BBB breakdown in tetracycline-regu-
lable tau-transgenic mice; BBB function is recovered 
once tau levels are normalized (961). Non-structural 
but functional BBB dysfunction mediated by altered 
modulation of vasoactive factors including vasocon-
strictor endothelin-1 has been suggested (962). 

Altered CBF, impaired BBB, and structural 
anomalies in the blood vessels also occur in other 
neurodegenerative diseases such as Parkinson’s and 
Huntington’s diseases, amyotrophic lateral sclerosis, 
and multiple sclerosis (933, 934, 963), in which Aβ 
and AD-tau have no chance to play a causative role. 

Neurons and astrocytes also play a role via glu-
tamate in the regulation of CBF. Arteriole con-
striction depends on the metabolism of arachidonic 
acid (AA). Upon mGluR activation, increased AA in 
the plasma membrane is converted into 20-hydrox-
yeicosatetraenoic acid and induces vasocon-
striction, or it is converted into prostaglandin 2 and 
produces vasodilatation (964). 

Astrocytes have cardinal functions in the 
maintenance of BBB (see section 12a). 

14. Purine and pyrimidine metabolism 
in sAD 

Purines are heterocyclic double-ring aromatic 
organic molecules. Primary purines adenine and 
guanosine, together with one-ring primary pyrimi-
dine nucleobases cytosine, thymidine, and uracil, 
are the core of DNA, RNA, nucleosides, and nucleo-
tides. Adenosine and guanosine are purine ribonu-
cleosides resulting from the binding of adenine or 
guanine to ribose, respectively. When adenine and 
guanine are attached to a deoxyribose ring, the re-
sulting compounds are deoxyadenosine and deoxy-
guanosine, respectively. Nucleotides result from the 
incorporation of phosphate groups in nucleosides: 
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adenosine monophosphate (AMP), adenosine di-
phosphate, adenosine triphosphate (ATP), guano-
sine monophosphate (GMP), guanosine diphos-
phate, guanosine triphosphate, and cyclic forms 
cAMP and cGMP are primary purine-derived nucle-
otides. Modified purine nucleobases hypoxantine 
and xanthine result from the replacement of the 
amino-group by a carbonyl-group from adenine and 
guanine, respectively, whereas methyl-guanine re-
sults from the incorporation of a methyl group to 
guanine. Corresponding modified purine nucleo-
sides are inosine, xanthosine, and methyl-guano-
sine, respectively. Nucleotides participate in a wide 
variety of crucial metabolic pathways including en-
ergy metabolism and cell signaling. In addition, pu-
rine bases are incorporated to other molecules to 
form cofactors of several enzymatic reactions such 
as coenzyme A, flavin adenine dinucleotide (FAD), 
nicotinamide adenine dinucleotide (NADþ), nicotin-
amide adenine dinucleotide phosphate (NADPþ), 
and the corresponding reduced forms FADH2, 
NADH, and NADPH. S-Adenosyl methionine is made 
from ATP and methionine by methionine adenosyl-
transferase and is involved in the transfer of methyl 
groups to distinct substrates, including nucleic acids, 
proteins, lipids, and metabolites (965, 966). In addi-
tion, adenosine may act as neuromodulator on spe-
cific adenosine receptors (967) (see section 7f). 
Adenosine receptors also modulate the BBB (968). 

Significantly decreased levels of adenosine, 
guanosine, hypoxanthine, and xanthine are found in 
the frontal cortex at stages I-II of NFT pathology, but 
the parietal cortex and temporal cortex show an op-
posing pattern at advanced stages of sAD. The activ-
ity of 5’-nucleotidase, which hydrolizes adenosine 
AMP to generate adenosine, is reduced in the 
frontal cortex mainly at NFT stages I-II, and only at 
NFT stages V-VI in the temporal cortex. Adenosine 
deaminase activity, which synthetizes inosine from 
adenosine, is decreased in the frontal cortex in sAD 
but is increased at NFT stages I-II in the temporal 
cortex. Finally, purine nucleoside phosphorylase ac-
tivity, which metabolizes guanosine to guanine, is in-
creased only in the temporal cortex at NFT stages I-
II. Purine metabolism alterations are region- and 
stage-dependent and occur independently of NFTs 
and β-amyloid plaques (969). 

In another study, 23 purine metabolism genes 
were analyzed with RT-PCR in the entorhinal cortex, 
frontal cortex area 8, and precuneus in MA individu-
als without NFT pathology and in cases at NFT stages 
I-II, III-IV, and V-VI (966). The mRNA expression lev-
els of several enzymes were dysregulated at stages 
III-IV and V-VI in a region-dependent manner when 
compared with MA individuals. In addition, liquid 
chromatography mass spectrometry-based metabo-
lomics in the entorhinal cortex identified decreased 
levels of xanthosine, guanine, and deoxyguanosine 
at stages I-II, followed by dGMP, inosine diphos-
phate, and glycine at NFT stages III-IV in sAD (966). 

Some years ago, studies pointed to S-adenosyl-
methionine as a complementary candidate for ther-
apeutic intervention in sAD (208, 970). More re-
cently, several studies have scrutinized the modula-
tion of purinergic signaling to ameliorate sAD (971-
976). Considering the large number of different en-
zymes altered, this represents a tremendous en-
deavor. 

15. Epigenetics in brain aging and sAD 

Epigenetic regulation plays a crucial role in the 
final transcription of genes (977, 978). Three central 
mechanisms are briefly discussed: modifications of 
histones, DNA methylation and hydroxymethyla-
tion, and non-coding RNAs. 

 

15a. Histone modifications, DNA methylation, 
and hydroxymethylation 

Nucleosomes consist of DNA wound around a 
protein octamer composed of two molecules of the 
histones H2A, H2B, H3, and H4. The N-terminal of 
histones (histone tail) extends out from the surface 
of the nucleosome. Acetylations by histone acetyl-
transferases (HATs) and histone deacetylases 
(HDACs), and methylation mediated by histone me-
thyltransferases (HMTs) and histone demethylases 
(HDMs), respectively, occur at the histone tails (979, 
980). Histone acetylation decreases the interactions 
of histones with DNA, relaxes heterochromatin to 
euchromatin, and enables gene transcription (981-
984). Methylation of histones can either increase or 
decrease gene transcription, depending on which 
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amino acids in the histones are methylated, and on 
the number of methyl groups involved. Methyla-
tions, which permit DNA uncoiling facilitate the ac-
cess of transcription factors and RNA polymerase. 
The trimethylation of histone 3 at lysine 4 (H3K4m3) 
activates transcription, whereas dimethylation of 
histone H3 at lysine 9 (H3K9me2) is inhibitory. Like-
wise, methylation of lysine 4 of histone 3 (H3K4me1) 
facilitates gene transcription (985-988). 

DNA methylation and DNA hydroxymethyla-
tion are biological processes by which methyl or hy-
droxymethyl groups are added to the DNA. Methyl-
ation and hydroxymethylation can change the activ-
ity of a DNA segment without changing the se-
quence. The methylation of a 5′-cytosine in cytosine-
guanine-rich regions (CpG islands) of DNA promot-
ers results mainly in the inability of transcription fac-
tors to bind DNA and compact heterochromatin; as 
a result, gene transcription is silenced. Four types of 
DNA methyltransferases, DNMT1, DNMT2, 
DNMT3a, and DNMT3b, carry out the process of 
DNA methylation. S-adenosyl-L-methionine (SAM) is 
the donor of methyl groups. DNA hydroxymethyla-
tion can occur as a result of oxidative stress or the 
action of ten-eleven-translocation-1 (TET1) proteins 
(989-994). SAM which is generated by adding aden-
osine to methionine, a reaction catalyzed by S-ade-
nosyl-methionine transferase, transfers the methyl 
group to DNA methylation by DNA methyltransfer-
ase. 

Brain aging and sAD is accompanied by epige-
netic DNA modifications (995-1002). DNA modifica-
tions involve genes linked to β-amyloid production 
(1003-1006), ApoE-ε4 (996), tau phosphorylation 
(1007-1009), ribosomes (1010), BDNF (1011), and 
inflammation (1012, 1013). A large number of unre-
lated genes has also been assessed, showing either 
changes or no modifications in the methylation of 
DNA promoters (1014-1023). The expression of 
adenosine receptor A2A is modulated by DNA meth-
ylation in the gene promoter region (1024-1026). 
Therefore, epigenetic changes in DNA in aging and 
sAD are not widespread but selective for particular 
genes. 

In monozygotic twins discordant for AD, signif-
icantly reduced levels of DNA methylation were ob-
served in the neuronal nuclei of temporal neocortex 
in the AD twin (991). 

Unfortunately, most studies are carried out on 
samples at advanced stages of sAD which precludes 
learning whether epigenetic changes in DNA are pri-
mary or secondary events (1027). 

In addition to modifications in genomic DNA, 
increased mitochondrial 5-methylcytosine in most 
CpG and non-CpG sites in the D-loop region of mito-
chondrial DNA (mtDNA) has been identified in the 
entorhinal cortex at NFT stages I-II and III-IV com-
pared with control samples (1028). These are rele-
vant data as they indicate early mtDNA methylation 
linked to the pathogenesis of AD-related neuropath-
ologic change (1028). 

15b. Non-coding RNAs 

Non-coding RNAs do not encode proteins, but 
most modulate protein translation targeting 
mRNAs. Transfer RNAs (tRNAs) and ribosomal RNAs 
(rRNAs); small non-coding (snRNAs) such as mi-
croRNAs (miRNAs), small interfering RNAs (siRNAs), 
PIWI-interacting RNAs (piRNAs), small nuclear RNAs 
(snRNAs), small nucleolar RNAs (snoRNAs), extracel-
lular RNAs (exRNAs), small Cajal-body specific RNAs 
(scaRNAs); and long non-coding RNAs (lncRNAs) are 
the principal types. miRNAs bind to complementary 
un-translated regions (3’-UTRs) of mRNAs to regu-
late target genes, resulting in translational repres-
sion or degradation (1029-1031). In animals, miR-
NAs are synthesized from primary miRNAs by the ac-
tion of two RNase III-type proteins: Drosha, in the 
nucleus, and Dicer in the cytoplasm. Argonaute 
(Ago) subfamily proteins bind mature miRNAs to tar-
get mRNAs (1032, 1033). 

Thousands of human genes are miRNA targets 
(1034, 1035). Ago2:RNA interactions using HITS-CLIP 
have been used to generate a transcriptome-wide 
map of miRNA binding sites in the human brain. 
About 7,000 stringent Ago2 binding sites were highly 
enriched for conserved sequences corresponding to 
abundant brain miRNAs. This interactome points to 
functional miRNA: target pairs across about 3,000 
genes (1036). 

