The Dean of the Faculty of Biology

Prof. Dr. Susanne Fetzner
© Uni MS

Fetzner, Susanne, Prof. Dr. rer. nat.
Westfälische Wilhelms-Universität Münster
Institute of Molecular Microbiology and Biotechnology (IMMB)
Corrensstraße 3
D-48149 Münster

Tel. +49 (0)251 / 83-2 30 12
dekanat.bio@uni-muenster.de

Wissenschaftlicher Werdegang
1982- 1988 Studium der Biologie (Diplom)
1990 Promotion zum Dr. rer. nat., Universität Hohenheim
1996 Habilitation in Mikrobiologie, Universität Hohenheim
1996-2002 Vertretung der Professur für Mikrobiologie an der Carl von Ossietzky Universität Oldenburg
seit 2002 Professorin für Mikrobiologie am Institut für Molekulare Mikrobiologie und Biotechnologie der WWU Münster

Lehrschwerpunkte

  • Allgemeine Mikrobiologie
  • Mikrobieller Stoffwechsel, Biodegradation
  • Enzymbiochemie

Forschungsschwerpunkte

  • Biochemie bakterieller Stoffwechselwege
  • Mechanismen enzymkatalysierter Reaktionen

Ausgewählte Projekte

  • Alkylquinolone biosynthesis in Pseudomonas aeruginosa
  • Inactivation of Pseudomonas aeruginosa alkylquinolone-type quorum sensing signals and antibiotics
  • Cofactor-less dioxygenases to interfere with quorum sensing signaling and virulence of Pseudomonas aeruginosa

Ausgewählte Publikationen

  • Wullich SC, Kobus S, Wienhold M, Hennecke U, Smits SHJ, Fetzner S (2019) Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqdC, a mycobacterial dioxygenase of the α/β-hydrolase fold family. J Struct Biol. 207: 287-294.
  • Thierbach S, Birmes FS, Letzel MC, Hennecke U, Fetzner S (2017) Chemical modification and detoxification of the Pseudomonas aeruginosa toxin 2-heptyl-4-hydroxyquinoline N-oxide by environmental and pathogenic bacteria. ACS Chem. Biol. 12: 2305-2312.
  • Drees SL, Li C, Prasetya F, Saleem M, Dreveny I, Williams P, Hennecke U, Emsley J, Fetzner S (2016) PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: Crystal structure, inhibition, and reaction mechanism. J. Biol. Chem. 291: 6610-6624.
  • Drees SL, Fetzner S (2015) PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules. Chem. Biol. 22: 611-618.
  • Thierbach S, Bui N, Zapp J, Chhabra SR, Kappl R, Fetzner S (2014) Substrate-assisted O2 activation in a cofactor-independent dioxygenase. Chem. Biol. 21: 217-225.
  • Steiner RA, Janßen HJ, Roversi P, Oakley AJ, Fetzner S (2010) Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β hydrolase fold. Proc. Natl. Acad. Sci. USA 107: 657-662.

Ausgewählte Übersichtsartikel/Sonderbeiträge:

  • Fetzner S (2015) Quorum quenching enzymes. J. Biotechnol. 201: 2-11.
  • Fetzner S, Drees SL (2013) Old molecules, new biochemistry. Chem. Biol. 20: 1438-1440.
  • Fetzner S (2007) Cofactor-independent oxygenases go it alone. Nat. Chem. Biol. 3: 374-375.

