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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Optimal control of parametrized linear control systems

𝑘1 𝑘2
𝑚1 𝑚2

𝑥1(𝑡)

𝑥2(𝑡)

𝑢(𝑡)

Goal: Given a parameter value,
▶ try to steer the system state close to a

prescribed target state
▶ without using too much control energy.

Issue: We would like to solve this problem for many different values of the parameter!
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Parametrized linear control systems
General setting:

▶ State space 𝑋 (Hilbert space)
▶ Control space 𝑈 (Hilbert space)
▶ Parameter set 𝒫 (compact subset of

some Banach space)
▶ Final time 𝑇 > 0

▶ 𝐻 ≔ 𝐶1([0, 𝑇 ]; 𝑋)
▶ 𝐺 ≔ 𝐶0([0, 𝑇 ]; 𝑈)

Parameter dependent quantities (𝜇 ∈ 𝒫):
▶ State operator 𝐴𝜇 ∈ ℒ(𝑋, 𝑋)
▶ Control operator 𝐵𝜇 ∈ ℒ(𝑈, 𝑋)
▶ Initial state 𝑥0

𝜇 ∈ 𝑋

Parametrized linear control system (LTI)

̇𝑥𝜇(𝑡) = 𝐴𝜇𝑥𝜇(𝑡) + 𝐵𝜇𝑢𝜇(𝑡), 𝑡 ∈ [0, 𝑇 ],
𝑥𝜇(0) = 𝑥0

𝜇

derivative of the state

state control
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Parameter dependent cost functional
Cost functional 𝒥𝜇 ∶ 𝐺 → ℝ+

𝒥𝜇(𝑢) ≔ 1
2[ ⟨𝑥𝜇(𝑇 ) − 𝑥𝑇𝜇 , 𝑀 (𝑥𝜇(𝑇 ) − 𝑥𝑇𝜇 )⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

deviation from the target state 𝑥𝑇𝜇 ∈𝑋

+
𝑇

∫
0

⟨𝑢(𝑡), 𝑅𝑢(𝑡)⟩ d𝑡
⏟⏟⏟⏟⏟⏟⏟

energy of the control

]

Assumptions on weighting operators

▶ 𝑀 ∈ ℒ(𝑋, 𝑋) is self-adjoint and positive-semidefinite
▶ 𝑅 ∈ ℒ(𝑈, 𝑈) is self-adjoint and strictly positive-definite, i.e. 𝑅 ≥ 𝛼𝐼 for some 𝛼 > 0
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Parametrized optimal control problem

Given a parameter 𝜇 ∈ 𝒫, solve the following optimization problem:

min
𝑢∈𝐺

𝒥𝜇(𝑢), s.t. ̇𝑥𝜇(𝑡) = 𝐴𝜇𝑥𝜇(𝑡) + 𝐵𝜇𝑢(𝑡) for 𝑡 ∈ [0, 𝑇 ], 𝑥𝜇(0) = 𝑥0
𝜇.
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Optimality system for the optimal control problem
Theorem 1 (Optimality system)
Let 𝜇 ∈ 𝒫 be a parameter, 𝑢∗

𝜇 ∈ 𝐺 an optimal control, 𝑥∗
𝜇 ∈ 𝐻 the associated state

trajectory. Then there exists an adjoint solution 𝜑∗
𝜇 ∈ 𝐻, such that the problem

̇𝑥𝜇(𝑡) = 𝐴𝜇𝑥𝜇(𝑡) + 𝐵𝜇𝑢𝜇(𝑡),
−�̇�𝜇(𝑡) = 𝐴∗

𝜇𝜑𝜇(𝑡),
𝑢𝜇(𝑡) = −𝑅−1𝐵∗

𝜇𝜑𝜇(𝑡),
for 𝑡 ∈ [0, 𝑇 ] with initial respectively terminal conditions

𝑥𝜇(0) = 𝑥0
𝜇, 𝜑𝜇(𝑇 ) = 𝑀 (𝑥𝜇(𝑇 ) − 𝑥𝑇

𝜇 ) ,
is solved by 𝑥𝜇 = 𝑥∗

𝜇, 𝜑𝜇 = 𝜑∗
𝜇 and 𝑢𝜇 = 𝑢∗

𝜇.
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Solving the optimality system