Dysregulation of miRNAs is involved in the 
pathogenesis of sAD (1037-1040). Several miRNAs 
target genes, many of them abnormally regulated in 
AD, are associated with β-amyloid (1041-1060), tau 
phosphorylation, and cytoskeleton (1061-1074). It is 
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difficult to ascertain which miRNA alterations are 
primarily altered or secondary to β-amyloid and tau 
pathology in sAD (1075). 

Several miRNAs can bind to specific mRNAs, 
modulating gene transcription differentially de-
pending on the triggering factor (1038). miRNA 163, 
miRNA30a 5p, and miRNA206 bind to BDNF mRNA 
and modulate altered BDNF expression in sAD 
(1040, 1055, 1076). 

Furthermore, one miRNA can bind to different 
mRNAs resulting in various functions. For example, 
reduced miRNA 132 is associated with downregula-
tion of ChAT immunoreactivity in the nucleus basalis 
of Meynert (1061) and to AChE upregulation (1077, 
1078). In addition, miRNA 132 targets CREB and pro-
motes neuritogenesis and synaptic activity (1079). 

Finally, miRNA dysregulation is stage- and re-
gion-dependent. For example, in the locus co-
eruleus, miRNA-27a-3p, miRNA-124-3p, and miRNA-
143-3p show a trend to increase at NFT stages I-II 
and are significantly upregulated at NFT stages III-IV 
when compared with MA individuals without NFT 
pathology. In the entorhinal cortex of the same 
cases, only miRNA-143-3p is upregulated at stages 
III-IV. The expression levels of miRNA-27a-3p, 
miRNA-124-3p, and miRNA-143-3p are not modified 
in CA1 at any stage, whereas miRNA-124-3p is signif-
icantly downregulated in the dentate gyrus at NFT 
stages I-II (1080). The interpretation of these results 
is puzzling: downregulation of miRNA124 results in 
β-amyloid accumulation (1007); miRNA143-3p inhi-
bition promotes neuronal survival in sAD (1081); and 
miRNA 27a-3p regulates the expression of intercel-
lular junction proteins at the brain endothelium, 
while its downregulation increases BBB permeability 
(1082, 1083). 

16. Microorganisms and sAD 

The possibility that microorganisms participate 
in the pathogenesis of AD was suggested in a semi-
nal publication in 1907 (1084). The role of bacteria, 
viruses, and fungi has been proposed to the present 
(1085-1088). 

16a. Microorganisms in the brain and oral cavity 

More than thirty years ago, Borrelia burgdor-
feri was reported in the brains of sAD cases (1089), 
although other studies did not validate this finding 
(1090). However, spirochetes, including Borrelia and 
Treponema, were postulated as contributing factors 
in the pathogenesis of the disease (1091-1094). 
rRNA sequencing has shown the presence of bacte-
ria in Alzheimer’s post-mortem brain (1095). β-amy-
loid exhibits potent antimicrobial activity against 
Candida albicans and some bacteria, pointing to the 
possibility that secretion of Aβ is triggered by micro-
bial infection (1096). 

Numerous periodontal bacteria have also been 
implicated in sAD in the context of chronic periodon-
titis (1097-1099). The association between perio-
dontal inflammatory disease and sAD has raised 
much concern mainly because of the possibility of 
rapid therapeutic intervention (1100-1102). In-
creased levels of anti-Helicobacter pylori-specific an-
tibodies were also reported in the CSF and serum of 
sAD patients (1099). 

Histological and immunohistochemical tech-
niques have detected fungi and bacteria in the brain 
of sAD (1103-1105). PCR analysis revealed various 
fungal species in the brain and CSF in sAD (1106-
1108). A combination of bacteria and fungi was ob-
served in several cases, and several fungi were iden-
tified in different brain regions in the same individ-
ual, suggesting multi-fungal infection (1107). The 
corpora amylacea are particularly enriched in fungal 
and bacterial peptides, acting as scavengers of mi-
crobial debris (1109). The presence of fungi is not re-
stricted to sAD as they have also been identified in 
the CNS and CSF in amyotrophic lateral sclerosis 
(1110, 1111). 

Herpes viruses were proposed as participants 
in the pathogenesis of sAD about four decades ago 
(1112, 1113). Since then, several studies have impli-
cated herpes viruses in sAD (1114- 1116). Herpes 
simplex virus 1 (HSV-1) has received much attention 
due to the presence of high expression levels in the 
brain and HSV-1 IgG antibodies in the CSF (1117-
1121). Interestingly, HSV-1 DNA is localized in senile 
plaques (1122). The link between herpes zoster and 
sAD is still controversial (1123). Human cytomegalo-
virus (CMV) seropositivity was associated with a risk 
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of sAD (1124). Human herpes virus 6 (HHV-6) has fo-
cused on several studies (1125-1128). Viral associa-
tions have also been reported, including HSV-1 and 
CMV, HSV-1 and HHV-6, HHV-6 and EBV (Epstein-
Barr virus), and HHV-6 and HHV-7 (1115, 1126, 1129, 
1130). A relationship is established between β-amy-
loid and herpes virus, suggesting a mechanism 
against brain infection (1131). Since differences in 
sAD and controls are not always significant, it is still 
difficult to conclude that a direct causal relationship 
exists between herpes virus and sAD. 

The hypothesis of multi-pathogen infections in 
the pathogenesis of sAD has recently been discussed 
(1085). Moreover, exposure to systemic infections 
in 5xFAD transgenic mice, carrying mutated genes 
associated with fAD, causes neurodegeneration in 
brain regions displaying β-amyloid pathology and 
high local microglia density (1132). 

Together, the available information shows that 
the human brain, particularly the aged brain, accom-
modates viruses, bacteria, and fungi, together with 
the debris of these microorganisms over time. 
Whether brain and oral microorganisms might con-
tribute to “neuroinflammation” and facilitate the 
course of sAD remains obscure. Nonetheless, a re-
cent review postulates a link between the β-amyloid 
cascade hypothesis and chronic infection in sAD: β-
amyloid deposition is produced in response to brain 
microbial inflammation (1133). 

16b. Gut microbiota 

In recent years, several studies have implicated 
the “gut-brain-microbiota axis” in the pathogenesis 
of sAD; altered gut microbiota may promote neu-
roinflammation, Aβ aggregation, and oxidative 
stress (1134-1140). The putative mechanisms pro-
ducing effects include changes in the systemic me-
tabolism that may influence brain functions, trans-
fer of microbiota metabolites to the brain through 
the BBB, and direct impact of microbiota reaching 
the brain parenchyma. Serotonin may play a role in 
the gut-microbiota axis (1141). The opioid system 
has been postulated to be contributory as well 
(1142). 

Conversely, the infusion of tracers into the lat-
eral ventricle of rats has permitted their visualiza-
tion in the nasal cavity, nasal pharynx, soft palate, 

and esophagus, thus suggesting that at least rats can 
swallow waste from the brain (1143). 

17. Seeding and spreading of β-amy-
loid and tau 

17a. Seeding β-amyloid 

The intracerebral injection of diluted extracts 
from AD brains or from old AD-like transgenic mice 
accelerates β-amyloid deposition in transgenic mice 
bearing APP and/or PSEN1 mutations (1144-1148). 
Soluble forms of Aβ are particularly effective at in-
ducing plaque formation (1149). Plaques not only 
develop locally but extend as well to the cerebral 
cortex distant from the injection site. These findings 
support the possibility that once the first β-amyloid 
deposits appear they may accelerate the accumula-
tion of additional seeding in other parts of the brain, 
thereby contributing to the exponential deposition 
of β-amyloid (1150). Neuronal activity regulates the 
regional vulnerability to β-amyloid deposition 
(1151). 

β-amyloid seeding and spreading may also oc-
cur following peripheral inoculation of β-amyloid 
seeds (1152). However, the intracellular mecha-
nisms linked to the formation and fibrillisation of 
host β-amyloid and recruited β-amyloid spreading 
need clarification. 

Intraventricular injection of Aβ oligomers in 
cynomolgus macaques leads to diffusion into the 
brain, causing tau hyperphosphorylation, NFT for-
mation, synaptic loss, and astrocyte and microglial 
activation in regions of the macaque brain where Aβ 
oligomers are abundant (1153). 

β-amyloid deposits were also observed in the 
brains of patients with iatrogenic Creutzfeldt-Jabob 
disease (iCJD) secondary to cadaveric dura mater 
grafts, treatment with cadaveric human growth hor-
mone obtained from hypophysis of CJD-affected do-
nors, or contaminated neurosurgery early in life 
(1154). 

17b. Tau seeding 

Physiological release of neuronal tau is stimu-
lated by neuronal activity and extracellular tau in 
vivo (1155-1158). Intercellular tau transmission may 
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have physiological functions that permit the transfer 
of tau status information from one neuron to an-
other, enabling them to modify the status of the 
host tau according to this information. This mecha-
nism may lie behind the activation of post-transla-
tional modifications of tau in the host neuron follow-
ing the transfer of pathological tau in models of tau 
seeding and spreading. Tau is secreted by exosomes, 
and the extracellular appearance of tau does not de-
pend on neuronal death, but rather physiological 
tau transfer from one neuron to another (1159). Tau 
phosphorylation facilitates tau transmission and 
propagation (1160). 

Several studies have suggested that the pro-
gression of sAD and other neurodegenerative dis-
eases with abnormal protein aggregates occurs in a 
similar way to prions in prion diseases (1161-1164). 

In favor of this hypothesis, many experimental 
designs in mouse and rat models have provided evi-
dence that cells have the capacity to transfer tau 
from one cell to another. The over-expression of hu-
man tau P301L restricted to the entorhinal cortex 
shows the progression of tau without detectable 
transgene expression anterogradely from the ento-
rhinal cortex to the dentate gyrus and CA1 region of 
the hippocampus and subiculum, and retrogradely 
to scattered neurons in the perirhinal and secondary 
somatosensory cortex (1165, 1166). Using a lentivi-
ral-mediated rat model, tau protein is axonally 
transferred from hippocampus neurons to neurons 
of distant brain regions such as the olfactory and 
limbic systems (1167) 

Several mechanisms of tau release and uptake 
have been proposed, mainly in the context of synap-
tic transmission. However other processes may oc-
cur as well. Tau release may occur via (SNAP: Soluble 
NSF Attachment Protein Receptor) SNARE-mediated 
exocytosis, release by secretory vesicles from lyso-
somes, microvesicle shedding, and direct plasma 
membrane crossing. Tau uptake may occur via en-
docytosis, adsorptive endocytosis, macropinocyto-
sis, transmembrane diffusion, and nanotunneling. 
Binding of phosphorylated tau to AMPA and NMDA 
receptors is another putative mechanism (1168-
1179). 