Publications

  • , , , , and . . “A comparative study of N-hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding.The FEBS Journal, 289 (18): 56375655. doi: 10.1111/febs.16444.
  • , , , et al. . “Azetidomonamide and Diazetidomonapyridone metabolites control biofilm formation and pigment synthesis in Pseudomonas aeruginosa.Journal of the American Chemical Society, 144 (17): 76767685. doi: 10.1021/jacs.1c13653.
  • , , and . . “A PQS-Cleaving Quorum Quenching Enzyme Targets Extracellular Membrane Vesicles of Pseudomonas aeruginosa.Biomolecules, 12 (11) 1656. doi: 10.3390/biom12111656.
  • , , , , and . . “Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS): A Comparison between Naturally Occurring and Engineered PQS-Cleaving Dioxygenases.Biomolecules, 12: 170. doi: 10.3390/biom12020170.
  • , , , , and . “Structural basis of O-methylation of (2-heptyl-)1-hydroxyquinolin-4(1H)-one and related compounds by the heterocyclic toxin methyltransferase Rv0560c of Mycobacterium tuberculosis.Journal of Structural Biology, 213(4):107794 doi: 10.1016/j.jsb.2021.107794.
  • , , , and . “A Complex of LaoA and LaoB Acts as a Tat-Dependent Dehydrogenase for Long-Chain Alcohols in Pseudomonas aeruginosa.Applied and Environmental Microbiology, 87(16):e0076221 doi: 10.1128/AEM.00762-21.
  • , , and . . “Signal synthase-type versus catabolic monooxygenases: Retracing 3-hydroxylation of 2-alkylquinolones and their N-oxides by Pseudomonas aeruginosa and other pulmonary pathogens.Applied and Environmental Microbiology, 87 doi: 10.1128/AEM.02241-20.
  • , , , and . . “Stabilizing AqdC, a Pseudomonas Quinolone Signal-Cleaving Dioxygenase from Mycobacteria, by FRESCO-based Protein Engineering.ChemBioChem, 22
  • , , , , and . . “Modification of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one and other secondary metabolites by methyltransferases from mycobacteria.The FEBS Journal, 288 doi: 10.1111/febs.15595.
  • , , , , and . . “Photoinduced monooxygenation involving NAD(P)H-FAD sequential single-electron transfer.Nature Communications, 11 doi: 10.1038/s41467-020-16450-y.
  • , , and . . “Definition of an α/β-hydrolase fold subfamily comprising Pseudomonas quinolone signal cleaving dioxygenases.Applied and Environmental Microbiology, 86 doi: 10.1128/AEM.00279-20.
  • , , , , , and . . “Pseudomonas Quinolone Signal molecule PQS behaves as a B Class like inhibitor at the IQ site of mitochondrial complex I.FASEB BioAdvances, 2 doi: 10.1096/fba.2019-00084.
  • , , , and . . “Efficient modification of the Pseudomonas aeruinosa toxin 2-heptyl-1-hydroxyquinolin-4-one by three Bacillus glycosyltransferases with broad substrate ranges.J. Biotechnol., 308 doi: 10.1016/j.jbiotec.2019.
  • , , , et al. . “Interference with Pseudomonas aeruginosa quorum sensing and virulence by the mycobacterial PQS dioxygenase AqdC in combination with the N-acylhomoserine lactone lactonase QsdA.Infect. Immun., 87 doi: 10.1128/IAI.00278-19.
  • , , , , , and . . “Structural basis for recognition and ring-cleavage of the Pseudomonas quinolone signal (PQS) by AqdC, a mycobacterial dioxygenase of the α/β-hydrolase fold family.J. Struct. Biol., 207 doi: 10.1016/j.jsb.2019.06.006.
  • , , , , , and . . “Bromination of alkyl quinolones by Microbulbifer sp. HZ11, a marine Gammaproteobacterium, modulates their antibacterial activity.Environ. Microbiol., 21 doi: 10.1111/1462-2920.14654.
  • , , , and . . “Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO und PQS.Beilstein J. Org. Chem., 15 doi: 10.3762/bjoc.15.18.
  • , , , , , and . . “PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Pseudomonas aeruginosa.J. Biol. Chem., 293 (24) doi: 10.1074/jbc.RA117.000789.
