Luniversität

# Certified machine learning for model order reduction of parametrized problems

Ulysseus Research Workshop on Mathematics in Machine Learning Hendrik Kleikamp (University of Münster); based on projects with Bernard Haasdonk, Martin Lazar, Cesare Molinari, Mario Ohlberger, Lukas Renelt, Felix Schindler and Tizian Wenzel.

5<sup>th</sup> December 2024

living.knowledge



#### **Table of contents**



#### Parametrized problems - Some examples

Parabolic partial differential equations Optimal control problems

#### Reduced basis methods and residual-based error estimates

Projection-based reduced order models A posteriori error estimation

#### Machine learning in model order reduction

Surrogate building on a reduced basis reduced model Certification using a posteriori error estimates

Adaptive model hierarchies combining multiple models

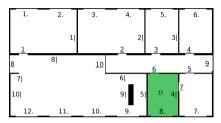
Numerical experiments and results

## **Parametrized problems – Some examples**

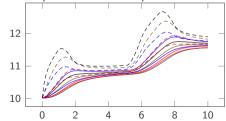
#### Parametrized problems Parabolic partial differential equations: Heating of a building



- Parametrized diffusion coefficient and right-hand side (heaters, walls, doors)
- Average temperature in the childcare room D as output
- <u>Goal</u>: Monte Carlo estimation of expectation and variance of output quantity over the parameter space

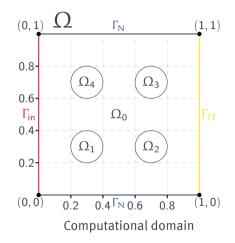


#### Outputs for different parameters:



#### Parametrized problems Optimal control problems: Baking cookies

- Parametrized state equation (cookie dough)
- Control acting on the inflow boundary
- Average temperature in cookies as output quantities
- <u>Goal</u>: Find control minimizing sum of distance to a target output and control energy



# Reduced basis methods and residual-based error estimates

#### **Projection-based model order reduction**



Linear parametrized problem (after suitable discretization etc.):

$$A(\mu) \mathbf{y}_{\mu} = f(\mu) \qquad \longleftarrow \text{ large linear system}$$

where the solution  $y_{\mu} \in X$  is high-dimensional.

#### **Projection-based model order reduction**



Linear parametrized problem (after suitable discretization etc.):

 $A(\mu) \, \textbf{y}_{\mu} = f(\mu) \qquad \longleftarrow \text{ large linear system}$ 

where the solution  $y_{\mu} \in X$  is high-dimensional.

• <u>Idea</u>: Replace X by low-dimensional subspace  $X^N \subset X$  and project system onto  $X^N$ :

 $\hat{A}(\mu)\, \boldsymbol{y}_{\mu}^{N} = \hat{f}(\mu) \qquad \longleftarrow \text{ small linear system}$ 

where the reduced solution  $y_{\mu}^{N} \in X^{N}$  comes from a low-dimensional subspace.

#### **Projection-based model order reduction**

Linear parametrized problem (after suitable discretization etc.):

 $A(\mu) \, \textbf{y}_{\mu} = f(\mu) \qquad \longleftarrow \text{ large linear system}$ 

where the solution  $y_{\mu} \in X$  is high-dimensional.

• <u>Idea</u>: Replace X by low-dimensional subspace  $X^N \subset X$  and project system onto  $X^N$ :

 $\hat{A}(\mu)\, y^N_\mu = \hat{f}(\mu) \qquad \longleftarrow \text{ small linear system}$ 

where the reduced solution  $y_{\mu}^{N} \in X^{N}$  comes from a low-dimensional subspace.

▶ Representation of the reduced solution in a reduced basis  $x_1, ..., x_N \in X^N$ :

$$y^N_\mu = \sum_{i=1}^N \alpha_i(\mu) \, x_i$$

#### A posteriori error estimation



► Consider residual of the original system for an approximate solution  $\tilde{y} \in X^N$ :

$$\eta_{\mu}(\tilde{y}) \coloneqq c \cdot \underbrace{\|A(\mu)\tilde{y} - f(\mu)\|}_{}$$

defect in the linear system

#### A posteriori error estimation



► Consider residual of the original system for an approximate solution  $\tilde{y} \in X^N$ :