Tau seeding and spreading is produced follow-
ing the intracerebral inoculation of synthetic tau fi-
brils (1180, 1181), and the inoculation of fibrillar-en-
riched fractions from human and mouse brain ho-
mogenates of tauopathies, including sAD, contain-
ing hyper-phosphorylated tau (1182-1186). Tau 
seeding and spreading in neurons also occur follow-
ing intracerebral inoculation of similar tau aggre-
gates in wild type mice (WT) and in transgenic WT 
mice (1183, 1187-1194). Propagation in these mod-
els occurs through connectivity rather than proxim-
ity (1182). In addition to neurons, deposits may also 
occur in astrocytes, and the morphology of glial in-
clusions appears to mimic the glial aggregates of the 
corresponding human tauopathies (1183, 1188, 
1189, 1195). Differences in the type of inoculum that 
produce different protein aggregate deposits in the 
host and variable involvement of astrocytes have led 
to the proposal that tau strains are behind the dif-
ferent phenotypes and progression of human 
tauopathies (1161, 1196-1198). 

More refined situations probably occur in hu-
man neurodegenerative diseases. For example, sAD 
brain contains different tau strains with particular 
properties (1199); different tau strains may contrib-
ute to the clinical heterogeneity of AD (1200). 

Moreover, tau seeding and spreading also oc-
cur in oligodendrocytes in WT mice following inocu-
lation of sarkosyl-insoluble fractions in the hippo-
campus and corpus callosum of human brain ho-
mogenates from sAD and cases with primary age-re-
lated tauopathy (PART) (1191-1193). Yet, tau depos-
its in oligodendrocytes never occur in humans af-
fected by sAD and PART without co-morbidities (see 
section 21 for PART details). These discrepancies be-
tween human diseases and mouse models may be 
explained by the differences between human and 
murine tau (1201, 1202). Whether different types of 
tau occur in neurons and glial cells, or even in differ-
ent neuron populations granting selective vulnera-
bility, deserves further research. 

Tau seeding and spreading have also been gen-
erated in rhesus monkeys after the inoculation of 
adeno-associated virus expressing a double-4Rtau 
mutation in the left hemisphere (1203). Tau spread-
ing was accompanied by robust TREM2+ microglial 
proliferation (1203), an unexpected observation not 
seen in other models. 
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Another curious observation that deserves val-
idation is the triggering of tau deposits in tau trans-
genic mice following peripheral administration of 
tau aggregates (1204). 

Neuropathological studies in humans reveal 
the beginning of tau seeding in the telencephalon in 
sAD in the transentorhinal and entorhinal cortex, 
and from these brain regions tau spreads to others 
(1205, 1206). Neuroimaging analysis further support 
tau spreading along functional connectivity net-
works (1207). However, combined post-mortem re-
gional seed amplification and PET studies in living in-
dividuals suggest that from NFT Braak stage III on-
ward, local replication rather than spreading be-
tween regions is the main mechanism to explain 
progressive tau burden in sAD (1208). 

Together, tau seeding and spreading differ 
from seeding and spreading of prions. Grossly, tau 
seeding and spreading circumvent certain regions 
that should be involved according to the hypotheses 
of either neuronal connectivity or neuronal proxim-
ity. Most importantly, once up-taken by the recep-
tive neuron, abnormal tau triggers a series of molec-
ular processes that include activation of several tau 
kinases, post-translational modifications of tau—for 
instance, hyperphosphorylation, nitration, and al-
tered conformation; recruitment of additional sub-
strates in tau deposits; and modifications in the ratio 
of 3Rtau/4Rtau in the host neuron (1209), which im-
plies the capacity of foreign abnormal tau to modu-
late exon 10 splicing in MAPT in the host (1190, 
1191, 1202, 1209). 

17c. Multiple seeding foci of β-amyloid and tau 
pathology; vulnerable and resistant populations 
to tau seeding in brain aging and sAD 

Another important point is the characteristics 
of tau spreading in the human brain that seem to 
skip over obligate regions on the basis of cell con-
nectivity. The dentate gyrus does not show tau pa-
thology in AD and other 3R+4R tauopathies without 
co-morbidities, but the dentate gyrus is affected in 
3R-tauopathies and 4R-tauopathies. Alternative 
pathways from the entorhinal cortex to the hippo-
campus proper are possible but there is no clear ex-
planation for this particular pattern in AD. It may be 
suggested that certain populations are able to trans-
fer abnormal tau from one neuron to the next in the 

connecting pathway without recruiting host tau and 
forming local aggregates within themselves. Re-
gional vulnerability plays a cardinal role in tau 
spreading in AD-related animal models (1210). 

In summary, tau seeding and spreading is not 
the only cause of tau progression in sAD and other 
tauopathies. Cellular vulnerability, including neu-
ronal, astroglial, and oligodendroglial, together with 
regional vulnerability, already highlighted several 
years ago, are also key points to understanding tau 
progression in sAD and other tauopathies. 

Finally, several studies implicate microglia in 
the process of tau seeding with apparent enhancing 
and mitigating effects (868, 1211-1216). Another 
study concludes that microglia have a complex role; 
they are capable of taking up and breaking down 
seed-competent tau, but do so inefficiently and 
could hardly play a role in the spread of tau pathol-
ogy (1217). 

The capacity for seeding of β-amyloid and tau 
does not imply a unique origin of β-amyloid and tau 
pathology in sAD. Neuropathological studies at early 
stages of NFT and SP pathology have shown that in-
dependent tau deposits are localized in separate re-
gions such as the raphe nuclei and locus ceruleus, 
transentorhinal and entorhinal cortex, and olfactory 
bulb, in addition to isolated tau-positive neurons in 
other parts of the brain. Similarly, β-amyloid depos-
its in the brain parenchyma are not connected; like-
wise there is not an intimate connection of blood 
vessels affected by β-amyloid angiopathy. 

Aβ and tau pathology, like other molecular al-
terations in brain aging and sAD, have multiple and 
separate foci; lesions in aging and sAD do not start 
in a single region only to progress from that site to 
the whole brain. 

18. Neuronal death 

Neuronal depletion in AD is the result of cell 
death and lack of neuronal renewal. Apoptosis was 
postulated as a major mechanism of neuronal death 
in AD and most neurodegenerative diseases based 
on the positivity of cells stained with the method of 
in situ end-labeling of nuclear fragmentation, and 
immunoreactivity to cleaved caspase 3 (1218-1220). 
Caspase 3-mediated and caspase 3-non-mediated 
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apoptosis is also supported by studies in cell lines 
(1221-1224). However, DNA fragmentation occurs 
during the agonic state and post-mortem delay, and 
active caspase-3 participates in tau truncation dur-
ing the genesis of NFTs. Therefore, the weight of 
apoptosis as a cause of neuron demise in AD is prob-
ably unevenly represented. Necroptosis is another 
type of programmed cell death, frequently linked to 
inflammation that depends on the kinase activity of 
receptor interacting protein 3 (RIP3) and RIP1, and 
the subsequent activation of the mixed lineage ki-
nase domain-like protein (MLKL). This pathway is ac-
tivated in AD and other neurodegenerative diseases 
(1225-1227). 

Neuronal degeneration and demise in AD is not 
correlated with tau pathology (1228, 1229), alt-
hough ghost tangles are not rare in advanced stages 
of AD. Intraneuronal accumulation of β-amyloid is 
involved in synaptic dysfunction, cognitive impair-
ment, and the formation of amyloid plaques in AD 
(416, 1230, 1231). In addition, excessive production 
of Aβ peptides and APP activates death signaling 
pathways including apoptosis, necrosis, necroptosis, 
oxytosis (GSH-mediated oxidative cell death), pyrop-
tosis (inflammasome-mediated cell death), and au-
tophagy in vitro (1232). 

In summary, although β-amyloid and tau pa-
thology may induce cell death in sAD, they are not 
the only factors triggering active cell death path-
ways. Other alterations, such as aberrant cell-cycle 
re-entry, energy metabolism failure, oxidative stress 
damage, and altered cell membrane signaling, are 
relevant contributory factors (see section 21). 

19. Neuronal connectivity networks in 
brain aging and sAD 

The notion that clinical manifestations in brain 
aging may correspond solely to early stages of AD-
related pathology restricted to the hippocampus, in-
ner regions of the temporal cortex and selected nu-
clei of the brain stem is simplistic, and probably un-
true. Functional neuroimaging techniques have 
shown selective modifications of the intrinsic con-
nectivity network in aging that exceed the domains 
of these regions. The default mode, salience, dorsal 
attention, fronto-parietal control, and auditory, vis-

ual and motor networks decline by middle adult-
hood, but the motor network shows increased con-
nectivity in middle adulthood, followed by a lessen-
ing (1233-1237). Disruption of neuronal connectivity 
networks appears in aging and is intensified in AD 
(1237-1243). 

However, functional connectivity alterations 
do not always correlate locally to tau and β-amyloid 
deposition; hyper- and hypo-connectivity cycles can 
occur repeatedly at different stages of the disease 
(1244). Moreover, greater segregation of functional 
connections into distinct large-scale networks is as-
sociated with cognitive resilience at early stages of 
sAD (1245, 1246). Additional studies suggest a com-
pensation phase followed by a degenerative phase 
in aging, and in early, preclinical AD (1247). This is 
important information, as plasticity changes may cir-
cumvent, at least temporarily, deficient functioning 
during brain aging and early stages of sAD. Plasticity 
may explain the particular capacities of the adult 
brain to manage information in creating new net-
works, manifested as “experience”. 

Considering the areas affected in functional 
neuroimaging studies, it may be inferred that molec-
ular changes take place in the aging brain in regions 
other than those affected by tau and β-amyloid pa-
thology. 

20. Human brain aging and preclinical 
AD 

The combination of clinical manifestations and 
complementary biomarkers has established consen-
sus criteria to define different clinical phases of AD 
(See Box 1). At preclinical stages, individuals may 
have measurable brain changes that indicate the 
earliest signs of AD (biomarkers), but they have not 
yet developed symptoms such as memory loss 
(https://www.alz.org/media/Documents/alz-
heimers-facts-and-figures.pdf). The preclinical 
phase is further categorized into three stages. Pre-
clinical AD stage 1 includes cognitively normal indi-
viduals with abnormal β-amyloid markers and no 
neurodegeneration; stage 2, individuals with abnor-
mal β-amyloid and neurodegeneration as revealed 
by magnetic resonance imaging (MRI); and stage 3, 
individuals with abnormal β-amyloid deposition and 
neurodegeneration, and “subtle” cognitive changes 
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(2, 48, 1248-1252). The refinement of the diagnosis 
of preclinical stages has improved with the acquisi-
tion of new neuroradiological methods, and optimi-
zation of CSF and blood biomarkers (1253-1256). 