  • , , , , and . . “Chemical modification and detoxification of the Pseudomonas aeruginosa toxin 2-heptyl-4-hydroxyquinoline N-oxide by environmental and pathogenic bacteria.ACS Chemical Biology, 12 doi: 10.1021/acschembio.7b00345.
  • , , , et al. . “Polypharmacology approaches against the Pseudomonas aeruginosa MvfR regulon and their application in blocking virulence and antibiotic tolerance.ACS Chem. Biol., 12 doi: 10.1021/acschembio.6b01139.
  • , , , et al. . “Mycobacterium abscessus subsp. abscessus is capable of degrading Pseudomonas aeruginosa quinolone signals.Front. Microbiol., 8 doi: 10.3389/fmicb.2017.00339.
  • , , , and . “Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2-Ni Complex.Angewandte Chemie International Edition, 55 (10): 32813284. doi: 10.1002/anie.201510741.
  • , , , et al. . “Enzyme-mediated quenching of the Pseudomonas Quinolone Signal (PQS) promotes biofilm formation of pseudomonas aeruginosa by increasing iron availability.Frontiers in Microbiology, 7 (null) doi: 10.3389/fmicb.2016.01978.
  • , , , et al. . “Dissecting the Multiple Roles of PqsE in Pseudomonas aeruginosa Virulence by Discovery of Small Tool Compounds.ACS Chemical Biology, 11 (6): 17551763. doi: 10.1021/acschembio.6b00156.
  • , and . “Bakterielle Kommunikation: Signale und Signal-inaktivierende Enzyme.BIOspektrum, 22 (3): 251254. doi: 10.1007/s12268-016-0681-4.
  • , , , et al. . “PqsBC, a condensing enzyme in the biosynthesis of the Pseudomonas aeruginosa quinolone signal: crystal structure, inhibition, and reaction mechanism.Journal of Biological Chemistry, Jan 25, 2016
  • , and . “PqsE of Pseudomonas aeruginosa acts as pathway-specific thioesterase in the biosynthesis of alkylquinolone signaling molecules.Chemistry and Biology, 22 (5): 611618. doi: 10.1016/j.chembiol.2015.04.012.
  • , , , , , and . “Nickel quercetinase, a "promiscuous" metalloenzyme: Metal incorporation and metal ligand substitution studies Protein and enzyme biochemistry.BMC Biochemistry, 16 (1) doi: 10.1186/s12858-015-0039-4.
  • , , , et al. . “Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule.Environmental Microbiology, null (null) doi: 10.1111/1462-2920.12857.
  • , , , , and . “Rhodococcus erythropolis BG43 genes mediating Pseudomonas aeruginosa quinolone signal degradation and virulence factor attenuation.Applied and Environmental Microbiology, 81 (22): 77207729. doi: 10.1128/AEM.02145-15.
  • , , , et al. . “Complete genome sequence of Rhodococcus erythropolis BG43 (DSM 46869), a degrader of Pseudomonas aeruginosa quorum sensing signal molecules.Journal of Biotechnology, 211 (null): 99100. doi: 10.1016/j.jbiotec.2015.07.014.
  • . . “Quorum quenching enzymes.J. Biotechnol., 201: 214.
  • , , , and . “Crystal structure analysis of EstA from Arthrobacter sp. Rue61a - An insight into catalytic promiscuity.FEBS Letters, 588 (7): 11541160. doi: 10.1016/j.febslet.2014.02.045.
  • , , , and . . “Conversion of the Pseudomonas aeruginosa quinolone signal and related alkylhydroxyquinolines by Rhodococcus sp. strain BG43.Applied and Environmental Microbiology, 80 (23): 72667274. doi: 10.1128/AEM.02342-14.
  • , , , , , and . . “Substrate-Assisted O2 Activation in a Cofactor-Independent Dioxygenase.Chemistry & Biology, 21: 217225. doi: 10.1016/j.chembiol.2013.11.013.
  • , , , , and . “The PaaX-Type Repressor MeqR2 of Arthrobacter sp. Strain Rue61a, Involved in the Regulation of Quinaldine Catabolism, Binds to Its Own Promoter and to Catabolic Promoters and Specifically Responds to Anthraniloyl Coenzyme A.Journal of Bacteriology, 195 (5): 10681080. doi: 10.1128/JB.01547-12.