Optimality system
̇𝑥∗
𝜇(𝑡) = 𝐴𝜇𝑥∗

𝜇(𝑡) + 𝐵𝜇𝑢∗
𝜇(𝑡),

−�̇�∗
𝜇(𝑡) = 𝐴∗

𝜇𝜑∗
𝜇(𝑡),

𝑢∗
𝜇(𝑡) = −𝑅−1𝐵∗

𝜇𝜑∗
𝜇(𝑡),

𝑥∗
𝜇(0) = 𝑥0

𝜇

⎧{{{{
⎨{{{{⎩

𝜑∗
𝜇(𝑡) = 𝑒𝐴∗

𝜇(𝑇 −𝑡)𝜑∗
𝜇(𝑇 ),

𝑢∗
𝜇(𝑡) = −𝑅−1𝐵∗

𝜇𝜑∗
𝜇(𝑡),

𝑥∗
𝜇(𝑡) = 𝑒𝐴𝜇𝑡𝑥0𝜇⏟

free dynamics

+
𝑡

∫
0

𝑒𝐴𝜇(𝑡−𝑠)𝐵𝜇𝑢∗𝜇(𝑠) d𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟

contribution by the control

State, control and adjoint already uniquely determined by optimal final time adjoint 𝜑∗
𝜇(𝑇 )!
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𝜇(𝑇 ),

𝑥∗
𝜇(𝑡) = 𝑒𝐴𝜇𝑡𝑥0

𝜇 −
𝑡

∫
0

𝑒𝐴𝜇(𝑡−𝑠)𝐵𝜇𝑅−1𝐵∗
𝜇𝑒𝐴∗

𝜇(𝑇 −𝑠)𝜑∗
𝜇(𝑇 ) d𝑠
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Weighted controllability Gramian
Define the weighted controllability Gramian Λ𝑅

𝜇 ∈ ℒ(𝑋, 𝑋) as

Λ𝑅
𝜇 ≔

𝑇

∫
0

𝑒𝐴𝜇(𝑇 −𝑠)𝐵𝜇𝑅−1𝐵∗
𝜇𝑒𝐴∗

𝜇(𝑇 −𝑠) d𝑠.

Then we have
𝑥∗

𝜇(𝑇 ) = 𝑒𝐴𝜇𝑇 𝑥0
𝜇 − Λ𝑅

𝜇 𝜑∗
𝜇(𝑇 ).

Combining this with the terminal condition

𝜑∗
𝜇(𝑇 ) = 𝑀(𝑥∗

𝜇(𝑇 ) − 𝑥𝑇
𝜇 )

from the optimality system gives the following linear system for 𝜑∗
𝜇(𝑇 ).
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Linear system for the optimal final time adjoint

Lemma 1 (Linear system)
Let 𝜑∗

𝜇(𝑇 ) denote the optimal adjoint state at time 𝑇 that determines the solution of the
optimality system. Then it holds

(𝐼 + 𝑀Λ𝑅
𝜇 ) 𝜑∗

𝜇(𝑇 ) = 𝑀 (𝑒𝐴𝜇𝑇 𝑥0
𝜇 − 𝑥𝑇

𝜇 ) ,

where 𝐼 ∈ ℒ(𝑋, 𝑋) denotes the identity.

⟹ We have to solve a linear system with 𝐼 + 𝑀Λ𝑅
𝜇 for each parameter 𝜇!

Assumption: Let 𝑀Λ𝑅
𝜇 be positive-semidefinite for all parameters 𝜇 ∈ 𝒫.

Hendrik Kleikamp, Martin Lazar (Dubrovnik), Cesare Molinari (Genova) 8
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Visualization

𝑥∗
𝜇(0) = 𝑥0

𝜇 𝑥∗
𝜇(𝑡) ∶ 𝑡 ∈ [0, 𝑇 ] 𝑥∗

𝜇(𝑇 ) ≈ 𝑥𝑇
𝜇

𝜑∗
𝜇(𝑇 )𝜑∗

𝜇(𝑡) ∶ 𝑡 ∈ [0, 𝑇 ]

𝑢∗
𝜇(𝑡) ∶ 𝑡 ∈ [0, 𝑇 ]

̇𝑥∗
𝜇(𝑡) = 𝐴𝜇𝑥∗

𝜇(𝑡) + 𝐵𝜇𝑢∗
𝜇(𝑡)

−�̇�∗
𝜇(𝑡) = 𝐴∗

𝜇𝜑∗
𝜇(𝑡)

𝑢∗
𝜇(𝑡) = −𝑅−1𝐵∗

𝜇𝜑∗
𝜇(𝑡)

𝑡
0 𝑇

State:

Control:

Adjoint:

𝑥∗
𝜇(𝑇 ) = 𝑒𝐴𝜇𝑇 𝑥0

𝜇 − Λ𝑅
𝜇 𝜑∗

𝜇(𝑇 )
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Main ideas of the reduced order model
▶ Approximate the optimal final time adjoint state 𝜑∗

𝜇(𝑇 ).

