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Data Preparation. 

Cosmic ray artefacts were removed from individuals recording with a median filter.  

Trend removal was performed using an iterative use of Savitzky-Golay filtering and 

morphological opening of the signal to avoid removing crucial information from the 

spectrum. Spectrum were then standardized by spectrum, followed by frequency bin 

standardization (by feature). 

Statistical Inference 

Model training and evaluation were performed with sklearn and xboost libraries in 

Python. Code is available at the following repository: 

https://github.com/Lmombaerts/raman_gbm_lymphoma. Raw data are available at the 

following address: TBA. 

Logistic Regression 

In this study, a L1-regularized Logistic Regression was trained to differentiate between 

tissue types. The L1 penalty allows for the intrinsic reduction of the entire feature set 

to a subset of the most relevant features for the discrimination between glioblastoma 

and lymphoma tumor tissues. This choice of regularization was further motivated by 

the dimension of the training set: 54 glioblastoma Raman spectrum, 21 lymphoma 

Raman spectrum and 1613 Raman frequency bins. Due to the relatively small amounts 

of spectrum and patients (Supplemental Figure 1), the performance of the algorithm 

was evaluated on 4 folds cross-validation (repeated 5 times) and the regularization 

parameter was optimized on a [0.1,0.5,1] grid – 0.5 leading to best performance trade-

offs. Patient stratification results are displayed on Supplemental Figure 2 and do not 

suggest patient-specific bias. 

Random Forest 

The objective function of the Random Forest has been modified to account for the class 

imbalance, so that a class-sensitive cost function was optimized to raise the penalty 

resulting from a misclassification of the minority class (lymphoma spectrum). Feature 

selection was considered with Recursive Feature Elimination, but did not improve the 



performance of the prediction model. For the SOLAIS classification, the following 

hyperparameters were optimized using a grid and 4 folds cross-validations (repeated 

5 times): number of trees in the forest (or estimators), maximum depth of de decision 

trees, minimum number of samples to make a split and minimum number of samples 

to be defined as a leaf. The best classification results obtained were:  115 estimators, 

maximum depth of 5, 5 minimum samples to make a split and 2 samples minimum as 

a leaf. For the FFPE classification, the following hyperparameters were optimized 

using a grid and 3 folds cross-validations (repeated 5 times): number of trees in the 

forest (or estimators), maximum depth of de decision trees, minimum number of 

samples to make a split and minimum number of samples to be defined as a leaf. The 

best classification results obtained were:  100 estimators, maximum depth of 5, 10 

minimum samples to make a split and 4 samples minimum as a leaf. 

XGBoost 

The objective function of the XGBoost algorithm has been modified to account for the 

class imbalance, so that a class-sensitive cost function was optimized to raise the 

penalty resulting from a misclassification of the minority class (lymphoma spectrum). 

The following hyperparameters were optimized on 4 splits cross-validation (repeated 

2 times) with a grid search: number of trees (estimators), learning rate, maximum tree 

depth, gamma regularization parameter, subsample ratio of the training instance, 

subsampling by tree, subsampling by level and minimum child weight. The best 

classification results were obtained with 226 estimators, a learning rate of 0.1, 

maximum tree depth of 3, gamma of 0.1, 0.8 subsample ratio, 0.8 subsampling by tree 

and by level and 5 minimum child weight. 

 

 

 



 

Supplemental Figure 1: Visualization of patient-specific spectrum (SOLAIS). 

 



 

Supplemental Figure 2: Results of Logistic Regression by Random Shuffling (upper) 

and Patient Stratification (lower) (SOLAIS). 



 

Supplemental Figure 3: Results of Random forest by Random Shuffling (upper) and 

Patient Stratification (lower) (SOLAIS). 

 



 

 

Supplemental Figure 4: Results of XGBoost by Random Shuffling (upper) and Patient 

Stratification (lower) (SOLAIS). 



 

Supplemental Figure 5: Visualization of patient-specific spectrum (FFPE). 

 



 

 

Supplemental Figure 6: Results of Random forest by Random Shuffling and Patient 

Stratification (FFPE). 

  



tumor 
sample 
no° 

age sex localization IDH 
status 
(wildtype 
/ mutant) 

MGMT status 
(methylated / 
unmethylated) 

ALA 
positive (+) 
/ negative 
(-) 

1 75 female right 
central 

wildtype unmethylated + 

2 64 male right 
fronto-
dorsal 

wildtype methylated + 

3 72 female right 
temporal 

wildtype methylated + 

4 50 female left 
temporal 

not 
specified 

methylated + 

5 72 male right 
opercular 

wildtype methylated + 

6 49 male left fronto-
temporal 

wildtype methylated - 

7 58 male supratento
rial 

wildtype unmethylated no use of 
ALA 

8 64 female right 
occipital 

wildtype methylated not 
specified 

9 27 male left frontal mutant unmethylated + 
10 67 male left fronto-

basal 
wildtype unmethylated not 

specified 
Supplemental Table 1. Additional information of the intraoperative measured 
glioblastoma samples. 

 

tumor 
sample 
no° 

age sex localization IDH 
status 
(wildtype 
/ mutant) 

MGMT status 
(methylated / 
unmethylated) 

ALA 
positive (+) 
/ negative 
(-) 

1  61 male right fronto-
temporal 

wildtype methylated not 
specified 

2  42 female right 
temporal 

mutant inconclusive + 

3  75 female right central wildtype unmethylated + 
4  56 male left occipital wildtype not specified not 

specified 
5  64 male left 

temporal / 
parietal 

wildtype methylated + 

6  51 male right 
temporal 

wildtype methylated not 
specified 

Supplemental Table 2. Additional information of the measured glioblastoma samples 
(FFPE tissue). 

 