  • , and . “Old molecules, new biochemistry.Chemistry and Biology, 20 (12): 14381440. doi: 10.1016/j.chembiol.2013.12.001.
  • , , , et al. . “Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a.BMC Genomics, 13 (1): 534. doi: 10.1186/1471-2164-13-534.
  • , and . . “A Pseudomonas putida bioreporter for the detection of enzymes active on 2-alkyl-4(1H)-quinolone signalling molecules.Applied Microbiology and Biotechnology, to be assigned doi: 10.1007/s00253-012-4236-4.
  • , , , , , and . . “Hydrolase-like properties of a cofactor-independent dioxygenase.ChemBioChem, 13 (8): 11251127. doi: 10.1002/cbic.201200152.
  • . . “Ring-cleaving dioxygenases with a cupin fold.Applied and Environmental Microbiology, 78 (8): 250514. doi: 10.1128/AEM.07651-11.
  • , , , , and . . “Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440.Applied Microbiology and Biotechnology, 91 (5): 1399408. doi: 10.1007/s00253-011-3378-0.
  • , , , and . . “A Novel Replicative Enzyme Encoded by the Linear Arthrobacter Plasmid pAL1.Journal of Bacteriology, 192 (19): 49354943. doi: 10.1128/JB.00614-10.
  • . . “Aerobic degradation of halogenated aliphatics.” in Handbook of Hydrocarbon and Lipid Microbiology, Part 10: Biochemsitry of Aerobic Degradation, edited by KN Timmis. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-540-77587-1_62.
  • , and . . “Cofactor-independent oxidases and oxygenases.Applied Microbiology and Biotechnology, 86 (3): 791804. doi: 10.1007/s00253-010-2455-0.
  • , and . . “Identification and in vitro deoxynucleotidylation of the terminal protein of the linear plasmid pAL1 of Arthrobacter nitroguajacolicus Ru61a.FEMS Microbiology Letters, 304 (2): 169176. doi: 10.1111/j.1574-6968.2010.01900.x.
  • , , , , and . . “Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold.Proceedings of the National Academy of Sciences of the United States of America, 107 (2): 657662. doi: 10.1073/pnas.0909033107.
  • , , , et al. . “Dioxygenase-Mediated Quenching of Quinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa.Chemistry and Biology, 16 (12): 12591267. doi: 10.1016/j.chembiol.2009.11.013.
  • , , , , and . . “Quercetinase QueD of Streptomyces sp FLA, a Monocupin Dioxygenase with a Preference for Nickel and Cobalt.Biochemistry, 47 (46): 1218512196. doi: 10.1021/bi801398x.
  • , and . . “Transcriptional analysis of the queD gene coding for quercetinase of Streptomyces sp FLA.FEMS Microbiology Letters, 287 (1): 100107. doi: 10.1111/j.1574-6968.2008.01296.x.
  • , , , , , and . . “Thermodynamic analysis of denaturant-induced unfolding of HodC69S protein supports a three-state mechanism.Biochemistry, 47 (27): 71167126. doi: 10.1021/bi800554v.
  • . . “Cofactor-independent oxygenases go it alone.Nature Chemical Biology, 3 (7): 374375. doi: 10.1038/nchembio0707-374.
  • , , , and . . “A new monocupin quercetinase of Streptomyces sp FLA: identification and heterologous expression of the queD gene and activity of the recombinant enzyme towards different flavonols.Archives of Microbiology, 187 (6): 475487. doi: 10.1007/s00203-007-0215-z.
  • , , , , , and . . “Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Ru61a and transcriptional analysis of genes involved in quinaldine degradation.Journal of Bacteriology, 189 (10): 38553867. doi: 10.1128/JB.00089-07.
  • , , and . . “Crystallization and diffraction data of 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase: a cofactor-free oxygenase of the alpha/beta-hydrolase family.Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63: 378381. doi: 10.1107/S1744309107013760.