However, improvement in detection using CSF, 
blood, and plasma biomarkers largely depends on 
the availability of optimized instruments and mark-
ers. Current CSF and plasma biomarkers used in the 
diagnosis of AD are levels of β-amyloid, phospho-
tau, tau, and phospho-tau ratio, neurofilaments, 
synaptic proteins, markers of activated astrocytes, 
and inflammatory markers. At present, the available 
methods cannot detect differential levels of tau, 
phospho-tau, β-amyloid, and structural and synaptic 
proteins unless the degenerative process is at least 
at undetermined middle stages of AD neuropatho-
logical change. Hippocampal atrophy, as revealed by 
computed tomography (CT) and MRI, and currently 
used to correlate cognitive impairment and altered 
neuropathological substrate, is a late marker of AD 
that is only positive when there is advanced NFT pa-
thology and neuron loss in the hippocampus. 

A recent meta-analysis to estimate the preva-
lence of Aβ pathology as measured with biomarkers 
in participants with normal cognition, subjective 
cognitive impairment, or mild cognitive impairment 
revealed that about 25-35% of cognitively normal 
older adults harbored a significant amount of β-am-
yloid (1257). Further studies have shown that β-am-
yloid CSF-based estimates using adjusted data-
driven cutoffs are up to 10% higher than PET-based 
estimates in people without dementia thus suggest-
ing that preclinical AD may be more prevalent than 
previously suspected (1258). 

In contrast, tau PET imaging using optimized 
tracers provides more precise information in vivo at 
the different stages of NFT progression (855, 1259-
1267). Improved neuroimaging methods corrobo-
rate earlier neuropathological observations in post-
mortem brains. Individuals without cognitive impair-
ment may have tau or β-amyloid positive signal 
alone, or β-amyloid and tau pathology, or tau and β-
amyloid PET negativity (1268-1270). Neuroimaging 
studies have also identified tau pathology in the en-
torhinal region and mesial temporal cortex in nor-
mal aged individuals with or without minimal cogni-
tive impairment (1271-1276). Tau PET observations 

are also useful to show that tau deposits appear be-
fore β-amyloid deposits in most individuals. Finally, 
neuroimaging allows the visualization of a contin-
uum of lesions from “normal” brain aging to Alz-
heimer’s type dementia in sAD and fAD (1277, 
1278). 

Therefore, neuroimaging observations further 
suggest that tau pathology is predominant in normal 
brain aging that overlaps with tau pathology in indi-
viduals with preclinical AD. Clinical criteria of AD are 
biased by the consideration that Aβ pathology pre-
cedes tau pathology in sAD. In other words, the con-
ception of the β-amyloid cascade hypothesis perme-
ates the diagnosis of sAD. 

In addition to clinical and biomarker criteria, new 
neuropathological standards, based on the study of 
a wide number of selected brain regions stained 
with selected immunohistochemical markers, take 
into consideration AD pathology progression and 
the presence of comorbid pathologies were pro-
posed by the National Institute on Aging–Alz-
heimer’s Association (NIA-AA) in 2012 (49, 50). The 
main considerations are a) recognition that AD neu-
ropathologic changes may occur in the apparent ab-
sence of cognitive impairment, (b) consideration of 
an “ABC” score for AD neuropathologic change that 
incorporates histopathologic assessments of β-amy-
loid deposits (named A, based on Thal phases), stag-
ing of neurofibrillary tangles (named B, based on 
Braak stages), and scoring of neuritic plaques 
(named C, based on CERAD), and (c) assessment of 
co-morbid conditions such as Lewy body disease, 
vascular brain injury, hippocampal sclerosis, and 
TDP-43 proteinopathy; also including ARTAG and 
AGD. At present, the post-mortem neuropathologi-
cal examination is still the most precise approach to 
identify the morphological changes linked to a brain 
aging and sAD (49, 50, 325) (Table 1). 

Following this classification, the score levels of 
AD neuropathologic change are classified as “not”, 
“low”, “intermediate”, and “high” (Table 2). The 
presence of Aβ is mandatory. It is also stated that 
“medial temporal lobe NFTs in the absence of signif-
icant Aβ or neuritic plaques occurs in older people 
and may be seen in individuals without cognitive im-
pairment, with mild impairment, or with cognitive 
impairment from causes other than AD” (49, 50). To 
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“A” Thal phase for Aβ plaques “B” Braak and Braak NFT stage “C” CERAD neuritic plaque score 

0 0 0 none 0 none 

1 1 or 2 1 I or II 1 sparse 

2 3 2 III or IV 2 moderate 

3 4 or 5 3 V or VI 3 frequent 

Table 1: “ABC” score for AD neuropathologic change modified from ref. 49 and 50. National Institute on Aging–Alzheimer’s Association 
(NIA-AA) guidelines for the neuropathologic assessment of Alzheimer’s disease. 

 

support this assertion, a previous work is cited: 
“Brains that have many NFTs in medial temporal 
lobe structures (Braak stage III or IV) but no cortical 
SPs may be a diagnostic dilemma; they also raise 
questions about the amyloid cascade hypothesis of 
AD in which NFT development is thought to occur 
downstream of the development of amyloid 
plaques” (1279). More recently, the introduction of 
the term PART has been used to name cases with 
NFT pathology without SPs (see section 21a). 

A key point of this neuropathologic classifica-
tion is the notion that β-amyloid deposition is the 
first “sine-qua-non” condition to consider the possi-
bility of AD. The occurrence of NFTs without β-amy-
loid plaques is not consistent with AD at any stage. 
The neuropathological proposal of the National In-
stitute on Aging-Alzheimer’s Association assumes 
the “amyloid cascade hypothesis” as the cause of 
sAD. Yet the cognitive status correlates with NFT 
burden rather than with β-amyloid plaques (331). 

 

AD neuropathologic change B 

A C 0 or 1 2 3 

0 0 not not not 

1 
0 or 1 low low low 

2 or 3 low intermediate intermediate 

2 Any C low intermediate intermediate 

3 
0 or 1 low intermediate intermediate 

2 or 3 low intermediate high 

Table 2: “ABC” score level of AD neuropathologic change. Aβ/amyloid plaques (A), NFT stage (B), and neuritic plaque score (C). The com-
bination of A, B, and C scores is designated as “not”, “low”, “intermediate” or “high” AD neuropathologic change. “Intermediate” or “high” 
AD neuropathologic change is considered sufficient for dementia. National Institute on Aging–Alzheimer’s Association (NIA-AA) guidelines 
for the neuropathologic assessment of Alzheimer’s disease. 

 

21. Primary age-related tauopathy 
(PART), rapidly progressive sAD, and 
sAD resilience 

21a. PART 

In 2014, the term PART, a common pathology 
associated with human aging, was proposed to cat-
egorize a subpopulation of individuals with normal 
cognition or with MCI showing NFT pathology at 

stages I-IV of Braak and no SPs, and slower progres-
sion to the clinical stage of dementia in some indi-
viduals (1280-1283). 

The concept of PART derives from the interpre-
tation of the “β-amyloid cascade hypothesis” as the 
cause of AD. In other words, it is assumed that the 
presence of NFTs without Aβ deposition is not AD 
and therefore, cases with NFTs and without SPs do 
not match with the neuropathologic assessment of 
AD proposed by the NIA-AA. 
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PART includes the majority of individuals aged 
65 or older with first stages of NFT pathology and 
without SPs. The individuals represent about 85% of 
human beings at the age of 65 (328, 329, 1284), and 
are considered clinically affected by “normal brain 
aging”. Therefore, PART appears to be a predomi-
nant disorder until the emergence of SPs (41, 329, 
336, 1284). Once a substantial number of SPs ap-
pears in the brain, AD is overriding, whereas demen-
tia with only tangles (or tangle-predominant demen-
tia) which would be the logical progression of PART 
decays and becomes rare (1285). It has been stated 
that the frequency of PART increases at the age of 
85 years (1286). However, most individuals with NFT 
pathology at stages I-III without SPs are younger in 
largest series of cases (41, 329, 1284). 

The distribution of tau pathology in CA1 and 
CA3 regions of the hippocampus is reported to be 
different in PART and sAD. However, in one series, 
the mean age of the individuals was about 88 but the 
NFT stages varied in the samples with PART and sAD 
(1287). In another series (mean age 84.3 ± 9.4 
years), tau pathology was high in both CA1 and su-
biculum, followed by CA2/3, entorhinal cortex, CA4, 
and dentate gyrus in sAD. In PART, the severity of 
tau pathology in CA1 and subiculum was high, fol-
lowed by enthorinal cortex, CA2/3, CA4, and dentate 
gyrus (1288). Differences appear to be minimal and 
were probably modified by the presence of tau pa-
thology in SPs in sAD. 

The proposal of PART as a new tauopathy is not 
widely accepted. PART has also been interpreted as 
being within the spectrum of sAD (a part of sAD) in 
cases with a particular genetic background charac-
terized by lower prevalence of ApoEε4, PTK2B, BIN1, 
and CR1 genes, and higher prevalence of ApoEε2 
(1282, 1289, 1290). In contrast, tangle-predominant 
dementia has been associated with MAPT H1 haplo-
type (1291). 

21b. Rapidly progressive AD 

Patients with rapidly progressive AD (rpAD) are 
younger and have a median survival time after diag-
nosis of about 7-10 months (1292); the neuropatho-
logical hallmarks and peripheral biomarkers are sim-
ilar to those seen in current sAD excepting for a low 
frequency of ApoEε4 allele and increased serum lev-
els of specific pro-inflammatory cytokines (1293, 

1294). Yet Aβ42 oligomers in rpAD have distinct prop-
erties which promote the faster spread of Aβ42 pa-
thology (1295). The composition of SPs also differs 
in rpAD, with significantly higher levels of neuronal 
proteins, decreased levels of astrocytic proteins, and 
particular abundance of synaptic-derived proteins 
(1296). Moreover, high-density oligomers of the 
prion protein and a significant 1.2-fold decrease in 
di-glycosylated PrP isoforms occur in rpAD. Fifteen 
proteins appear to interact with PrPC while only two 
proteins, 3/4histone H2B-type1-B and zinc alpha-2 
protein3/4, are specifically bound with the PrP iso-
form isolated from rpAD cases (1297). Abnormal PrP 
isoforms in rpAD are accompanied by altered locali-
zation of distinct interactors including the growth ar-
rest-specific 2-like protein and associated end-bind-
ing protein 1, α-tubulin, and β-actin (1298). 