$$\eta_{\mu}(\tilde{y}) \coloneqq c \cdot \underbrace{\| A(\mu)\tilde{y} - f(\mu) \|}_{}$$

defect in the linear system

• Then we have (under some assumptions and for a suitable constant *c* independent of  $\mu$ ):

$$\|\,\tilde{y} - y_{\,\mu}\,\| \,\leqslant\, \eta_{\,\mu}(\tilde{y})$$

#### A posteriori error estimation



► Consider residual of the original system for an approximate solution  $\tilde{y} \in X^N$ :

$$\eta_{\mu}(\tilde{y}) \coloneqq c \cdot \underbrace{\| A(\mu)\tilde{y} - f(\mu) \|}_{}$$

defect in the linear system

Then we have (under some assumptions and for a suitable constant c independent of  $\mu$ ):

 $\left\|\,\tilde{y} - y_{\,\mu}\,\right\| \,\leqslant\, \eta_{\,\mu}(\tilde{y})$ 

Key observation: The estimate works for all  $\tilde{y} \in X^N$  and not only for a reduced solution!

# Machine learning in model order reduction



Issue with reduced model: Reduced operator Â(μ) and right-hand side f(μ) need to be assembled and reduced system has to be solved!



- Issue with reduced model: Reduced operator Â(μ) and right-hand side f(μ) need to be assembled and reduced system has to be solved!
- <u>Recall</u>: Representation of the reduced solution in a reduced basis  $x_1, \ldots, x_N \in X^N$ :

$$y^N_{\mu} = \sum_{i=1}^{N} \boxed{\alpha_i(\mu)} x_i$$



- Issue with reduced model: Reduced operator Â(μ) and right-hand side f(μ) need to be assembled and reduced system has to be solved!
- <u>Recall</u>: Representation of the reduced solution in a reduced basis  $x_1, \ldots, x_N \in X^N$ :

$$y^N_{\mu} = \sum_{i=1}^{N} \boxed{\alpha_i(\mu)} x_i$$

Observation: Only coefficients are required to characterize the reduced solution!



- Issue with reduced model: Reduced operator Â(μ) and right-hand side f(μ) need to be assembled and reduced system has to be solved!
- <u>Recall</u>: Representation of the reduced solution in a reduced basis  $x_1, \ldots, x_N \in X^N$ :

$$y^N_{\mu} = \sum_{i=1}^{N} \boxed{\alpha_i(\mu)} x_i$$

- Observation: Only coefficients are required to characterize the reduced solution!
- Idea [Hesthaven/Ubbiali'18]: Approximate coefficients by machine learning:

$$\tilde{\alpha}_i(\mu) \approx \alpha_i(\mu) \qquad \Longrightarrow \qquad \tilde{y}_{\mu}^N = \sum_{i=1}^N \tilde{\alpha}_i(\mu) \, x_i \approx y_{\mu}^N$$

Certified machine learning for model order reduction of parametrized problems

#### Certification using a posteriori error estimates



Apply error estimator  $\eta_{\mu}$  of the reduced basis model to machine learning approximation:

$$\left\|\, \tilde{\boldsymbol{y}}_{\boldsymbol{\mu}}^{\mathsf{N}} - \boldsymbol{y}_{\boldsymbol{\mu}}\, \right\| \, \leqslant \, \eta_{\boldsymbol{\mu}}(\tilde{\boldsymbol{y}}_{\boldsymbol{\mu}}^{\mathsf{N}})$$

 $\implies$  Error certification for the machine learning result!

## Certification using a posteriori error estimates



Apply error estimator  $\eta_{\mu}$  of the reduced basis model to machine learning approximation:

 $\left\| \tilde{y}_{\mu}^{N} - y_{\mu} \right\| \leqslant \eta_{\mu}(\tilde{y}_{\mu}^{N})$ 

 $\implies$  Error certification for the machine learning result!

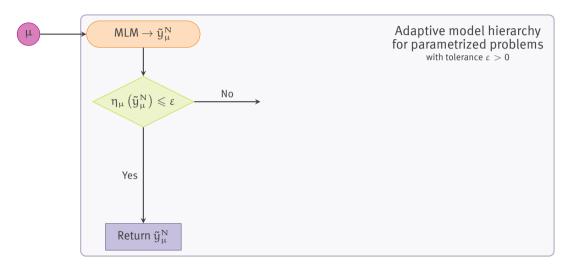
- Different machine learning techniques are applicable, such as deep neural networks, kernel methods, Gaussian process regression, etc.
- Error estimate still holds due to connection to reduced basis model.
- Reduced coefficients serve as training data (no high-dimensional solutions required to obtain training data once reduced basis is built).

