2023

Diffusion NMR of Poly(acrylic acid) Solutions: Molar Mass Scaling and pH-Induced Conformational Variation
A. Lenoch, M. Schumacher, A.H. Gröschel, C. Cramer, M. Schönhoff, Macromol. Phys. Chem. (2023) 2300286.
https://doi.org/10.1002/macp.202300286

 

Validity and Breakdown of Superposition Principles in the Viscoelasticity of Chitosan Gum Arabic Complex Coacervates
P. Schröder, M. Schönhoff, C. Cramer; Macromolecules 56(13) (2023) 4966–4980
https://pubs.acs.org/doi/10.1021/acs.macromol.3c004
 

Composition and Charge Compensation in Chitosan – Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration
P. Schröder, S. Cord-Landwehr, M. Schönhoff, C. Cramer, Biomacromolecules 24 (2023) (3), 1194-1208. 
https://pubs.acs.org/doi/10.1021/acs.biomac.2c01255

 

 

2022

Quantification of chitosan in aqueous solutions by enzymatic hydrolysis and oligomer analysis via HPLC-ELSD
P. Schröder, J. Wattjes, M. Schönhoff, B.M. Moerschbacher, C. Cramer, S. Cord-Landwehr, Carbohydrate Polymers 283 (2022) 119141
https://doi.org/10.1016/j.carbpol.2022.119141

Modelling viscoelastic relaxation mechanisms in thermorheologically complex Fe(III)-poly(acrylic acid) hydrogels
A. Lenoch, M. Schönhoff, C.Cramer, Soft Matter 18 (2022) 8467–8475.
https://doi.org/10.1039/D2SM01122K

2020

Ionic Conductivity Enhancement of Polyelectrolyte Multilayers by Variation of Charge Balance
 J. Schlicke, K. Hoffmann, M. Lorenz, M. Schönhoff, C. Cramer, J. Phys. Chem. C (2020) 124 (31), 16773–16783.
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c03043

Supramolecular ionogels prepared with bis(amino alcohol)oxamides as gelators: Ionic transport and mechanical properties
A. Šantić, M. Brinkkötter, T. Portada, L. Frkanec, C. Cramer, M. Schönhoff, A. Moguš-Milan­ković, RSC Advances 10 (2020) 17070–17078.
https://doi.org/10.1039/D0RA01249A

2019

Ionic conductivity of solid polyelectrolyte complexes with varying water content: application of the dynamic structure model
A.Ostendorf, M. Schönhoff, C. Cramer, Physical Chemistry Chemical Physics 21 (2019), pp. 7321–7329.
https://doi.org/10.1039/C8CP05853A

2018

Reply to the ‘Comment on ‘‘Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the ‘‘Wrong’’ direction?’’’ by K. R. Harris
M. Schönhoff, C. Cramer, F. Schmidt, Physical Chenistry Chemical Physics 20 (2018) 30046–30052.
https://doi.org/10.1039/C8CP02595A

2017

pH-Dependent growth laws and vicoelastic parameters of poly-L-lysine/ hyaluronic acid multilayers
D. Bütergerds, C. Cramer, M. Schönhoff, Adv. Mat. Interf. 4(1) (2017) 1600592
https://doi.org/10.1002/admi.201600592

Influence of the Degree of Ionization on the Growth Mechanism of Poly(Diallyldimethylammo­nium)­/Poly(Acrylic Acid) Multilayers
D. Bütergerds, C. Kateloe, C. Cramer, M. Schönhoff, J. Polym. Sci. B Polym. Phys. 55 (2017) 425-434.
https://doi.org/10.1002/polb.24283

Ion Conduction and its Activation in Hydrated Solid Polyelectrolyte Complexes
S. De, A. Ostendorf, M.Schönhoff, C. Cramer, Polymers 9 (2017), 550–555.
https://doi.org/10.3390/polym9110550

2015

Humidity-Tunable Electronic Conductivity of Polyelectrolyte Multilayers Containing Gold Nanoparticles
Ostendorf, C. Cramer, G. Decher, M. Schönhoff, J. Phys. Chem. C 119(17) (2015) 9543-9549.
https://doi.org/10.1021/jp5127706