▶ Define an error estimator as the norm of the residual of the linear system.

▶ Apply a greedy algorithm to construct a reduced basis for the optimal final time
adjoint states (by means of an efficient error estimator for the reduced space).

▶ Compute reduced solution by projecting the right hand side of the linear system onto
the subspace of states reachable from the reduced space of final time adjoints.

▶ Later: Accelerate online phase using machine learning with error certification.

Hendrik Kleikamp, Martin Lazar (Dubrovnik), Cesare Molinari (Genova) 10
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Error estimation using the residual
Given an approximate final time adjoint 𝑝, consider the residual of the linear system as
error estimator:

𝜂𝜇(𝑝) ≔ ∥ 𝑀 (𝑒𝐴𝜇𝑇 𝑥0
𝜇 − 𝑥𝑇

𝜇 ) − (𝐼 + 𝑀Λ𝑅
𝜇 )𝑝 ∥𝑋 .

Theorem 2 (Error estimator for an approximate final time adjoint)
Then it holds:

∥ 𝜑∗
𝜇(𝑇 ) − 𝑝 ∥𝑋 ≤ 𝜂𝜇(𝑝) ≤ ∥ 𝐼 + 𝑀Λ𝑅

𝜇 ∥ℒ(𝑋,𝑋) ∥ 𝜑∗
𝜇(𝑇 ) − 𝑝 ∥𝑋 .
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Then it holds:
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𝜇(𝑇 ) − 𝑝 ∥𝑋 ≤ 𝜂𝜇(𝑝) ≤ ∥ 𝐼 + 𝑀Λ𝑅

𝜇 ∥ℒ(𝑋,𝑋) ∥ 𝜑∗
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Approximating the solution manifold by linear subspaces

▶ Manifold ℳ ≔ {𝜑∗
𝜇(𝑇 ) ∶ 𝜇 ∈ 𝒫} ⊂ 𝑋

▶ Approximation tolerance 𝜀 > 0

Goal of the greedy algorithm
Find a reduced space 𝑋𝑁 ⊂ 𝑋 of (small) dimension 𝑁 such that

dist(𝑋𝑁 , ℳ) ≤ 𝜀.
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General (weak) greedy algorithm
Input: Manifold ℳ, tolerance 𝜀 > 0, greedy constant 𝛾 ∈ (0, 1]
Output: Reduced basis Φ𝑁 ⊂ 𝑋, reduced space 𝑋𝑁 = span (Φ𝑁) ⊂ 𝑋
1: 𝑁 ← 0, Φ𝑁 = ∅, 𝑋0 = {0} ⊂ 𝑋
2: while dist(𝑋𝑁 , ℳ) > 𝜀 do
3: choose next element 𝑥𝑁+1 ∈ ℳ such that it holds

dist(𝑋𝑁 , {𝑥𝑁+1}) ≥ 𝛾 ⋅ dist(𝑋𝑁 , ℳ)
4: Φ𝑁+1 ← Φ𝑁 ∪ {𝑥𝑁+1}
5: 𝑋𝑁+1 ← span (Φ𝑁+1)
6: 𝑁 ← 𝑁 + 1
7: return Φ𝑁 , 𝑋𝑁
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Greedy procedure for the optimal control problem I
▶ Given a reduced space 𝑋𝑁 = span{𝜑1, … , 𝜑𝑁} ⊂ 𝑋 and a parameter 𝜇 ∈ 𝒫,

minimize the residual by projecting onto 𝑌 𝑁
𝜇 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝑋𝑁 :

𝑃𝑌 𝑁𝜇
(𝑀(𝑒𝐴𝜇𝑇 𝑥0

𝜇 − 𝑥𝑇
𝜇 )) =

𝑁
∑
𝑖=1

𝛼𝜇
𝑖 𝑥𝜇

𝑖 ,

where 𝑥𝜇
𝑖 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝜑𝑖, i.e. 𝑌 𝑁
𝜇 = span{𝑥𝜇

1 , … , 𝑥𝜇
𝑁}.