Molecular profiles of β-amyloid proteoforms 
differ in rpAD when compared with typical sAD 
(1299). Moreover, the presence of highly hydropho-
bic Aβ seeds in rpAD brains that seeded reactions at 
a slower pace in comparison to typical sAD has been 
validated (1299). 

Another anomaly is the downregulation and 
dislocalization from the nucleus to the cytoplasm of 
the splicing factor proline and glutamine rich (SFPQ), 
its colocalization with TIA-1 in stress granules, and 
its association with tau oligomers in the brain of 
rpAD (1300). 

21c. sAD resilience 

Centenarians have resistance to sAD or very 
low progression to advanced Braak stages of tau and 
β-amyloid pathology (1301-1303). Curiously, AD-re-
lated changes in the oldest-old population also show 
a particular neuropathological distribution including 
high densities of NFTs, mainly in the hippocampus, 
without apparent major clinical deficiencies (1302-
1307). 

Multiple factors are associated with increased 
or reduced structural and behavioral patterns linked 
to cognition in the elderly and sAD. The cognitive re-
serve, linked to educational and occupational acqui-
sition, social networks, and leisure activities in later 
life, have a protective effect (1308-1312). Glycolitic 
dysfunction reduces resilience (1313) whereas cof-
fee and cacao favour protection from sAD (1314). 
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Comorbidities, including TDP-43 proteinopathy and 
mesial sclerosis, reduce resilience (1315-1317). 

Genetic factors also participate in cognitive re-
silience (1318, 1319). A greater number of genes ap-
ply in women (225, 1320). A top variant on chromo-
some 18 upstream of ATP8B1 is significantly associ-
ated with methylation in prefrontal cortex tissue at 
multiple CpG sites, including one just upstream of 
ATPB81, and present in individuals with unimpaired 
cognition (1321). A rare variant in the 3'-UTR of 
RAB10 is protective for sAD (1322). HDAC4, REST, 
and Gi intracellular signaling are sAD-specific path-
ways involved in regulating the onset of memory 
deficits (1323). Molecular modulators of neuronal 
vulnerability, such as RAR related orphan receptor B 
(RORB), and glial dysfunctions are also involved in 

neuronal vulnerability (1324). The myocyte-specific 
enhancer factor 2C (MEF2C) is upregulated in a sub-
population of glutamatergic neurons in resilient in-
dividuals. Over-expression of Mef2a/c in the PS19 
transgenic mouse model of tauopathy improves 
cognitive flexibility and reduces hyperexcitability 
(1325). The profiles of brain inflammatory responses 
also differ in resilient sAD cases, with expression lev-
els of chemokines decreasing and trophic factors in-
creasing (860, 1326). Yet a consensus is needed on 
how to define the concepts of cognitive reserve, re-
silience, and resistance linked to cognition in aged 
individuals (1327). 

The genetic and molecular factors linked to the 
AD spectrum are listed in Table 3.

 

 

FAD mutations in the genes APP, PSEN1 (presenilin1), and PSEN2; increased APP dosage  

sAD ε4 of ApoE, LRP1, LDLR, interleukin 1a, CLU, PICALM, CR1, BIN1, TREM2, SORL1, 
ADAM10, ABCA7, SPI1, PILRA, MSA4, CD2AP, and EPHA1 

PART lower prevalence of ApoEε4, PTK2B, BIN1, and CR1 genes, and higher prevalence of 
ApoEε2 

rpAD low frequency of ApoEε4 allele; increased inflammation; different Aβ oligomers; diffe-
rent amyloid‑β proteoforms; different seeding capacities of β-amyloid; high-density PrP 
oligomers; decreased PrP di-glycosylated isoforms; specific PrP isoform; altered locali-
zation of the growth arrest-specific 2-like 2 protein (G2L2), α-tubulin and β-actin; down-
regulation and dislocalization from the nucleus to the cytoplasm of SFPQ, their colocali-
zation with TIA-1 in stress granules, and their association with tau oligomers  

resilient AD variant of chromosome 18 upstream of ATP8B1; rare variant in the 3'-UTR of RAB10; 
MEF2C upregulation in a subpopulation of glutamatergic neurons; decreased expres-
sion levels of chemokines and increased levels of trophic factors 

Tangle-predomi-
nant dementia  

association with MAPT H1 haplotype 

Table 3: Genetic and molecular factors linked to the AD spectrum (see sections 3, 4 and 21 for references). 

 

 

Considering the previous data, and the prepon-
derance of tau pathology over β-amyloid deposits at 
the first and middle stages of AD-related pathology 
(344), a modification to the NIA-AA “ABC” score 

level of AD neuropathologic is hereby proposed. The 
added value is the reflection of tau pathology at the 
same diagnostic value as β-amyloid (Table 4). 
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AD neuropathologic change  

A C B 

0 0 0 or 1 2 3 

0 0 low low intermediate 

1 0 or 1 low low intermediate 

2 or 3 low intermediate intermediate 

2 Any C low intermediate intermediate 

3 0 or 1 low intermediate intermediate 

2 or 3 low intermediate high 

Table 4: Modified “ABC” score level of AD neuropathologic change. Aβ/amyloid plaques (A), NFT stage (B), and neuritic plaque score (C). 
The combination of A, B, and C scores is designated as “not”, “low”, “intermediate” or “high” AD neuropathologic change. “Intermediate” 
or “high” AD neuropathologic change is considered sufficient for dementia. Here, NFTs are considered with equal relevance to SPs in the 
progression from normal brain aging with NFT changes, PART, preclinical AD, and sAD (including AD variants, rpAD and ADNC in centenar-
ians). 

22. Biochemical changes beyond tau 
and β-amyloid at the the first stages of 
NFT pathology 

In addition to the classical neuropathological 
hallmarks restricted to the inner region of the tem-
poral lobe and selected nuclei of the brain stem 
which characterize the first stages of NFT pathology, 
there is cumulative evidence of molecular and bio-
chemical alterations in other regions in the same 
brains. Several brain regions such as the frontal cor-
tex, which does not show NFT pathology at stages I-
III (and very rarely, if present, β-amyloid deposition 
at these stages), show altered lipid and protein 
membrane composition, abnormal mitochondrial 
function, oxidative stress damage, altered protein 
synthesis, activation of kinases, dysregulated pro-
tein phosphorylation, and abnormal inflammatory 
responses, among other disruptions. All of these al-
terations advance in parallel with the progression of 
NFT pathology; most of them have implications in 
tau and β-amyloid pathology, and they all persist or 
increase at middle and advanced NFT stages and 
sAD. The terms NFT and sAD in these sections are 
those used in the original publications. 

22a. Aberrant cell-cycle re-entry, and altered 
adult neurogenesis 

The nervous system has plastic capacities and 
this is manifested in many ways in sAD. One of these 
is the activation of pathways geared to activate cell 

cycle re-entry. However, neurons are post-mitotic 
cells that activate cell death programs at G1/A and 
G2/M points in response to cell cycle reactivation 
(1328). Aberrant neuronal cell-cycle re-entry, as re-
vealed by the expression of various proteins in-
volved in the activation and progression of the cell 
cycle, is produced in a subpopulation of neurons in 
sAD (1329-1340). The expression of cell-cycle-re-
lated proteins occurs before the appearance of NFTs 
and SPs and may trigger programmed cell death or 
the activation of kinases leading to oxidative stress 
damage, tau hyperphosphorylation, and activation 
of β-amyloid pathways (1341-1346). 

The expression of p75NTR in doublecortin (DCX)-
immunoreactive dentate gyrus progenitors is re-
duced in AD and related transgenic models. The in-
oculation of pro-NGF neutralizing antibodies into 
the dentate gyrus restores memory performance of 
APP/PS1 animals and significantly increases the per-
centage of DCX+ progenitors in the dentate gyrus of 
these animals, thus suggesting that impaired 
proNGF-p75NTR signaling blocks adult neurogenesis 
in AD (1347). Moreover, the proNGF/p75NTR signaling 
pathway blocks adult neurogenesis and neuron cell 
death in AD (670-672). 

Altered adult neurogenesis is not restricted to 
sAD, as it occurs as well in the dentate gyrus in other 
neurodegenerative diseases such as Huntington’s 
disease, amyotrophic lateral sclerosis, Lewy body 
disease, and frontotemporal dementia (1348). 
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22b. Brain lipids 

The brain is the second richest organ in lipids 
after the adipose tissue. Cholesterol accounts for 
20-25% of the total lipids in the plasma membrane 
of neurons; most local cholesterol is synthesized by 
astrocytes in the adult brain (1349). Glycerophos-
pholipids are the main phospholipid components 
ubiquitously found in cell membranes, and they are 
found in abundance in membranes from neural 
cells. Lipids carry out, in addition to structural func-
tions, the roles of mediators or second messengers. 
These are lipophilic molecules involved in signal 
transduction processes. Lipid mediators are derived 
from the enzymatic degradation of glycerosphin-
golipids, sphingolipids, and cholesterol by phospho-
lipases, sphingomyelinases, and cytochrome P50 hy-
droxylases, respectively. Eicosanoids such as prosta-
glandins, leukotrienes, and lipoxins are derived from 
oxidation of the AA. Docosanoids, including neuro-
protectins, resolvins, and maresin, are mediators of 
docosahexanoic acid (DHA). These mediators are im-
portant modulators of oxidative damage, inflamma-
tion, and apoptosis. Other glycerophospholipid-de-
rived lipid mediators are diacylglycerols (DAGs) 
phosphatidylinositol 1,4,5-triphosphates, platelet-
activating factor, lysophosphatidic acid, and endo-
cannabinoids (1350). Degradation of sphingolipids 
also results in the generation of mediators, such as 
ceramide, ceramide 1-phosphate, sphingosine, and 
sphingosine 1-phosphate. These mediators are in-
volved in differentiation, growth, cell migration, and 
apoptosis. Cholesterol-derived lipid mediators, in-
cluding 24- and 25-hydroxycholesterol, produce 
apoptosis (1351-1354). 

The physical-chemical properties of the mem-
brane bilayer and the chemical reactivity of fatty ac-
ids determine their susceptibility to oxidative dam-
age (1355-1357). ROS and reactive nitrogen species 
(RNS) are more soluble in the fluid lipid bilayer than 
in the aqueous solution (1358, 1359). More im-
portantly, polyunsaturated fatty acid (PUFA) resi-
dues of phospholipids are very sensitive to oxidation 
(1360). As a result, neural cell membrane lipids be-
come primary targets of oxidative damage and lipid 
peroxidation. 