# Adaptive model hierarchies combining multiple models



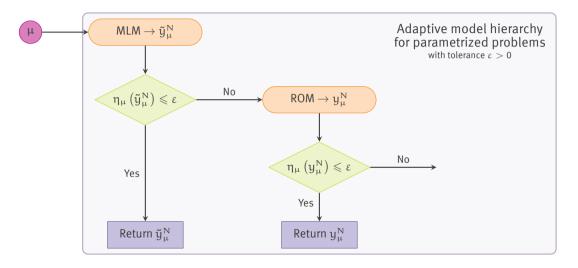




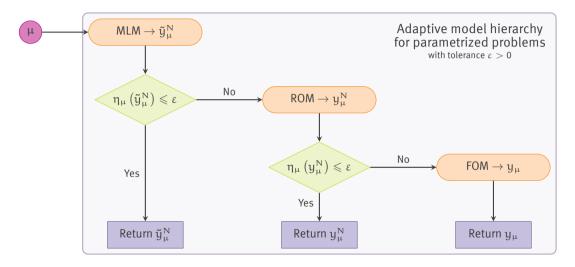


#### Certified machine learning for model order reduction of parametrized problems





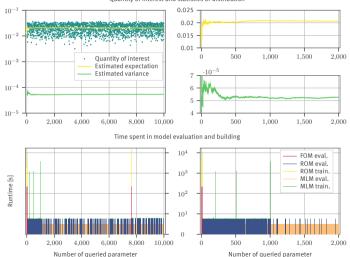




# Numerical experiments and results

#### Parabolic partial differential equations: Heating of a building Results of the model hierarchy





Quantity of interest and statistics of distribution

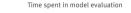
Certified machine learning for model order reduction of parametrized problems

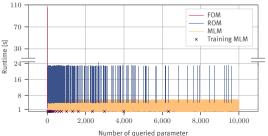
hendrik.kleikamp@uni-muenster.de 9

#### **Optimal control problems: Baking cookies** Results of the model hierarchy

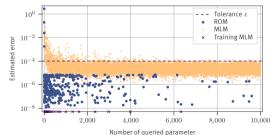


| _ | Model | Number of<br>solves | Number of error estimates | Total time for error est. and solving [s] | Average time for error est.<br>and solving per solve [s] |
|---|-------|---------------------|---------------------------|-------------------------------------------|----------------------------------------------------------|
|   | FOM   | 4                   | _                         | 330.31                                    | 82.58                                                    |
|   | ROM   | 412                 | 416                       | 7,653.35                                  | 18.58                                                    |
|   | MLM   | 9,584               | 10,000                    | 56,776.25                                 | 5.92                                                     |









Certified machine learning for model order reduction of parametrized problems



## Thank you for your attention!



Certified machine learning for model order reduction of parametrized problems

#### References





÷.

#### M. LAZAR, E. ZUAZUA,

*Greedy controllability of finite dimensional linear systems*, Automatica, Vol. 74, 327–340 (2016), DOI: 10.1016/j.automatica.2016.08.010

J.S. HESTHAVEN, S. UBBIALI,

Non-intrusive reduced order modeling of nonlinear problems using neural networks, Journal of Computational Physics, Vol. 363, 55–78 (2018), DOI: 10.1016/j.jcp.2018.02.037



B. HAASDONK, H. KLEIKAMP, M. OHLBERGER, F. SCHINDLER, T. WENZEL,

A New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for Parametrized PDEs, SIAM Journal on Scientific Computing, Vol. 45, 3 (2023), DOI: 10.1137/22M1493318



#### H. KLEIKAMP, M. LAZAR, C. MOLINARI.

Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems, ESAIM: Mathematical Modelling and Numerical Analysis (2024), DOI: 10.1051/m2an/2024074

#### H. Kleikamp.

Application of an adaptive model hierarchy to parametrized optimal control problems, Proceedings of the Conference Algoritmy, 66–75 (2024), http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/2145