▶ Set for the reduced approximation 𝑋𝑁 ∋ �̃�𝑁
𝜇 ≈ 𝜑∗

𝜇(𝑇 ) ∈ 𝑋:

�̃�𝑁
𝜇 =

𝑁
∑
𝑖=1

𝛼𝜇
𝑖 𝜑𝑖.

Hendrik Kleikamp, Martin Lazar (Dubrovnik), Cesare Molinari (Genova) 14



Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Greedy procedure for the optimal control problem I
▶ Given a reduced space 𝑋𝑁 = span{𝜑1, … , 𝜑𝑁} ⊂ 𝑋 and a parameter 𝜇 ∈ 𝒫,

minimize the residual by projecting onto 𝑌 𝑁
𝜇 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝑋𝑁 :

𝑃𝑌 𝑁𝜇
(𝑀(𝑒𝐴𝜇𝑇 𝑥0

𝜇 − 𝑥𝑇
𝜇 )) =

𝑁
∑
𝑖=1

𝛼𝜇
𝑖 𝑥𝜇

𝑖 ,

where 𝑥𝜇
𝑖 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝜑𝑖, i.e. 𝑌 𝑁
𝜇 = span{𝑥𝜇

1 , … , 𝑥𝜇
𝑁}.

▶ Set for the reduced approximation 𝑋𝑁 ∋ �̃�𝑁
𝜇 ≈ 𝜑∗

𝜇(𝑇 ) ∈ 𝑋:

�̃�𝑁
𝜇 =

𝑁
∑
𝑖=1

𝛼𝜇
𝑖 𝜑𝑖.

Hendrik Kleikamp, Martin Lazar (Dubrovnik), Cesare Molinari (Genova) 14



Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Greedy procedure for the optimal control problem II
▶ We therefore have

(𝐼 + 𝑀Λ𝑅
𝜇 )�̃�𝑁

𝜇 = 𝑃𝑌 𝑁𝜇
(𝑀(𝑒𝐴𝜇𝑇 𝑥0

𝜇 − 𝑥𝑇
𝜇 ))

and
𝜂𝜇(�̃�𝑁

𝜇 ) = ∥ 𝑀(𝑒𝐴𝜇𝑇 𝑥0
𝜇 − 𝑥𝑇

𝜇 ) − (𝐼 + 𝑀Λ𝑅
𝜇 )�̃�𝑁

𝜇 ∥ = dist (𝑌 𝑁
𝜇 , {𝑀(𝑒𝐴𝜇𝑇 𝑥0

𝜇 − 𝑥𝑇
𝜇 )}).

Theorem 3 (Error estimator for a reduced space)
Then it holds:

dist(𝑋𝑁 , {𝜑∗
𝜇(𝑇 )}) ≤ 𝜂𝜇(�̃�𝑁

𝜇 ) ≤ ∥ 𝐼 + 𝑀Λ𝑅
𝜇 ∥ ⋅ dist(𝑋𝑁 , {𝜑∗

𝜇(𝑇 )}).
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Greedy procedure for the optimal control problem III

▶ Choose a finite training set 𝒫train ⊂ 𝒫.

▶ Select next parameter 𝜇𝑁+1 ∈ 𝒫train as

𝜇𝑁+1 = argmax𝜇∈𝒫train
𝜂𝜇(�̃�𝑁

𝜇 ).

▶ Replace dist(𝑋𝑁 , ℳ) by 𝜂𝜇𝑁+1
(�̃�𝑁

𝜇𝑁+1
).
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Summary of the notation

▶ 𝜑∗
𝜇(𝑇 ) ∈ 𝑋: optimal final time adjoint

▶ 𝑋𝑁 ⊂ 𝑋: reduced space

▶ 𝑃𝑋𝑁 (𝜑): projection of 𝜑 ∈ 𝑋 onto 𝑋𝑁

▶ �̃�𝑁
𝜇 ∈ 𝑋𝑁 : approximate final time adjoint

▶ 𝑌 𝑁
𝜇 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝑋𝑁 : space of final time states reachable from 𝑋𝑁

▶ 𝑃𝑌 𝑁𝜇
(𝑥): projection of 𝑥 ∈ 𝑋 onto 𝑌 𝑁

𝜇
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Visualization

𝜑∗
𝜇(𝑇 )