In the aging brain, there is a progressive de-
crease in the levels of cholesterol, phosphatidyleth-

anolamine, phosphatidyl inositol, phospholipid, eth-
anolamine plasmalogen, and sphingomyelin (1361-
1366). Increasing age is associated with progressive 
modifications in the composition of PUFA, including 
DHA and AA levels (1367). The age-related reduction 
in PUFAs is inversely correlated with stearoyl-CoA 
desaturase expression and activity, resulting in 
higher levels of monounsaturated fatty acids 
(MUFAs). 

Lipofuscin located in secondary lysosomes in-
creases with age in neurons and glial cells (1368, 
1369). The “aging pigment” is composed of two-
thirds protein and one third lipids (1370, 1371). Pro-
teins in lipofuscin belong to the cytoskeleton, mito-
chondrial bioenergetics, synapse, and membrane 
receptors (1372). This proteome is practically identi-
cal to the proteome derived from lipoxidation reac-
tions identified in the frontal cortex of aged humans 
(1373). 

Levels of glycerophospholipids, sphingolipids, 
DAGs, and plasmalogens are altered in the brain in 
sAD (1374-1379). The disturbance of human brain li-
pid content in sAD pathology may be categorized 
into four main groups (i) decreased expression of 
phospholipids, specifically plasmalogen PE and plas-
malogen PC, due in part to abnormal peroxisome ac-
tivity; (ii) reduced sulfatide content; iii) increased 
levels of ceramides; and (iv) increased lipoxidative 
stress (1354). Plasmalogen PE plays a particular role 
as anti-oxidant (1380). Moreover, in gray matter, 
the major PPE molecular species are enriched in 
DHA and AA. 

Modifications in DHA, AA, and PUFAs in sAD 
produce an imbalance between their protective role 
(the adaptive responses derived from their lipid me-
diators) and a deleterious role (derived from their 
susceptibility to oxidation) (1381, 1382). Lipid perox-
idation is an early event and a major cause of oxida-
tive stress damage in sAD progression (1373, 1381). 
β-amyloid plays an important part since SPs are al-
ways surrounded by oxidized lipids, as revealed us-
ing Fourier transform infrared microscopy (1383). 
One mechanism to modulate oxidative damage is 
mediation by the upregulation of DHA synthesis, 
which occurs in selected regions at early stages of 
sAD; this is followed by an adaptation, and then de-
creased DHA contents. This change is not uniform, 
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but rather region- and stage-dependent. DHA con-
tent in sAD progression is like a shock wave mani-
fested in three steps: upregulation, adaptation, and 
depletion. 

Crucial information connecting lipid alterations 
and sAD comes from genetic data. In addition to al-
lele ε4 of ApoE (268-271, 1384, 1385), many genes 
involved in sAD are linked to cholesterol and lipid 
metabolism (284, 1386-1391). Most of them in-
crease the risk of β-amyloid deposition but ApoEε2 
allele appears to decrease it (1392, 1393). 

22c. Lipid rafts and cell membranes 

Lipid rafts are microdomains of cell mem-
branes enriched in glycosphingolipids, cholesterol, 
and protein receptors which favor multiple cell sig-
naling interactions at the cell membrane, necessary 
for signal transduction (1394, 1395). The exoplasmic 
leaflet is enriched with glycosphingolipids and sphin-
gomyelin, the cytoplasmic leaflet is enriched with 
glycerolipids; cholesterol is present in both. The lipid 
composition makes this system highly dynamic in 
that several proteins act as structural proteins, 
transmembrane signaling proteins, and protein an-
chors linked to protein-protein interactions (1396). 

Cholesterol in lipid rafts facilitates the cluster-
ing of α- and β-secretases. Although cholesterol 
does not have a direct effect on γ-secretases, the in-
crement of local cholesterol facilitates the produc-
tion of β-amyloid (1397, 1398). 

The lipid composition of membranes is altered 
in sAD. β-amyloid oligomers and peptides are re-
cruited in lipid rafts (1399-1402). Altered lipid raft 
composition also occurs in APP/PS1 double-trans-
genic mice, a model of familial cerebral β-amyloido-
pathy. Altered composition of lipid rafts is observed 
at the age of three months in parallel with the ap-
pearance of the first plaques in these mice (1403). 

Prion protein expression in SPs further sup-
ports alteration of lipid raft-enriched cell membrane 
in association with β-amyloid deposition at ad-
vanced stages of sAD (128, 1404, 1405). 

Lipid raft alteration in AD does not occur ab-
ruptly. The composition of lipid rafts changes with 
age in a gender-dependent manner. The main 

changes affect levels of plasmalogens, polyunsatu-
rated fatty acids (especially DHA and AA), total polar 
lipids (mainly phosphatidylinositol, sphingomyelin, 
sulfatides, and cerebrosides), and total neutral lipids 
(particularly cholesterol and sterol esters) (1406). 

Importantly, the lipid composition of lipid rafts 
in the entorhinal cortex and frontal cortex, but not 
the cerebellum, is already altered in human brain at 
NFT stages I-II without β-amyloid deposits; lipid rafts 
at these stages display higher anisotropy, indicating 
that lipid changes in brain at NFT stages I-II increase 
membrane order and viscosity in these domains 
(1407). Among other alterations, the structure of li-
pid rafts at stages I-II is associated with increased 
BACE1/AβPP interaction (1408). 

There is also a close functional relationship be-
tween cytoskeletal proteins and cell membranes 
through protein-protein interactions, electrostatic 
interactions with lipid membranes, and lipid tails. 
These complementary interactions are ruined once 
one of the components is altered. Altered composi-
tion of lipid rafts and membrane proteins increases 
Aβ pathways and tau fibrilisation. At the same time, 
tau monomers and β-sheet-rich tau structures dis-
rupt cell membranes (156, 212, 1389, 1409-1413). 
Tau connections with lipid tails depend on electro-
static interactions and phospholipid composition 
with high affinity for anionic lipids and anionic vesi-
cles (1414, 1416). Tau monomers may concentrate 
at the membrane and form oligomers and fibrils un-
der pathological conditions. These β-sheet-rich tau 
structures are capable of disrupting membrane or-
ganization and function (212). Deposition of abnor-
mal tau at the pre- and post-synaptic membranes 
may appear prior to the appearance of NFTs, and it 
contributes to early synaptic dysfunction (409). Con-
versely, there is also the possibility that alterations 
at the cell membrane involving the lipid composition 
and post-translational modifications of membrane 
proteins trigger abnormal phosphorylation of tau 
and induce formation of tau fibrils (1417) (see sec-
tion 21h). 

Plasma membrane specializations containing 
caveolin are invaginated and form caveolae which 
are closely related to lipid rafts (1418). Caveolae in 
sAD participate in a wide number of processes in-
cluding internalization of tau oligomers and β-amy-
loid metabolism (1419-1421). 
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Other factors influence membrane damage, in 
particular, microglial pro-inflammatory mediators 
generating membrane damages (1422). 

22d. Mitochondria 

Mitochondrial alterations were identified in 
the pioneering ultrastructural research of AD and 
were later sustained by functional studies (1423-
1427). Mitochondrial alterations in sAD led to the 
formulation of the “mitochondrial cascade hypothe-
sis”, proposing that mitochondrial alterations and 
failed energy metabolism trigger sAD (1428, 1429). 
Recent reviews have stressed the importance of mi-
tochondrial failure in the pathogenesis of AD (1430-
1432). Functional defects in ATP-synthase are con-
sidered a main contributory factor to explain failure 
of energy production in mitochondria (1433). Other 
studies have stressed the impairment of complex I 
in mild cases of AD (1434). Besides energy metabo-
lism deterioration, abnormal mitochondrial function 
also causes increased production of ROS (1435-
1437). 

Mitochondrial ATP-synthase is a target of oxi-
dative damage in the entorhinal cortex at stages I-II 
of NFT pathology; total levels of ATP-synthase are 
preserved but ATPase function is impaired (1438). 
Altered mitochondrial DNA methylation is mani-
fested in the entorhinal cortex at stages I-II of NFT 
pathology and advances with disease progression 
(1028). Increased mitochondrial 5-methylcytosine 
levels are found in the D-loop region of mtDNA in 
the entorhinal cortex. Interestingly, this region 
shows a dynamic pattern in the content of mito-
chondrial 5-methylcytosine in APP/PS1 transgenic 
mice in parallel with the progression of β-amyloid 
pathology in these mice (1028). Aβ deposits have 
been considered a main cause of mitochondrial dys-
function in AD (1439). Additionally, mitochondrial 
abnormalities are observed in tau transgenic mice 
(1440). Aβ and tau pathology have synergistic ef-
fects on mitochondria in triple transgenic mice 
(1441). It has been proposed that there are mito-
chondrial links between brain aging and AD (1442). 

The mitochondria-associated lipid raft-domain 
of the ER in close contact with the mitochondria, 
called MAM (mitochondria-associated ER mem-
brane), facilitates functional and biochemical inter-
action between these structures, mainly linked to 

metabolism of the cholesterol, phospholipids, glu-
cose, fatty acids, and calcium signaling (1443, 1444). 
MAM functions are altered at early stages of sAD 
(1445, 1446), thus prompting the “MAM-hypothe-
sis” as a determinant in the pathogenesis of sAD 
(1447). There is growing evidence of impaired phys-
ical and proteome crosstalk between ER and mito-
chondria in sAD (1444). 

22e. Oxidative stress damage 

The mitochondria respiratory chain generates 
ROS which participate in cell signalling under physi-
ological conditions. Peroxisomes, ER, microsomes, 
nucleus and plasma membrane are potential 
sources of ROS. Excess production of ROS and defi-
cient anti-oxidant responses lead to oxidative stress 
damage to DNA, RNA, carbohydrates, lipids, and 
proteins. Ion-catalyzed oxidation of some amino 
acid residues may result in the production of car-
bonyl derivatives such as glutamic semialdehyde 
and aminoadipic semialdehyde. In addition to direct 
effects, oxidative modifications may induce the pro-
duction of reactive carbonyl species such as glyoxal, 
glycoaldehyde, methylglyoxal, malondialdehyde 
(MDA), and 4-hydroxynonenal (HNE), derived from 
the oxidation of carbohydrates and lipids. Carbonyl 
species react with lysine, arginine, and cysteine res-
idues, leading to the formation of advanced gly-
cation and lipoxidation end-products (AGE/ALEs) in 
proteins. Typical AGEs/ALEs adducts are carboxyme-
thyl-lysine (CML), carboxyethyl-lysine (CEL), and 
MDA-lysine (MDAL), among others (1357, 1373, 
1381, 1448, 1449). Regarding RNS, nitric oxide dam-
age to thiols, amines, and hydroxyls leads to nitrosa-
tive damage. Reactions with RNS lead to the for-
mation of 3-nitrotyrosine (nitration) and to oxida-
tion of distinct substrates. Reactive peroxinitrite is 
able to nitrate tyrosine residues and to oxidize me-
thionine residues of proteins (1450). 