Scaling Properties of the Shear Modulus of Polyelectrolyte Complex Coacervates: A Time-pH Superposition Priciple
M. Tekaat, D. Bütergerds, M. Schönhoff, A. Fery, C. Cramer, Phys. Chem. Chem. Phys. 17 (2015) 22552-22556.
https://doi.org/10.1039/C5CP02940F

2014

Ion conduction in Solid Polyelectrolyte Complex Materials
C. Cramer and M.Schönhoff in “Polyelectrolyte Complexes in the Dispersed and Solid State I, Principles and Theory”. Editor M. Müller, Adv. Polym. Sci 255 (2014) 97-138.
https://link.springer.com/chapter/10.1007/12_2012_203

2012

Cation conductivity in dried poly(4-styrene sulfonate) poly(diallydimethylammonium chloride) based polyelectrolyte complexes
A. Bhide, M. Schönhoff, C. Cramer, Solid State Ionics 214 (2012) 13-18.
https://doi.org/10.1016/j.ssi.2012.03.001
 

Conductivity Spectra of Polyelectrolyte Multilayers Revealing Ionic Transport Processes
M. Schönhoff and C. Cramer in “Multilayer Thin Films”, Editors G. Decher und Jospeh B. Schlenoff, Wiley-VCH Verlag & Co KGaA, Weinheim 2012, Chapter 14, pp 321-336.
https://doi.org/10.1002/9783527646746

2011

Time-Humidity-Superposition Principle in Electrical Conductivity Spectra of Ion-Conducting Polymers
C. Cramer, S. De, M. Schönhoff, Phys. Rev. Lett. 107 (2011) 028301-1 - 028301-4.
https://doi.org/10.1103/PhysRevLett.107.028301

Humidity dependence of the ionic conductivity of polyelectrolyte complexes
S. De, C. Cramer and M. Schönhoff, Macromolecules 44 (2011) 8936-8943.
https://doi.org/10.1021/ma201949s

2010

Humidity-Dependent DC Conductivity of Polyelectrolyte Multilayers: Protons or Other Small Ions as Charge Carriers?
Y. Akgöl, C. Cramer, C. Hofmann, Y. Karatas, H.-D. Wiemhöfer, M. Schönhoff, Macromolecules 43(17) (2010) 7282-7287.
https://doi.org/10.1021/ma1012489

Mechanisms of Ion Conduction in Polyelectrolyte Multilayers and Complexes
M. Schönhoff, Á. W. Imre, A. Bhide, C. Cramer, Z. Phys. Chem. N.F. 224 (10-12) (2010) 1555-1589.
https://doi.org/10.1524/zpch.2010.0031  

2009

Unconventional Scaling of Electrical Conductivity Spectra for PSS-PDADMAC Polyelectrolyte Complexes
Á. W. Imre, M. Schönhoff, C. Cramer, Phys. Rev. Lett. 102 (2009) 255901-1- 255901-4.
https://doi.org/10.1103/PhysRevLett.102.255901

Ion Dynamics in Solid Polyelectrolyte Materials
C. Cramer, Y. Akgöl, Á.W. Imre, A. Bhide, M. Schönhoff, Z. Phys. Chem. N.F. 223 (10-11) (2009) 1171-1185.
https://doi.org/10.1524/zpch.2009.6072

Insights into Ion-Network Interactions and Ion Transport in Glass
R. D. Banhatti, C. Cramer, D. Zielniok, A.H. J. Robertson,  M. D. Ingram, Z. Phys. Chem. N.F. 223 (10-11) (2009) 1201-1215.
https://doi.org/10.1524/zpch.2009.6074

2008

Transition from a Single Ion to a Collective Diffusion Mechanism in Alkali Borate Glasses
Á.W. Imre, F. Berkemeier, H. Mehrer, Y. Gao, C. Cramer,  M.D. Ingram, J. Non-Cryst. Solids 354(2-9) (2008) 328-332.
https://doi.org/10.1016/j.jnoncrysol.2007.07.087
 

Direct correlation between nonrandom ion hopping and network structure in ion-conducting borophosphate glasses
D. Zielniok, H. Eckert, C. Cramer, Phys. Rev. Lett. 100 (2008) 03591-1 - 03591-4.
https://doi.org/10.1103/PhysRevLett.100.035901