𝑋𝑁

𝑃𝑋𝑁 (𝜑∗
𝜇(𝑇 ))

dist(𝑋𝑁, {𝜑∗
𝜇(𝑇 )})

(𝐼 + 𝑀Λ𝑅
𝜇 )𝜑∗

𝜇(𝑇 ) = 𝑀(𝑒𝐴𝜇𝑇 𝑥0
𝜇 − 𝑥𝑇

𝜇 )

𝑌 𝑁
𝜇 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝑋𝑁

(𝐼 + 𝑀Λ𝑅
𝜇 )𝑃𝑋𝑁 (𝜑∗

𝜇(𝑇 ))
(𝐼 + 𝑀Λ𝑅

𝜇 )�̃�𝑁
𝜇

= 𝑃𝑌 𝑁𝜇 ((𝐼 + 𝑀Λ𝑅
𝜇 )𝜑∗

𝜇(𝑇 ))

�̃�𝑁
𝜇

𝜂𝜇(�̃�𝑁
𝜇 )
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Analysis of the greedy algorithm

Theorem 3 (Weak greedy algorithm and approximation error)
The greedy procedure presented above is a weak greedy algorithm with constant

𝛾 ≔ 1
𝐶𝜑∗ + 𝐶Λ

≤ 1,

where 𝐶𝜑∗ is the Lipschitz constant of the mapping 𝜇 ↦ 𝜑∗
𝜇(𝑇 ) and 𝐶Λ ≔ sup

𝜇∈𝒫
∥ 𝐼 + 𝑀Λ𝑅

𝜇 ∥.
It further holds for all 𝜇 ∈ 𝒫 that

dist(𝑋𝑁 , {𝜑∗
𝜇(𝑇 )}) ≤ 𝜀.
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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Online computations of the reduced order model (RB ROM)
Given a new parameter 𝜇 ∈ 𝒫:

▶ compute 𝑥𝜇
𝑖 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝜑𝑖 for 𝑖 = 1, … , 𝑁

▶ assemble operator �̄�𝜇 = [𝑥𝜇
1 ⋯ 𝑥𝜇

𝑁 ] ∈ ℒ(ℝ𝑁 , 𝑋) for projection onto 𝑌 𝑁
𝜇

▶ compute coefficients 𝛼𝜇 = (𝛼𝜇
1 , … , 𝛼𝜇

𝑁)⊤ ∈ ℝ𝑁 as solution of the 𝑁 × 𝑁 linear system

�̄�∗
𝜇�̄�𝜇𝛼𝜇 = �̄�∗

𝜇𝑀 (𝑒𝐴𝜇𝑇 𝑥0
𝜇 − 𝑥𝑇

𝜇 )

▶ compute final time adjoint �̃�𝑁
𝜇 = ∑𝑁

𝑖=1 𝛼𝜇
𝑖 𝜑𝑖

▶ solve − ̇�̃�𝜇(𝑡) = 𝐴∗
𝜇�̃�𝜇(𝑡) for 𝑡 ∈ [0, 𝑇 ], �̃�𝜇(𝑇 ) = �̃�𝑁

𝜇 backwards in time
▶ compute associated control �̃�𝑁

𝜇 (𝑡) = −𝑅−1𝐵∗
𝜇�̃�𝜇(𝑡)
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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Machine learning of reduced coefficients
▶ Costly part in the online phase of the reduced order model:

Computation of 𝑥𝜇
𝑖 = (𝐼 + 𝑀Λ𝑅

𝜇 )𝜑𝑖 for 𝑖 = 1, … , 𝑁 .

▶ Instead: Learn the map from parameters to coefficients, i.e. approximate the map

𝜇 ↦ 𝜋𝑁(𝜇) ≔ [𝛼𝜇
𝑖 ]𝑁𝑖=1

by machine learning surrogate ̂𝜋𝑁 ∶ 𝒫 → ℝ𝑁 .
▶ Approximate the final time adjoint as

�̂�𝑁
𝜇 =

𝑁
∑
𝑖=1

[ ̂𝜋𝑁(𝜇)]𝑖𝜑𝑖.
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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Training procedure for the machine learning

▶ Training data is automatically generated during the greedy algorithm.

▶ Additional training data can be generated by solving the reduced order model.

▶ Machine learning surrogate is trained on the training data during the offline phase.