Oxidative stress damage is a major component 
of brain aging. Protein oxidative and glycoxidative 
damage significantly increases with age; 60 years of 
age is the breakpoint of human frontal cortex aging 
(1451). 

Oxidative stress damage in the aging brain is re-
gion- and age-dependent (1452). Regional vulnera-
bility to neurodegeneration based on energy de-
mands, oxidative stress, and other metabolic factors 
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can predict neurodegeneration (1453). For example, 
lower energy demand, lower mitochondrial stress, 
and one-carbon metabolism (particularly restricted 
to the methionine cycle), together with lower target 
of rapamycin (TOR) signaling and better antioxidant 
capacity, occur in the frontal cortex compared with 
the entorhinal cortex and the hippocampus. These 
differences suggest that the frontal cortex is rela-
tively resistant to stress compared to the entorhinal 
cortex and hippocampus (1454). 

However, this hypothesis does not apply uni-
versally when assessing different brain regions of in-
dividual brains in parallel (1455). The results are 
more complex and their interpretation is more diffi-
cult. Vulnerable cortical and diencephalic regions 
are in fact more resistant to degeneration in aging 
(1455). However, differences in vulnerability to pro-
tein oxidation are dependent on the subcellular lo-
calization, secondary structure, and external exposi-
tion of certain amino acids. Lipoxidized proteins are 
mainly those involved in energy metabolism, cyto-
skeleton, proteostasis, neurotransmission, and 
O2/CO2/heme metabolism (1452). 

AGEs are produced in aging and sAD, but their 
levels and the levels of their receptor (RAGE) do not 
correlate with Aβ levels, tau levels, or dementia 
(1456, 1457). 

Most studies of oxidative stress damage in sAD 
are centered on stages V-VI (cases with dementia) 
and III-IV (cases with MCI). Proteins involved in gly-
colysis and energy metabolism, in electron transport 
chain, oxidative phosphorylation, and other mito-
chondrial components; structural proteins; chaper-
ones; stress proteins, and stress responses; and pro-
teins of the UPS are all targets of oxidative damage 
(1373, 1458-1467). Protein oxidative damage is usu-
ally accompanied by decreased functional activity 
(1468). Altered enzymatic activity has been demon-
strated for the oxidized protein creatine kinase BB, 
enolase 1, glutamine synthetase, Pin-1, carbonic an-
hydrase 2, UCHL-1, α-enolase, GAPDH, GDH, H+ 
transporting ATPase, LDH, ATP synthase, and py-
ruvate kinase in sAD. A few studies have included 
the identification of oxidatively damaged protein, 
the quantification of total protein levels, and the re-
duction of enzymatic activity (1381). In an attempt 
to correlate oxidative stress damage and regional 
vulnerability in sAD, a meta-analysis of MDA, HNE, 

protein carbonylation, 8-hydroxyguanine levels and 
superoxide dismutase, glutathione peroxidase, glu-
tathione reductase, and catalase activities showed 
that changes linked to oxidative stress were variable 
from one region to another and dependent on the 
type of adduct. No correlation was seen between ox-
idative damage and regional vulnerability (1469). 

Oxidative damage was advocated to be the ear-
liest event in sAD (1470). Further research revealed 
that oxidative damage was more marked in younger 
cases, in cases with rapid disease progression, and in 
neurons without NFTs when compared with neurons 
with tangles in the same individual (1471). Moreo-
ver, oxidative stress precedes β-amyloid deposition 
in pre-symptomatic fAD and Down syndrome (1472, 
1473). Early observations suggested that oxidative 
post-translational modifications might play a role in 
the formation of SPs and NFTs (1474). Following this 
argument, aggregation of Aβ and tau was consid-
ered a compensatory response to underlying oxida-
tive stress (1475). However, β-amyloid is also a 
cause of oxidative stress, thereby potentiating the 
loop (1476). Oxidative stress generates mitochon-
drial dysfunction by damaging structural proteins 
and components of the mitochondrial respiratory 
chain in sAD (1438, 1477-1479). Oxidative damage 
also causes synaptic dysfunction (425). 

As indicated in previous paragraphs, oxidative 
damage of ATP-synthase resulting in the loss of its 
function occurs at stages I-II of NFT pathology 
(1438). Mitochondrial dysfunction, abnormalities in 
lipid rafts, and oxidative stress damage potentiate 
each other and are major players in neuronal energy 
failure at the first stages of NFT pathology (1480). 
Another relevant consequence of oxidative stress is 
the effect of advanced glycation end products on 
cell-cycle re-entry and arrest, also occurring at the 
first stages of sAD (1481). 

22f. Inflammation 

Aging is accompanied by low levels of activated 
innate inflammatory responses (1482, 1483). 

The role of microglia and inflammation in the 
aging brain and sAD has been discussed in previous 
paragraphs. Here, the focus is on the relevance of 
inflammatory changes in brain aging and at early 
stages of AD pathology. Several reports in the 1990s 
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described a protective effect of non-steroidal anti-
inflammatory drugs used for the treatment of auto-
immnune diseases on the manifestation and pro-
gression of sAD (1484-1490). Further studies deline-
ated their positive effects when the treatment was 
initiated before the appearance of cognitive impair-
ment, but the effects of the same treatments were 
minimal when administered in advanced AD. These 
observations show that inflammatory responses 
modulate the history of AD at the early stages of the 
process. More importantly, there is also a chance for 
anti-inflammatory drugs in the treatment of sAD 
when administered at the appropriate time (1491-
1493). 

Molecular studies disclosed that multiple cyto-
kines are involved at the early/middle stages of AD 
(1494). More detailed studies in MA and in cases at 
first (I-II), middle (III-IV), and advanced (V-VI) NFT 
stages examined the expression of cytokines and 
mediators of the immune system in different regions 
progressively affected in sAD: the entorhinal cortex, 
orbitofrontal cortex, and frontal cortex area 8 (838). 
Changes in mRNA expression correlated with the 
corresponding protein levels as revealed by im-
munohistochemistry and western blotting (838). 
Moreover, gene regulation at first stages of AD pa-
thology (NFT I-II, SPs: 0) was not related to NFTs, β-
amyloid plaques, concentration of Aβ40 and Aβ42, or 
membrane-bound fibrillar β-amyloid in the frontal 
cortex (838). These observations do not contradict 
previous studies showing a relationship between 
membrane-associated β-amyloid and inflammatory 
changes in cases with more advanced preclinical AD 
and SPs in the cerebral cortex (101), but they high-
light the observations that: (a) inflammatory mark-
ers appear at the first stages of NFT pathology 
(stages I-III) in regions with no NFTs and SPs; (b) in-
flammatory changes are modified with disease pro-
gression; and (c) different inflammatory responses 
occur simultaneously in different regions in the 
same individual. 

22g. Protein synthesis impairment 

Protein synthesis is altered in sAD, and this is 
due to multiple alterations at different subcellular 
levels from the nucleolus to the ribosome. The rela-
tion nuclear organizer region (NOR) surface/total 

nucleus surface is reduced; the rDNA promoter is hy-
per-methylated, and dimethylated histone H3K9 
and acetylated histone H3K12 are decreased in the 
CA1 region of the hippocampus; nuclear tau de-
clines; specific transcription factors are abnormally 
regulated; rRNA levels are decreased and RNA is ox-
idatively damaged; the expression of nucleolar pro-
teins as well as the expression of RNAs involved in 
the generation of ribosomal proteins decreases; the 
expression levels of translation initiation and elon-
gation factor of the protein synthesis in ribosomes is 
dysregulated; and the capacity of isolated ribo-
somes to incorporate S35 methionine into protein is 
impaired (1010, 1473, 1495-1506). Tau protein dis-
rupts nucleocytoplasmic transport in AD (1507), but 
the role of tau, if any, in the other steps of the pro-
tein synthesis pathway is not known. 

Alterations of protein synthesis pathways are 
already identified in the hippocampus at the first 
stages of NFT pathology. Nucleophosmin 1 (NPM1) 
mRNA is significantly increased, and upstream bind-
ing transcription factor RNA polymerase I gene 
(UBTF) mRNA and 28S rRNA significantly decreased 
in CA1, but not in the dentate gyrus at NFT stages I-
II. Dimethylated histone H3K9 (H3K9m2) immunore-
activity is reduced in neurons of the dentate gyrus 
and CA1 at NFT stages I-II. mRNA expression of ribo-
somal proteins RPL23A, RPL26, RPL31RPS5, RPS6, 
RPS10, and RPS13 is significantly reduced in the den-
tate gyrus at stages I-II when compared with MA in-
dividuals without NFT pathology. In contrast, RPL5 
and RPL26 mRNA expression is increased, and RPS5 
and RPS6 mRNA decreased in CA1 at the same 
stages I-II (1508). These results show early altera-
tions not only in the CA1 region, which will be in-
volved in NFT pathology, but also in the dentate gy-
rus, which does not contain abnormal tau deposits 
at any time in the process. Seven upregulated miR-
NAs (miR-125b, miR-146a, miR-200c, miR-26b, miR-
30e, miR-34a, and miR-34c) and three downregu-
lated miRNAs (miR-107, miR-210, and miR-485), all 
of which associated with oxidative stress, are found 
in vulnerable brain regions of sAD at the clinical pro-
dromal stage (1501). Together, these observations 
show that alterations in protein synthesis pathways 
appear at early stages of AD-related pathology and 
they are not linked to tau and β-amyloid deposits. 
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Disruption at many steps of the protein synthe-
sis pathway increases in all regions with sAD pro-
gression (1508), making it difficult to establish a 
causative relationship between tau and β-amyloid 
pathology and the progressive decay of protein syn-
thesis at advanced stages of sAD. 