A conductivity study and calorimetric analysis of dried poly(sodium 4-styrene­sulfonate)/poly(diallyldimethylammonium chloride) polyelectrolyte complexes
Á. W. Imre, M. Schönhoff C. Cramer, J. Chem. Phys. 128 (2008) 134905-1-134905-9.:
https://doi.org/10.1063/1.2901048 

2007

Structure/Property Correlations in Ion-Conducting Glasses: Solid State NMR and Impedance Measurements on the System Na2O-B2O3-P2O5
D. Zielniok, C. Cramer, H. Eckert, Chem. Mat. 19(13) (2007) 3162-3170.
https://doi.org/10.1021/cm0628092
 

Conductivity Spectra of Polyphosphazene Based Polyelectrolyte Multilayers
Y. Akgöl, C. Hofmann, Y. Karatas, C. Cramer, H.-D. Wiemhöfer, M. Schönhoff, J. Phys. Chem. B 111(29) (2007) 8532-8539.
https://doi.org/10.1021/jp068872w

2005

Concept of Mismatch and Relaxation for Self-Diffusion and Conductivity in Ionic Materials with Disordered Structures
K. Funke, C. Cramer, D. Wilmer, in Diffusion in Condensed Matter (2. Auflage), Editoren J. Kärger, P. Heitjans, R. Haberlandt, Springer Verlag, Berlin 2005.
https://doi.org/10.1007/3-540-30970-5_21

Correlated Ionic Hopping Processes in Crystalline and Glassy Electrolytes Resulting in MIGRATION-Type and Nearly-Constant-Loss-Type Conductivities
K. Funke, R.D. Banhatti, C. Cramer, Phys. Chem. Chem.  Phys. 7 (2005) 157-165.
https://doi.org/10.1039/B414160C

Ionic Conductivity of Glasses with Two and Three Types of Alkali Ions
Y. Gao, C. Cramer, Solid State Ionics 176 (2005) 921-927.
https://doi.org/10.1016/j.ssi.2004.11.010

Free volume anomalies in mixed-cation glasses revealed by positron annihilation lifetime spectroscopy (PALS)
M. D. Ingram, S. J. Pas, C. Cramer, Y. Gao and A.J. Hill, Phys. Chem. Chem. Phys. 7 (2005) 1620-1623.
https://doi.org/10.1039/B419201J

Mixed Cation Effects in Alkali Borate Glasses with Varying Total Ion Concentrations
C. Cramer, Y. Gao, K. Funke, Phys. Chem. Glass. 46 (2) (2005) 90-94.

Ion Dynamics in 0.3[x M2O×(1-x) Me2O]×0.7B2O3 (M, Me= Li, Na, K) Mixed Alkali Glasses
Y. Gao, C. Cramer, Phys. Chem. Glass. 46 (2) (2005) 182-186.

Mixed Cation Effects in Glasses with Three Types of Alkali Ions
Y. Gao, C. Cramer, Solid State Ionics 176 (29-30) (2005) 2279-2284.
https://doi.org/10.1016/j.ssi.2005.06.010

2002

Dynamics of Mobile Ions in Crystals, Glasses and Melts Described by the Concept of Mismatch and Relaxation
K. Funke, R.D. Banhatti, S. Brückner, C. Cramer, D. Wilmer, Solid State Ionics 154-155 (2002) 65-74.
https://doi.org/10.1016/S0167-2738(02)00465-4

Dynamics of Mobile Ions in Inorganic Glasses
C. Cramer, S. Brückner, Y. Gao, K. Funke, R. Belin, G. Taillades, A. Pradel, J. Non-Cryst. Solids 307-310 (2002) 905-912.
https://doi.org/10.1016/S0022-3093(02)01544-2

Dynamics of Mobile Ions in Solid Electrolytes – Conductivity Spectra and the Concept of Mismatch and Relaxation
K. Funke, S. Brückner, C. Cramer, D. Wilmer, J. Non-Cryst. Solids 307-310 (2002) 921-929.
https://doi.org/10.1016/S0022-3093(02)01546-6

