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Parametrized problems – Some examples



Parametrized problems
Parabolic partial differential equations: Heating of a building

I Parametrized diffusion coefficient and

right-hand side (heaters, walls, doors)

I Average temperature in the childcare

roomD as output

I Goal: Monte Carlo estimation of

expectation and variance of output quantity

over the parameter space
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Parametrized problems
Optimal control problems: Baking cookies

I Parametrized state equation (cookie dough)

I Control acting on the inflow boundary

I Average temperature in cookies as output

quantities

I Goal: Find control minimizing sum of

distance to a target output and control

energy
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Reduced basis methods and residual-based
error estimates



Projection-based model order reduction

I Linear parametrized problem (after suitable discretization etc.):

A(µ)yµ = f(µ) ←− large linear system

where the solution yµ ∈ X is high-dimensional.

I Idea: Replace X by low-dimensional subspace XN ⊂ X and project system onto XN:

Â(µ)yN
µ = f̂(µ) ←− small linear system

where the reduced solution yN
µ ∈ XN comes from a low-dimensional subspace.

I Representation of the reduced solution in a reduced basis x1, . . . , xN ∈ XN:

yN
µ =

N∑
i=1

αi(µ) xi
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A posteriori error estimation

I Consider residual of the original system for an approximate solution ỹ ∈ XN:

ηµ(ỹ) := c · ‖A(µ)ỹ− f(µ) ‖︸ ︷︷ ︸
defect in the linear system

I Then we have (under some assumptions and for a suitable constant c independent of µ):

‖ ỹ− yµ ‖ 6 ηµ(ỹ)

I Key observation: The estimate works for all ỹ ∈ XN and not only for a reduced solution!
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Machine learning in model order reduction



Surrogates building on a reduced basis reduced model

I Issue with reduced model: Reduced operator Â(µ) and right-hand side f̂(µ) need to be

assembled and reduced system has to be solved!

I Recall: Representation of the reduced solution in a reduced basis x1, . . . , xN ∈ XN:

yN
µ =

N∑
i=1

αi(µ) xi

I Observation: Only coefficients are required to characterize the reduced solution!

I Idea [Hesthaven/Ubbiali’18]: Approximate coefficients by machine learning:

α̃i(µ) ≈ αi(µ) =⇒ ỹN
µ =

N∑
i=1

α̃i(µ) xi ≈ yN
µ
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Certification using a posteriori error estimates

Apply error estimator ηµ of the reduced basis model to machine learning approximation:∥∥ ỹN
µ − yµ

∥∥ 6 ηµ(ỹ
N
µ )

=⇒ Error certification for the machine learning result!

I Different machine learning techniques are applicable, such as deep neural networks, kernel

methods, Gaussian process regression, etc.

I Error estimate still holds due to connection to reduced basis model.

I Reduced coefficients serve as training data (no high-dimensional solutions required to obtain

training data once reduced basis is built).
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Adaptive model hierarchies combining
multiple models



Adaptive model hierarchy for parametrized problems
Three stages: Reduced basis and machine learning models

µ

MLM→ ỹN
µ

ηµ

(
ỹN
µ

)
6 ε ROM→ yN

µ

ηµ

(
yN
µ

)
6 ε FOM→ yµ

Return yN
µReturn ỹN

µ Return yµ

Yes

No

Yes

No

Adaptive model hierarchy
for parametrized problems

with tolerance ε > 0
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µ

Return yµ

Yes

No

Yes

No

Adaptive model hierarchy
for parametrized problems

with tolerance ε > 0

Certified machine learning for model order reduction of parametrized problems hendrik.kleikamp@uni-muenster.de 8



Adaptive model hierarchy for parametrized problems
Three stages: Reduced basis and machine learning models

µ MLM→ ỹN
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ỹN
µ

)
6 ε ROM→ yN

µ

ηµ

(
yN
µ

)
6 ε FOM→ yµ

Return yN
µReturn ỹN
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Numerical experiments and results



Parabolic partial differential equations: Heating of a building
Results of the model hierarchy
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Optimal control problems: Baking cookies
Results of the model hierarchy

Model
Number of

solves

Number of

error estimates

Total time for error

est. and solving [s]

Average time for error est.

and solving per solve [s]

FOM 4 − 330.31 82.58
ROM 412 416 7,653.35 18.58
MLM 9,584 10,000 56,776.25 5.92
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Thank you for your attention!
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https://github.com/HenKlei/links-adaptive-model-hierarchies
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