22h. Dysregulated protein phosphorylation 

Early phosphoproteomics studies identified a 
few abnormally phosphorylated proteins in the hip-
pocampus and cerebral cortex in small numbers of 
cases with sAD compared with controls (1509-1511). 
Subsequent work with more accurate methods in 
advanced sAD identified a large number of abnor-
mally phosphorylated proteins, some of them with 
increased phosphorylation, and others with de-
creased phosphorylation. Abnormally phosphory-
lated proteins corresponded to cytoskeletal pro-
teins, integral membrane proteins, synaptic pro-
teins, adhesion molecules, serine/threonine ki-
nases, transport/cargo proteins, heat-shock pro-
teins, and others mostly involved in cell growth 
and/or maintenance, cell communication, and me-
tabolism (1417, 1513, 1514). Multi-omics integra-
tion highlighted relevant altered networks including 
amyloid cascade, inflammation, complement, WNT 
protein signaling, transforming growth factor-β and 
bone morphogenic protein signaling, lipid metabo-
lism, iron homeostasis, and membrane transport 
(1515). 

Recent studies performed in the entorhinal 
cortex and frontal cortex in human brain aging and 
sAD at different NFT stages identified sixty-five 
dysregulated phosphoproteins in the entorhinal cor-
tex, and eighty-one phosphoproteins in the frontal 
cortex at NFT stages I-II when compared with MA in-
dividuals without NFT pathology. Dysregulated pro-
tein phosphorylation of selected proteins occurs in 
parallel with the appearance of NFTs in the entorhi-
nal cortex but precedes the appearance of NFTs and 
SPs in the frontal cortex. The number of dysregu-
lated phosphoproteins increases in both regions 
with NFT stage, most of them added to those al-
ready dysregulated at stages I-II. Considering the to-
tal number of identified dysregulated phosphopro-
teins, the most active period corresponds to NFT 

stages III-IV, at a time when a subpopulation of peo-
ple might be clinically categorized as suffering from 
MCI (1417). 

The main group of dysregulated phosphopro-
teins at NFT stages I-II are membrane proteins; pro-
teins of the cytoskeleton; proteins of the synapses 
and dense core vesicles; proteins linked to mem-
brane transport and ion channels; kinases; proteins 
linked to DNA and protein deacetylation; proteins 
linked to gene transcription and protein synthesis, 
and proteins involved in energy metabolism (1417). 
Altered phosphorylation of selected proteins, ac-
complished by activation of several kinases, may al-
ter membrane and cytoskeletal function, among 
these synaptic transmission and membrane/cyto-
skeleton signaling, in addition to energy metabo-
lism, protein synthesis, and DNA homeostasis 
(1417). 

DAGs are constituents of cell membranes that 
participate in intermediate lipid metabolism, and 
they are key components in lipid-mediated signal-
ing. In neurons, DAGs modulate several signal trans-
duction proteins linked to the activation of protein 
kinases, traffic and fusion of synaptic vesicles, ion 
channels, axonal guidance, and cytoskeletal homeo-
stasis, among others (1516-1518). Tau and β-amy-
loid phosphorylation may also be mediated by DAGs 
and PKC (1519). DAG levels are increased in the sAD 
frontal cortex (1520, 1521). Further studies are 
needed to learn about possible links between DAGs 
and abnormal phosphorylation of cell membrane 
proteins. 

23. Concluding comments 

Linear logic based on the assumption that a 
cause results in one or several effects does not ex-
plain complex biological phenomena such as brain 
aging and sAD; there is no single cause of aging and 
sAD. Rather, the biological processes involved in 
generation, development, living, decline, and death 
are complex concatenations of complementary, dis-
ruptive, and adaptive responses. Not surprisingly, 
the mutually exclusive hypotheses formulated to ex-
plain sAD are not satisfactory. 

Genetic studies in sAD have also provided a 
wealth of information identifying genetic risk factors 
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which principally cover cholesterol and lipid metab-
olism, inflammation, and cell membranes and syn-
apses (1390). 

A scheme of the several factors involved in 
brain aging and sAD is presented in figure 9. In addi-
tion to genetic factors, there is an interaction be-
tween molecular alterations in cellular structures 
that may favor the production of β-amyloid and ab-
normal tau. Conversely, the presence of β-amyloid 
and abnormal tau has a negative effect on the ma-
jority of cellular structures, contributing to a detri-
mental loop in sAD pathogenesis. 

Molecular alterations are similar and cumula-
tive in brain aging and sAD. Therefore, a continuum 
of brain aging and sAD primarily based on an arche-
typal distribution of NFTs usually followed by the 
deposition of β-amyloid plaques is a factual possibil-
ity. 

The pathogenesis and evolution of arterioscle-
rosis is another example of cumulative age-related 
degenerative changes in blood vessels. Almost all 
people are affected to some degree by the age of 65. 
However, the first lesions in atherosclerosis, charac-
terized by macrophage infiltration and intracellular 
lipid accumulation in the blood vessel wall, may oc-
cur in the first or second decade; inflammation, en-
dothelial and perycite damage, altered metabolism 
of muscle fibers, extracellular lipid cores and ather-
omatous plaques develop later. Clinical manifesta-
tions may appear at advanced stages of fibroather-
oma, as well as complicated lesions in MA individu-
als. Thus, the atheromatous plaque, the characteris-
tic lesion of atherosclerosis, is not the first require-
ment to identify atherosclerosis as a biological pro-
cess which is expressed by cumulative stages of 
blood vessel damage leading or not to clinical mani-
festations of variable severity. 

Searching possible therapies for sAD has been 
constant over the years. Cholinesterase inhibitors, 
NMDA receptor antagonists, membrane protectors, 
anti-oxidants, and anti-inflammatory agents, all as-
sayed at middle and advanced clinical stages of sAD, 
have proven poorly effective. Other treatments are 
directed to reducing β-amyloid or tau accumulation. 
Several Aβ-protein-targeted drugs, including β-
secretase inhibitors, γ-secretase inhibitors and mod-
ulators, α-secretase activators, direct inhibitors of 

Aβ aggregation, and immunotherapy have been as-
sayed or are under different phases of clinical trial 
(1522). β-amyloid immunization in humans has been 
successful in the sense that SPs are largely reduced 
in the brain of treated patients; yet the abundance 
of tau deposits and the progression of the disease 
are not substantially modified by β-amyloid immun-
ization (719, 1523, 1524). The clinical improvement 
seen with β-amyloid immunotherapy has been null 
or negligible, or at best arguable (1525-1530). Treat-
ment with a BACE1 inhibitor has yielded very limited 
neuropathological improvement (1531). Trials with 
new generation Aβ immunotherapy are in progress. 

Following the same line of thinking, tau immuniza-
tion, although putatively preventing tau accumula-
tion, is unlikely to be a unique alternative treatment 
(1532-1534). Various tau-based therapies have been 
developed or are under development. These thera-
pies include the use of inhibitors of tau phosphory-
lation, glycosylation, and acetylation; microtubule 
stabilizers; inhibitors of tau aggregation; and anti-
tau immunotherapy (1535-1538). Various tau thera-
pies based on active and passive immunization are 
effective in murine and primate models. However, 
some of these attempts have failed in sAD (1539). 
Although encouraging, it is not clear how such treat-
ments will reduce the different forms of abnormal 
tau and decrease Aβ burden. In short, there is no ev-
idence that merely lessening the abnormal levels 
and deposits of tau or β-amyloid at middle and ad-
vanced stages of the illness will cure sAD. Therefore, 
it is crucial to re-consider the optimal age to start 
combined anti-tau- and anti-β-amyloid-based treat-
ments to combat two main representative compo-
nents of AD. The identification of new putative tar-
gets for therapeutic intervention before the appear-
ance of tau and amyloid deposits is a promising en-
deavor. 

Gene therapy has also been assessed in trans-
genic mouse models with variable success using 
both vector-based therapies and genetically modi-
fied cell replacement (1540-1542). Studies in hu-
mans are limited, at this time, to upregulated NGF in 
sAD patients, with little evidence of benefit (1543-
1545). 

Exosomes are a class of membrane vesicles derived 
from endolysosomal compartment implicated 
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Figure 9: Factors involved in brain aging and sAD. In addition to genetic factors, molecular alterations in cellular structures may induce 
the production of β-amyloid and abnormal tau. Conversely, the presence of β-amyloid and abnormal tau has a negative effect on the 
majority of cellular structures, contributing to a harmful loop in sAD pathogenesis. 
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in cell-cell communication by shuttling different li-
pids, protein, and RNAs between cells. The use of 
shuttles including exosomes to deliver selected mol-
ecules into the cells is still at the early stages. 

The meager success of available therapies to 
curb the effects of human brain aging and sAD is a 
matter of concern. Besides disease modification and 
symptomatic therapies for sAD (1546-1549), other 
relevant and long-term ventures may also be consid-
ered. 

One of these is a revision of animal models 
used to test sAD therapies, because they have failed 
when applied to humans (1550). To make this clear: 
for 25 years, many AD-like mouse models have been 
“cured” in the lab, only for the treatments to fail in 
clinical trials in humans (1551, 1552). It seems that 
mice have the ability to remodel complex metabolic 
defects once one of the factors involved in the pro-
cess is normalized. This does not occur in humans. 

These considerations are made yet more com-
pulsory because a number of molecular function de-
rangements take place before or concurrent with 
the appearance of β-amyloid and tau pathology 
morphologically manifested as NFTs and SPs. Al-
tered lipid and protein composition of cellular mem-
branes accompanied by impaired subcellular cell sig-
naling from the cell membrane to the ER, mitochon-
drial membranes, altered synapses, altered mito-
chondria and energy metabolism, and reactivation 
and abortion of developmental programs leading to 
neuronal death, together with dysfunctional BBB 
and singular brain inflammatory expression, all point 
to sAD as a human brain age-related disorder of con-
vergent mechanisms that shatters brain self-organi-
zation (329, 1343, 1553, 1554). 

A great data analysis covering the tremendous 
body of information on AD must be updated in real 
time. 

We need to think of the coming decades as an 
opportunity to take advantage of the rapid growth 
of artificial intelligence (AI) and cell reprogramming. 
We will be able to redesign some aspects of the hu-
man brain in the near future using advanced tech-
nologies. To this end, we also need to identify the 
main targets and appropriate intervention times. 
Timing is crucial since it will be difficult to reprogram 
molecular pathways in old-adult individuals that 

have already suffered brain deterioration. Brain re-
programming would likely be undertaken before the 
beginning of the slow-pace functional decline in MA 
adults. Brain reprogramming may cover different ar-
eas including brain DNA editing, utilization of exter-
nal electrical or wave-based signals to reduce energy 
consumption of basic neuronal networks, optimiza-
tion of mitochondrial function, implanting of micro-
devices to facilitate cooperative human-machine 
function, pharmacological combined protection of 
lipid-protein interactions, and program resetting 
during stages of sleep. Improvement of brain func-
tion in aging and sAD has a chance in the application 
of high-throughput molecular technology, AI, and 
robotics (1394, 1555-1561). This new era is certain 
to present formidable ethical challenges. 
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