  • , , and . . “Crystallization and preliminary X-ray analysis of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter nitroguajacolicus Ru61a: a cofactor-devoid dioxygenase of the alpha/beta-hydrolase-fold superfamily.Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 63: 382385. doi: 10.1107/S174430910701353X.
  • , , , , and . . N-acetylanthranilate amidase from Arthrobacter nitroguajacolicus Ru61a, an alpha/beta-hydrolase-fold protein active towards aryl-acylamides and -esters, and properties of its cysteine-deficient variant (vol 188, pg 8430, 2006), doi: 10.1128/JB.00325-07.
  • , , and . . “Catabolic linear plasmids.” in Microbial linear plasmids, edited by F Meinhardt and R Klassen. Düsseldorf: Springer VDI Verlag.
  • , , , et al. . “Stability, unfolding, and structural changes of cofactor-free 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase.Biochemistry, 46 (14): 42414249. doi: 10.1021/bi0622423.
  • , and . . “EstA from Arthrobacter nitroguajacolicus Ru61a, a thermo- and solvent-tolerant carboxylesterase related to class C beta-lactamases.Current Microbiology, 54 (3): 230236. doi: 10.1007/s00284-006-0438-2.
  • , , , , and . . “N-acetylanthranilate amidase from Arthrobacter nitroguajacolicus Ru61a, an alpha/beta-hydrolase-fold protein active towards aryl-acylamides and -esters, and properties of its cysteine-deficient variant.Journal of Bacteriology, 188 (24): 84308440. doi: 10.1128/JB.01085-06.
  • , , , et al. . “Spectroscopic and biochemical studies on protein variants of quinaldine 4-oxidase: Role of E736 in catalysis and effects of serine ligands on the FeSI and FeSII clusters.Biochemistry, 45 (49): 1485314868. doi: 10.1021/bi061185a.
  • , and . . “Identification of linear plasmid pAM1 in the flavonoid degrading strain Actinoplanes missouriensis(T) (DSM 43046).Plasmid, 55 (3): 249254. doi: 10.1016/j.plasmid.2005.10.003.
  • , and . . “Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS.Applied and Environmental Microbiology, 71 (12): 86188626. doi: 10.1128/AEM.71.12.8618-8626.2005.
  • , and . . “Dioxygenases without requirement for cofactors: Identification of amino acid residues involved in substrate binding and catalysis, and testing for rate-limiting steps in the reaction of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase.Current Microbiology, 51 (5): 344352. doi: 10.1007/s00284-005-0065-3.
  • , and . . “Replacement of active-site residues of quinoline 2-oxidoreductase involved in substrate recognition and specificity.Current Microbiology, 50 (4): 217222. doi: 10.1007/s00284-004-4452-y.
  • , , , , and . . “Identification of large linear plasmids in Arthrobacter spp. encoding the degradation of quinaldine to anthranilate.Microbiology, 151: 491500. doi: 10.1099/mic.0.27521-0.
  • , , , , and . . “On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7.Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 61: 137140.
  • , , , , and . . “Dioxygenases without requirement for cofactors and their chemical model reaction: Compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.Biochemistry, 43 (45): 1448514499. doi: 10.1021/bi048735u.
  • , , , , , and . . “Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase.Structure, 12 (8): 14251435. doi: 10.1016/j.str.2004.05.014.
  • , , , and . . “Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation.Gene, 331: 177188. doi: 10.1016/j.gene.2004.02.020.
  • , , , , , and . . “Gene cluster of Arthrobacter ilicis Ru61a involved in the degradation of quinaldine to anthranilate.Journal of Biological Chemistry, 278 (30): 2748327494. doi: 10.1074/jbc.M301330200.
  • , , , , , and . . “Functional expression of the quinoline 2-oxidoreductase genes (qorMSL) in Pseudomonas putida KT2440 pUF1 and in P-putida 86-1 Delta qor pUF1 and analysis of the Qor proteins.European Journal of Biochemistry, 270 (7): 15671577. doi: 10.1046/j.1432-1033.2003.03526.x.
