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What’s this all about?

Hardware isn’t our friend any more

‘Power wall + memory wall + ILP wall = brick wall’

Frequency scaling and Pax MPI is over

Paradigm shift towards parallelism and heterogeneity

Data movement cost gets prohibitively expensive

In single chips, workstations, nodes and large-scale machine

Challenges in numerical HPC

Existing codes don’t run faster automatically any more

Compilers can’t solve these problems, libraries are limited

Traditional numerics is often contrary to these hardware trends

We (the numerical software people) have to take action



Alternative Approach: Hardware-Oriented Numerics

Conflicting situations

Existing methods no longer hardware-compatible

Neither want less numerical efficiency, nor less hardware efficiency

Challenge: new algorithmic way of thinking

Balance these conflicting goals

Much more than just ‘good implementation’

Rather: Scalable, arbitrarily parallelisable, locality maximising
numerical schemes

Important

Consider short-term hardware details in actual implementations, but
long-term hardware trends in the design of numerical schemes!



The Memory Wall Problem

Worst-case example: Vector addition

Compute c = a+ b for large N in double precision

Arithmetic intensity: N flops for 3N memory operations

My machine: 12 GFLOP/s and 10 GB/s peak

Back-of-an-envelope calculation

To run at 12 GFLOP/s, we need 12 · 3Gdoubles, i.e., 288 GB/s

Bad: maximum performance is 3.5% of what we could do

Performance of SpMV

Similar upper bound: no reuse in matrix data, indirection (bad
caching) in coefficient vector

Obviously, GFLOP/s are not a clever metric for this



The Memory Wall Problem

Moving data is becoming prohibitively expensive

Affects all levels of the memory hierarchy

Between cluster nodes, from main memory to CPU, from CPU to
GPU, within chips

Multicores make this worse

Number of memory controllers does not scale with number of cores

It can sometimes make sense to leave cores idle

NUMA and shared last-level caches

Data locality is the only solution

Maximise data reuse (manually or via choice of data structures)

Maximise coherent access patterns for block-transfers and avoid
jumping through memory



GPUs and the Memory Wall Problem



GPUs: Myth, Marketing and Reality

Raw marketing numbers

> 3 TFLOP/s peak single precision floating point performance

Lots of papers claim > 100× speedup

Looking more closely

Single or double precision floating point (same precision on both
devices)?

Sequential CPU code vs. parallel GPU implementation?

‘Standard operations’ or many low-precision graphics constructs?

Reality

GPUs are undoubtedly fast, but so are CPUs

Quite often: CPU codes significantly less carefully tuned

Anything between 5–30x speedup is realistic (and worth the effort)



Example #1:

Mixed Precision
Iterative Refinement

Combatting the memory wall problem



Motivation

Switching from double to single precision (DP→SP)

2x effective memory bandwidth, 2x effective cache size

At least 2x compute speed (often 4–12x)

Problem: Condition number
Theory for linear system Ax = b

cond2(A) ∼ 10s;
‖A + δA‖
‖A‖

,
‖b + δb‖
‖b‖

∼ 10−k(k > s) ⇒
‖x + δx‖
‖x‖

∼ 10s−k

In our setting

Truncation error in 7–8th digit increased by s digits



Numerical Example

Poisson problem on unit square

Simple yet fundamental model problem

cond2(A) ≈ 105 for L = 10 (1M bilinear FE, regular grid)

Condition number usually much higher: anisotropies in grid and
operator

Data+Comp. in DP Data in SP, Compute in DP Data+Comp. in SP
Level L2 Error Red. L2 Error Red. L2 Error Red.

5 1.1102363E-3 4.00 1.1102371E-3 4.00 1.1111655E-3 4.00
6 2.7752805E-4 4.00 2.7756739E-4 4.00 2.8704684E-4 3.87
7 6.9380072E-5 4.00 6.9419428E-5 4.00 1.2881795E-4 2.23
8 1.7344901E-5 4.00 1.7384278E-5 3.99 4.2133101E-4 0.31
9 4.3362353E-6 4.00 4.3757082E-6 3.97 2.1034461E-3 0.20

10 1.0841285E-6 4.00 1.1239630E-6 3.89 8.8208778E-3 0.24

⇒ Single precision insufficient for moderate problem sizes already



Mixed Precision Iterative Refinement

Iterative refinement

Established algorithm to provably guarantee accuracy of computed
results (within given precision)

High precision: d = b−Ax (cheap)
Low precision: c = A−1d (expensive)
High precision: x = x+ c (cheap) and iterate (expensive?)