Ionic Motion in Materials with Disordered Structures – Conductivity Spectra and the Concept of Mismatch and Relaxation
K. Funke, R.D. Banhatti, S. Brückner, C. Cramer, C. Krieger, A. Mandanici, C. Martiny, I. Ross, Physical Chemistry Chemical Physics 4 (2002) 3155-3167.
https://doi.org/10.1039/B200122P

Ion Dynamics in Mixed Alkali Glasses
C. Cramer, S. Brückner, Y. Gao, K. Funke, Physical Chemistry Chemical Physics 4 (2002) 3214-3218.
https://doi.org/10.1039/B200610N

2001

Diffusion in Single and Mixed Alkali Borate Glasses
U. Schoo, C. Cramer, E. Ratai, H. Mehrer, Proc. Int. Conf. on Diffusion in Materials (DIMAT 2000), Paris, July 2000, Defect and Diffusion Forum, 194-199 (2001) 925 – 934
https://doi.org/10.4028/www.scientific.net/DDF.194-199.925
 

Amorphous Materials, Frequency-Dependent Ionic Conductivity
K. Funke, C. Cramer, in Encyclopedia of Materials, Science and Tech­nology, Herausgeber: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, Elsevier, Oxford, 2001, vol. 1, 189-194.
https://doi.org/10.1016/B0-08-043152-6/00040-1

2000

Microwave Dielectric Spectroscoy and Dynamical Processes in Superionic Glasses
A. Mandanici, M. Cutroni, C. Cramer, K. Funke, P. Mustarelli, C. Tomasi, Nuclear and Condensed Matter Physics – AIP American Institute of Physics Conference Proceedings 513 (2000) 150-153.
https://doi.org/10.1063/1.1303350  

Dynamics of Mobile Ions in Glass – What do Conductivity Spectra Tell us?
K. Funke, C. Cramer, B. Roling, Glass Scie. Technol. – Glastechnische Berichte 73 (8) (2000) 244-254.
 

Theoretical and Practical Investigations Concerning the Design of a HOM Broadband Absorber for TESLA
A. Jöstingmeier, M. Dohlus, M. Wendt, C. Cramer, DESY, TESLA Reports 2000-10, 2000.

Photon Diffusion Model for TTF-2
A. Jöstingmeier, M. Dohlus, C. Cramer, DESY, TESLA Reports 2000-11, 2000.

Tracer Diffusion in Sodium-Rubidium Borate Glasses – an Unconventional Mixed Alkali Effect?
U. Schoo, C. Cramer, H. Mehrer, Solid State Ionics 138 (2000) 105-114.
https://doi.org/10.1016/S0167-2738(00)00773-6

1999

Raman and IR Spectroscopy of Silver Iodide/Silver Selenate Fast Ion Conducting Glasses
C. Cramer, M. Grimsditch, M.-L. Saboungi, J. Phys. Chem. B 103 (1999) 4018-4022.
https://doi.org/10.1021/jp983467t
 

Giant Haven Ratio for Proton Transport in Sodium Hydroxide
M. Spaeth, K.D. Kreuer, J. Maier, C. Cramer, J. Solid State Chem. 148 (1999) 169-177.
https://doi.org/10.1006/jssc.1999.8495

Diffusion in ionenleitenden Boratgläsern
U. Schoo, C. Cramer, E. Ratai, H. Mehrer, Verhandl. DPG, 1999 (M 17.12).

Structural and Dynamical Aspects of Fast Ion-Conducting Glasses
C. Cramer, S. Brücker, Tagungsband XX. Arbeitstagung des Arbeitskreises Nichtkristalline und Partiellkristalline Strukturen (Deutsche Gesellschaft für Kristallographie), Wolfersdorf, 1999.

1998

Complete Conductivity Spectra of Fast Ion Conducting Silver Iodide/Silver Selenate Glasses
C. Cramer, M. Buscher, Solid State Ionics 105 (1998) 109-120.
https://doi.org/10.1016/S0167-2738(97)00456-6

Diffusion von 22Na in ionenleitenden Natriumboratgläsern
U. Schoo, C. Cramer, E. Ratai, H. Mehrer, Verhandl. DPG 5 (1998) 827.