  • , and . . “Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions.Acta Biotechnologica, 22 (3-4): 299336. doi: 10.1002/1521-3846(200207)22:3/4299::AID-ABIO299>3.0.CO;2-F.
  • , and . . “The molybdenum-containing hydroxylases of nicotinate, isonicotinate, and nicotine.
  • , , and . . “The molybdenum-containing hydroxylases of quinoline, isoquinoline, and quinaldine.
  • . . “Oxygenases without requirement for cofactors or metal ions.Applied Microbiology and Biotechnology, 60 (3): 243257.
  • . . “Biodegradation of Xenobiotics.” in Encyclopedia of Life Support Systems, edited by DaSilva Doelle. Oxford: Eolss Publishers.
  • , , and . . “Expression of the iorAB genes from Brevundimonas diminuta 7 encoding the molybdenum hydroxylase isoquinoline 1-oxidoreductase in Pseudomonas putida.FEMS Microbiology Letters, 210 (1): 123127. doi: 10.1111/j.1574-6968.2002.tb11170.x.
  • , , , , and . . “Xanthine dehydrogenase from Pseudomonas putida 86: specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization.BBA - Protein Structure and Molecular Enzymology, 1544 (1-2): 151165. doi: 10.1016/S0167-4838(00)00214-4.
  • , and . . “Site-directed mutagenesis of potential catalytic residues in 1H-3-hydroxy-4-oxoquinoline 2,4-dioxygenase, and hypothesis on the catalytic mechanism of 2,4-dioxygenolytic ring cleavage.FEMS Microbiology Letters, 190 (1): 2127. doi: 10.1111/j.1574-6968.2000.tb09256.x.
  • . . “Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: Molybdenum hydroxylases and ring-opening 2,4-dioxygenases.Naturwissenschaften, 87 (2): 5969. doi: 10.1007/s001140050011.
  • , , and . . “Bacterial 2,4-dioxygenases: New members of the alpha/beta hydrolase-fold superfamily of enzymes functionally related to serine hydrolases.Journal of Bacteriology, 181: 57255733.
  • , , , et al. . “Kinetics and interactions of molybdenum and iron-sulfur centres in bacterial enzymes of the xanthine oxidase family: Mechanistic implications.Biochemistry, 38: 1407714087.
  • . . “Bioconversion of pyrimidine by resting cells of quinoline-degrading bacteria.FEMS Microbiology Letters, 176: 291299.
  • , , , , , and . . “Flavonol 2,4-dioxygenase from Aspergillus niger DSM 821, a type 2–CuII-containing glycoprotein.European Journal of Biochemistry, 263: 871878.
  • , , , , , and . . “Cloning, sequence analysis, and expression of the Pseudomonas putida 33/1 1H-3-hydroxy-4-oxo-quinoline 2,4-dioxygenase gene, encoding a carbon monoxide forming dioxygenase.Biochimica et Biophysica Acta, 1431: 547552.
  • . . “Bacterial dehalogenation.Applied Microbiology and Biotechnology, 50: 633657.
  • . . “Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions.Applied Microbiology and Biotechnology, 49: 237250.
  • , , and . . “Bacterial degradation of quinoline and -derivatives - pathways and their biocatalysts.Angewandte Chemie (International Edition), 37: 577.
  • , , , et al. . “Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.Biochemistry, 36: 97809790.
  • , , , , and . . “2-Oxo-1,2-dihydro-quinoline 8-monooxygenase: Phylogenetic relationship to other multicomponent non-heme iron oxygenases.Journal of Bacteriology, 179: 35493554.
  • , , , and . . “2,4-Dioxygenases catalyzing N-heterocyclic ring cleavage and formation of carbon monoxide.European Journal of Biochemistry, 240: 576583.
  • , , , , and . . “Cloning, expression, and sequence analysis of the three genes encoding quinoline 2-oxidoreductase, a molybdenum-containing hydroxylase from Pseudomonas putida 86.Journal of Biological Chemistry, 271: 2306823079.