Convergence to high precision accuracy if A ‘not too ill-conditioned’

Theory: Number of iterations ≈ f(log(cond2(A)), log(εhigh/εlow))

New idea (Hardware-oriented numerics)

Use this algorithm to improve time to solution and thus efficiency of
linear system solves

Goal: Result accuracy of high precision with speed of low precision
floating point format



Iterative Refinement for Large Sparse Systems

Refinement procedure not immediately applicable

‘Exact’ solution using ‘sparse LU’ techniques too expensive

Convergence of iterative methods not guaranteed in single precision

Solution

Interpretation as a preconditioned mixed precision defect correction
iteration

x
(k+1)
DP = x

(k)
DP +C−1

SP (bDP −ADPx
(k)
DP)

Preconditioner CSP in single precision:
‘Gain digit(s)’ or 1-3 MG cycles instead of exact solution

Results (MG and Krylov for Poisson problem)

Speedup at least 1.7x (often more) without loss in accuracy

Asymptotic optimal speedup is 2x (bandwidth limited)



Example #2:

Parallelising Inherently
Sequential Operations

Multigrid with strong smoothers
(Re-) discover parallelism



Motivation: Why Strong Smoothers?

Test case: anisotropic diffusion in generalised Poisson problem

−div (G grad u) = f , same grid as before

G = I: standard Poisson problem, G 6= I: arbitrarily challenging

Example: G introduces anisotropic diffusion along some vector field
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Gauß-Seidel Smoother

Disclaimer: Not necessarily a good smoother, but a good didactical example.

Sequential algorithm

Forward elimination, sequential dependencies between matrix rows

Illustrative: coupling to the left and bottom (numbering yields
banded matrix)

1st idea: classical wavefront-parallelisation (exact)

Pro: always works to resolve explicit dependencies

Con: irregular parallelism and access patterns, implementable?



Gauß-Seidel Smoother

2nd idea: decouple dependencies via multicolouring (inexact)

Jacobi (red) – coupling to left (green) – coupling to bottom (blue) –
coupling to left and bottom (yellow)

Analysis

Parallel efficiency: 4 sweeps with ≈ N/4 parallel work each

Checkerboard access pattern challenging for SIMD/GPU due to
strided access (solution: merge colours into one kernel)

Numerical efficiency: sequential coupling only in last sweep



Gauß-Seidel Smoother

3rd idea: multicolouring = renumbering

After decoupling: ‘standard’ update (left+bottom) is suboptimal

Does not include all already available results

Recoupling: Jacobi (red) – coupling to left and right (green) – top
and bottom (blue) – all 8 neighbours (yellow)

More computations that standard decoupling

Experiments: convergence rates of sequential variant recovered (in
absence of preferred direction)



Tridiagonal Smoother (Line Relaxation)

Starting point

Good for ‘line-wise’ anisotropies

‘Alternating Direction Implicit (ADI)’
technique alternates rows and columns

CPU implementation: Thomas-Algorithm
(inherently sequential)

Observations

One independent tridiagonal system per mesh row
⇒ top-level parallelisation across mesh rows

Implicit coupling: wavefront and colouring techniques not applicable



Tridiagonal Smoother (Line Relaxation)

Cyclic reduction for tridiagonal systems

Exact, stable (w/o pivoting) and cost-efficient

Problem: classical formulation parallelises computation but not
memory accesses on GPUs (bank conflicts in shared memory)

Developed a better formulation, 2-4x faster

Index nightmare, general idea: recursive padding between odd and
even indices on all levels



Combined GS and TRIDI

Starting point

CPU implementation: shift previous row to
RHS and solve remaining tridiagonal system
with Thomas-Algorithm

Combined with ADI, this is the best general
smoother (we have) for this matrix structure

Observations and implementation

Difference to tridiagonal solvers: mesh rows depend sequentially on
each other

Use colouring (#c ≥ 2) to decouple the dependencies between rows
(more colours = more similar to sequential variant)



Evaluation: Total Efficiency on CPU and GPU

Test problem: generalised Poisson with anisotropic diffusion

Total efficiency: (time per unknown per digit (µs))−1

Mixed precision iterative refinement multigrid solver
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Speedup GPU vs. CPU
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Summary: structured grid smoother parallelisation

Factor 8–30 (dep. on HW, precision, smoother selection) speedup
over already highly tuned CPU implementation

Same functionality on CPU and GPU

Balancing of numerical and parallel efficiency, best speedup for worst
method



Example #3:

Grid- and Matrix Structures

Flexibility ↔ Performance
Robust parallel smoothers



Grid- and Matrix Structures

General sparse matrices (unstructured grids)

CSR (and ELLR-T for GPUs): matrix format for arbitrary grids

Maximum flexibility, but during SpMV

Indirect, irregular memory accesses
Index overhead reduces already low arithm. intensity further

Performance depends on nonzero pattern (DOF numbering)

Structured matrices (structured grids)

As above: structured grids, suitable numbering ⇒ band matrices

Important: no stencils, fully variable coefficients

direct regular memory accesses (fast), mesh-independent
performance

Structure exploitation in the design of MG components (ex. 2)