Ion Dynamics in Superionic Chalcogenide Glasses Studied in Large Frequency and Temperature Ranges
A. Pradel, G. Taillades, C. Cramer, M. Ribes, Solid State Ionics 105 (1998) 139-148.
https://doi.org/10.1016/S0167-2738(97)00459-1

Structure of Silver Iodide/Silver Selenate Fast-Ion-Conducting Glasses: Neutron Diffraction Experiments
C. Cramer, D.L. Price, M.-L. Saboungi, J. Phys.: Condens. Matter 10 (1998) 6229-6242.
https://doi.org/10.1088/0953-8984/10/28/005

1997

Conductivity Spectroscopy
K. Funke, C. Cramer, Current Opinion in Solid State Chemistry and Science 2 (1997) 483-490.  
https://doi.org/10.1016/S1359-0286(97)80094-0

Tracerdiffusion in ionenleitendem Natriumboratglas
U. Schoo, C. Cramer, H. Mehrer, Verhandl. DPG 5 (1997) 847.

Nanoclusters in Zeolite
P. Armand, M.-L. Saboungi, D.L. Price, L. Iton, C. Cramer, M. Grimsditch, Phys. Rev. Lett. 79 (1997) 2061-2064.
https://doi.org/10.1103/PhysRevLett.79.2061

1996

Structural Transitions in Fast Ion-Conducting Silver Iodide Silver Selenate Glasses
C. Cramer, D.L. Price, M.L. Saboungi, K.J. Volin in: IPNS Progress Report 1991-1996, 15th Anniversary Edition, Vol. II, Argonne 1996, Experiment Number 1969, p 4.
https://digital.library.unt.edu/ark:/67531/metadc671133/m2/1/high_res_d/226071.pdf

Ionic and Polaronic Glassy Conductors: Conductivity Spectra and Implications for Ionic Hopping in Glass
K. Funke, C. Cramer, B. Roling, T. Saatkamp, D. Wilmer, M.D. Ingram, Solid State Ionics 85 (1996) 293-303.
https://doi.org/10.1016/0167-2738(96)00073-2

Ionic and Polaronic Hopping in Glass
C. Cramer, K. Funke, B. Roling, T. Saatkamp, D. Wilmer, M.D. Ingram, A. Pradel, M. Ribes, G. Taillades, Solid State Ionics 86-88 (1996) 481-486.
https://doi.org/10.1016/0167-2738(96)00178-6

Short Time and Long Time Dynamics of Interacting Systems
K.L. Ngai, C. Cramer, T. Saatkamp, K. Funke in: Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, Vol.3, Editors: M. Giordano, D. Leporini, M.P. Tosi, World Scientific, Singapore 1996, pp 3-21.
https://www.worldscientific.com/doi/epdf/10.1142/9789814530774
 

Semiconductors in the Disordered State: From Bulk to Nanoscale
P. Armand, A. Goldbach, C. Cramer, R. Csencsits, L.E. Iton, D.L. Price, M.-L. Saboungi, J. Non-Cryst. Solids 205-207 (1996) 797-802.
https://doi.org/10.1016/S0022-3093(96)00539-X

IV. Tranport Phenomena, Properties of Glass Surface and Corrison: Ion and Polaron Conducting Glasses
C. Cramer, Ber. Bunsenges. Phys. Chem. 100 (1996) 1497-1502.
https://doi.org/10.1002/bbpc.19961000929

1995

Ion Dynamics in Glass-Forming Systems: I. Conductivity Spectra Below the Glass Transformation Temperature
C. Cramer, K. Funke, T. Saatkamp, Phil. Mag. B 71 (1995) 701-711.
https://doi.org/10.1080/01418639508238560

Ion Dynamics in Glass-Forming Systems: II. Conductivity Spectra Above the Glass Transformation Temperature
C. Cramer, M. Buscher, K. Funke, A. Happe, T. Saatkamp, D. Wilmer, Phil. Mag. B 71 (1995) 713-719.
https://doi.org/10.1080/01418639508238561
 

High-Frequency Conductivity Plateau and Ionic Hopping Processes in a Ternary Lithium Borate Glass
C. Cramer, K. Funke, T. Saatkamp, D. Wilmer, M.D. Ingram, Z. Naturforsch. 50a (1995) 613-623.
https://doi.org/10.1515/zna-1995-0701