  • , , , and . . “Degradation of benzoate via benzoyl-coenzyme A and gentisate by Bacillus stearothermophilus PK1, and purification of gentisate 1,2-dioxygenase.Biology and Fertility of Soils, 23: 307313.
  • , , , and . . “Hydroxylation of quinaldic acid: Quinaldic acid 4-monooxygenase from Alcaligenes sp. F2 versus quinaldic acid 4-oxidoreductases.Biochimica et Biophysica Acta, 1293: 3944.
  • , , , and . . “Quinaldine 4-oxidase from Arthrobacter sp. Rü61a. A versatile procaryotic molybdenum-containing hydroxylase active towards N-heterocycles and aromatic aldehydes.European Journal of Biochemistry, 236: 155162.
  • , , , , , and . . “EPR, Electron Spin Echo Envelope Modulation, and Electron Nuclear Double Resonance studies of the 2Fe2S centres of the 2-halobenzoate 1,2-dioxygenase from Burkholderia (Pseudomonas) cepacia 2CBS.Journal of Biological Chemistry, 270: 3086930873.
  • , , , , and . . “The 2Fe2S centres of the 2-oxo-1,2-dihydroquinoline 8-monooxygenase from Pseudomonas putida 86 studied by EPR spectroscopy.Biochimica et Biophysica Acta, 1252: 177179.
  • , , , and . . “Quinoline 2-oxidoreductase and 2-oxo-1,2-dihydroquinoline 5,6-dioxygenase from Comamonas testosteroni 63: The first two enzymes in quinoline and 3-methylquinoline degradation.European Journal of Biochemistry, 232: 536544.
  • , , , and . . “2-Oxo-1,2-dihydroquinoline 8-monooxygenase, a two-component enzyme system from Pseudomonas putida 8.Journal of Biological Chemistry, 270: 1783617842.
  • , , , and . . “Molecular cloning of the iso-quinoline 1-oxidoreductase genes from Pseudomonas diminuta 7, structural analysis of IorA and IorB, and sequence comparisons with other molybdenum-containing hydroxylases.Journal of Biological Chemistry, 270: 1442014429.
  • , , and . . “Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS.Journal of Bacteriology, 177: 667675.
  • , and . . “Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.Microbiological Reviews, 58: 641685.
  • , , , , and . . “A novel type of oxy-genolytic ring cleavage: 2,4-Oxygenation and decarbonylation of 1H-3-hydroxy-4-oxoquinaldine and 1H-3-hydroxy-4-oxoquinoline.FEMS Microbiology Letters, 117: 299304.
  • , , , , and . . “Purification and characterization of isoquinoline 1-oxidoreductase from Pseudomonas diminuta 7, a novel molybdenum-containing hydroxylase.Journal of Biological Chemistry, 269: 1125411260.
  • , , , and . . “Microbial metabolism of quinoline and related compounds. XX. Quinaldic acid 4-oxidoreductase from Pseudomonas sp. AK-2 compared to other procaryotic molybdenum-containing hydroxylases.Journal of Biological Chemistry, 374: 10371046.
  • , , and . . “Transformation of 2-chloroquinoline to 2-chloro-cis-7,8-dihydro-7,8-dihydroxyquinoline by quinoline-grown resting cells of Pseudomonas putida 86.FEMS Microbiology Letters, 112: 151158.
  • , and . . “Microbial metabolism of quinoline and related compounds. XVIII. Purification and some properties of the molybdenum- and iron-containing quinaldic acid 4-oxidoreductase from Serratia marcescens 2CC-1.Biological Chemistry Hoppe-Seyler, 374: 363376.
  • , , , and . . “Microbial metabolism of quinoline and related compounds. XVII. Degradation of 3-methylquinoline by Comamonas testosteroni 63.Biological Chemistry Hoppe-Seyler, 374: 175181.
  • , , and . . “Purification and some properties of 2-halo-benzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS.Journal of Bacteriology, 174: 279290.
  • , , and . . “Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS.Biological Chemistry Hoppe-Seyler, 370: 11731182.
  • , , and . . “A novel metabolite in the microbial degradation of 2-chlorobenzoate.Biochemical Biophysical Research Communications, 161: 700705.