Approach in FEAST

Combination of respective advantages

Global macro-mesh: unstructured, flexible

Local micro-meshes: structured (logical TP-structure), fast

Important: structured 6= cartesian meshes (r-adaptivity)

Reduce numerical linear algebra to sequences of operations on
structured data (maximise locality)

Developed for large clusters (later), but generally useful
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Example: Poisson on Unstructured Grid
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Intel Nehalem vs. NVIDIA Tesla (GTX280)

≈ 2M bilinear FE, MG-JAC (no influence of numbering on numerics)

Unstructured formats highly numbering-dependent

Multicore 2–3x over singlecore, GPU 8–12x over multicore

Banded format (here: 8 ‘blocks’) 2–3x faster than best unstructured
layout and predictably on par with multicore

Multilevel r-adaptivity across patch boundaries better than
h-adaptivity?



Example: Poisson on Unstructured Grid

GPU/multicore parallelisation also possible for strong smoothers

Intel Westmere vs. NVIDIA Fermi (C2070)

Same problem and discretisation as before, XYZ numbering

SPAI (asymptotically GS) and SAINV (close to ILU(0)) smoothers

Reasonable speedups of GPU over multicore

More on ‘unstructured GPU’ for FEM assembly: talk by Matthias
Möller, Tuesday morning



Example #4:

Integrating GPUs into
Large-scale Software

Re-implementation vs. acceleration



SPECFEM3D-GLOBE: Seismic Wave Propagation

Problem description

Elastic waves in strongly heterogeneous media

Earthquake modeling at the scale of the Earth

Gordon-Bell 2003, finalist 2008

Very well-tuned MPI-only CPU reference implementation



SPECFEM3D-GLOBE: Seismic Wave Propagation

GPU parallelisation

Algorithm: explicit in time, SEM+GLL discretisation ⇒ 90% of time
to solution into SEM assembly

One ‘PhD-year’ in 2008 for single-GPU re-implementation of simple
Earth models (6= full production code)

Two ‘professor-weeks’ in 2009 to get overlapping of MPI and
PCIe-GPU completely hidden
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ScaRC: Coarse-Grained Parallel Geometric Multigrid

ScaRC for scalar systems

Hybrid multilevel domain decomposition method

Minimal overlap by extended Dirichlet BCs

Inspired by parallel MG (‘best of both worlds’)

Multiplicative between levels, global coarse grid problem (MG-like)
Additive horizontally: block-Jacobi / Schwarz smoother (DD-like)

Schwarz smoother encapsulates local irregularities and is shifted to
the GPU

Robust and fast multigrid (‘gain a digit’), strong smoothers
Maximum exploitation of local structure
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Weak Scalability

Simultaneous doubling of problem size and resources

Left: Poisson, 160 dual Xeon / FX1400 nodes, max. 1.3 B DOF

Right: Linearised elasticity, 64 nodes, max. 0.5 B DOF
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Results

No loss of weak scalability despite local acceleration

1.3 billion DOF (no stencil!) on 160 ancient GPUs in less than 50 s



Speedup Linearised Elasticity
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Problem size 128 M DOF

Dualcore 1.6x faster than singlecore (memory wall)

GPU 2.6x faster than singlecore, 1.6x than dualcore



Speedup Analysis

Theoretical model of expected speedup

Integration of GPUs increases resources

Correct model: strong scaling within each node

Acceleration potential of the elasticity solver: Racc = 2/3
(remaining time in MPI and the outer solver)

Smax = 1
1−Racc

Smodel =
1

(1−Racc)+(Racc/Slocal)

This example

Accelerable fraction Racc 66%
Local speedup Slocal 9x
Modeled speedup Smodel 2.5x
Measured speedup Stotal 2.6x
Upper bound Smax 3x
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Summary and Conclusions



Summary

High-level take-away messages of this talk

Things numerical software people might want to know about
hardware

Thinking explicitly of data movement and in parallel is mandatory

Unfortunately, there are many levels of parallism, each with its own
communication characteristics

Parallelism is (often) natural, we ‘just’ have to rediscover it

Selected examples: Multilevel solvers and GPUs

Mixed precision iterative refinement techniques

Extracting fine-grained parallelism from inherently sequential ops

FEM-multigrid (geometric) for structured and unstructured grids

Integrating GPUs in numerical software



Outlook and Current Work

Minimising Amdahl’s impact

Properly doable only with C++

FEM-Assembly (almost done)

Smoothers for convection-dominated problems: tricky because
numerica requires different numbering than parallelisation

Road towards exascale

Promising results on cluster of 256 Tegra-2 smartphone SoC:
‘2 GFLOP/s at 0.5 Watts’

10x slower execution more than compensated by using 10x more
processors for less ‘energy to solution’

Implication: GPU-style scalability required at the level currently
implied by MPI
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