Complete Conductivity Spectra of Crystalline and Glassy Fast Ion Conductors up to Far Infrared Frequencies
C. Cramer, R. Graeber, M.D. Ingram, T. Saatkamp, D. Wilmer, K. Funke, Mat. Res. Soc. Symp. Proc. 369 (1995) 233-243.
https://doi.org/10.1557/PROC-369-233

Semiconductors Confined in Zeolite
M.-L. Saboungi, P. Armand, L. Iton, C. Cramer, D.L. Price, D.E. Cox, Book of Abstracts, 210th ACS National Meeting, Chicago, IL, August 20-24 (1995), (Pt. 1), INOR-374

1994

Nanostructures Detected by Conductivity Spectroscopy
K. Funke, K. El-Egili, R. Reichelt, M. Amrein, C. Cramer, Mat. Res. Soc. Symp. Proc. 332 (1994) 189-194.
https://doi.org/10.1557/PROC-332-189

Dielectric Relaxation Spectroscopy of Electrolyte Solutions: Some Li-Salts in N-Methyl­pyrro­li­done and N-Cyclohexylpyrrolidone
K. Klockgeter, C. Cramer, M. Stockhausen, Z. Phys. Chem. 187 (1994) 73-83.
https://doi.org/10.1524/zpch.1994.187.Part_1.073

Different Kinds of Localized Hopping in Solid Electrolytes
K. Funke, T. Maue, D. Wilmer, C. Cramer, T. Saatkamp in: Ionic and Mixed Conducting Ceramics, Herausgeber: T.A. Ramanarayana, W.L. Worrel, H.L. Tuller, The Electrochemical Society Softbound Proceedings, Pennington, 1994, pp 564-573.

1993

Vibrational, Reorientational and Translational Ionic Motion in Glass
C. Cramer, K. Funke, C. Vortkamp-Rückert, A.J. Dianoux, in: The Extension of the Concept of Loca­lized States, Herausgeber: J.V. Zanchetta, J.C. Giuntini, A. Pradel, CNRS, Montpellier 1993, pp 7-14.

Arrhenius and Vogel-Fulcher-Tammann Type Components in Dynamic Conductivity Spectra of Molten LiCl × 7 H2O and Ca(NO3)2× 4 H2O
C. Cramer, M. Buscher, K. Funke, A. Happe, D. Wilmer in: Proceedings of the International Symposium on Molten Salt Chemistry and Technology, Vol. 9, Herausgeber: M.-L. Saboungi, H. Kojima, The Electrochemical Society Softbound Proceedings, Pennington, 1993, pp 131-137.

1992

Incoherent Quasielastic Neutron Scattering Due to Jump Relaxation in a Lithium Ion Conducting Glass
C. Vortkamp-Rückert, C. Cramer, K. Funke, A.J. Dianoux, Annual Reports (Institut Laue Langevin), 1992.

Observation of Two Relaxation Processes in an Ion Conducting Glass Yields New Sructural Information
C. Cramer, K. Funke, Ber. Bunsenges. Phys. Chem. 96 (1992) 1725-1727.
https://doi.org/10.1002/bbpc.19920961140

Vibrational, Reorientational and Translational Ionic Motion in Glass
C. Cramer, K. Funke, C. Vortkamp-Rückert, A.J. Dianoux, Physica A, 191 (1992) 358-364.
https://doi.org/10.1016/0378-4371(92)90552-2

1991

Search for Quasielastic Neutron Scattering Components Due to Jump Relaxation in Glass
C. Cramer, K. Funke, C. Vortkamp, A.J. Dianoux, R. Grüne, Ber. Bunsenges. Phys. Chem. 95 (1991) 1140-1145.
https://doi.org/10.1002/bbpc.19910950937

Theses

Struktur und Dynamik ionenleitender Gläser
C. Cramer-Kellers, Habilitationsschrift, Münster 1998.

Untersuchung dielektrischer Relaxationsvorgänge in ionenleitenden Gläsern am Beispiel eines lithiumbromidhaltigen Lithiumboratglases
C. Cramer, Dissertation, Münster 1991.

Untersuchung der frequenzabhängigen komplexen Leitfähigkeit des glasbildenden Systems LiCl × 7 H2O im Frequenzbereich zwischen 18 GHz und 60 GHz
C. Cramer, Diplomarbeit, Münster 1988.