▶ Improvements of the reduced order model and the machine learning surrogate during
the online phase are possible as well, see also [Haasdonk et al’23].
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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Error estimates for machine learning approximation

▶ A priori bound (assuming that the reduced basis is orthonormal):

∥ 𝜑∗
𝜇(𝑇 ) − �̂�𝑁

𝜇 ∥ ≤ 𝐶Λ 𝜀⏟
greedy

tolerance

+ ‖ 𝜋𝑁(𝜇) − ̂𝜋𝑁(𝜇) ‖⏟⏟⏟⏟⏟⏟⏟⏟⏟
approximation error
of machine learning

.

▶ A posteriori bound:

∥ 𝜑∗
𝜇(𝑇 ) − �̂�𝑁

𝜇 ∥ ≤ 𝜂𝜇(�̂�𝑁
𝜇 ) ≤ ∥ 𝐼 + 𝑀Λ𝜇 ∥ ∥ 𝜑∗

𝜇(𝑇 ) − �̂�𝑁
𝜇 ∥ .
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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Machine learning approaches
Various machine learning methods can be applied here, we considered:

▶ Deep neural networks (DNN), see for instance [Petersen, Voigtlaender’18].

𝜇 ̂𝜋𝑁(𝜇) ∈ ℝ𝑁

▶ Kernel methods (VKOGA), see for instance [Santin, Haasdonk’21].
̂𝜋𝑁(𝜇) = ∑

𝑖∈Ξ
𝛼𝑖𝑘𝑁(𝜇, 𝑥𝑖)

▶ Gaussian process regression (GPR), see for instance [Rasmussen, Williams’06].
̂𝜋𝑁(𝜇) = 𝔼𝑦[𝑃 (𝑦|𝜇, 𝑋, 𝑌 )]

subset of selected centers coefficients

kernel

centers

input data

output data
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Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems

Numerical example: Parametrized heat equation
▶ Problem definition:

𝜕𝑡𝑣𝜇(𝑡, 𝑦) − 𝜇1Δ𝑣𝜇(𝑡, 𝑦) = 0 for 𝑡 ∈ [0, 𝑇 ], 𝑦 ∈ Ω,
𝑣𝜇(𝑡, 0) = 𝑢𝜇,1(𝑡) for 𝑡 ∈ [0, 𝑇 ],
𝑣𝜇(𝑡, 1) = 𝑢𝜇,2(𝑡) for 𝑡 ∈ [0, 𝑇 ],
𝑣𝜇(0, 𝑦) = 𝑣0

𝜇(𝑦) = sin(𝜋𝑦) for 𝑦 ∈ Ω.

▶ Target state:
𝑣𝑇

𝜇 (𝑦) = 𝜇2𝑦
▶ Details: Ω = [0, 1], 𝑇 = 0.1, 𝒫 = [1, 2] × [0.5, 1.5]
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Numerical example: Details
▶ Spatial discretization: Second order central finite difference scheme

𝐴𝜇 = 𝜇1
ℎ2

⎡
⎢
⎢
⎢
⎣

−2 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −2

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑛×𝑛 and 𝐵𝜇 = 𝜇1
ℎ2

⎡
⎢
⎢
⎢
⎣

1 0
0 0
⋮ ⋮
0 0
0 1

⎤
⎥
⎥
⎥
⎦

∈ ℝ𝑛×2

▶ Temporal discretization: Crank-Nicolson scheme (implicit)
▶ Weighting matrices:

𝑀 = 𝐼 ∈ ℝ𝑛×𝑛 and 𝑅 = [0.125 0
0 0.25]
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Numerical example: Parametrized heat equation

0 1
0

0.1

𝑥

𝑡

0 0.2 0.4 0.6 0.8 1

0 1
0

0.5

1

𝑥

St
at
es

𝑥0
𝜇: initial state 𝑥𝑇

𝜇 : target state
𝑥∗

𝜇(𝑇 ): final time state

Figure: Optimal state 𝑥∗
𝜇 in a space-time plot (left) and initial 𝑥0

𝜇, final 𝑥∗
𝜇(𝑇 ) and target 𝑥𝑇

𝜇 states
(right) for the parameter 𝜇 = (1.5, 0.75) in the heat equation example.
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Numerical example: Parametrized heat equation

0 0.1

0

0.5

1

𝑡
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l

𝑢∗
𝜇,1: optimal control, first component

𝑢∗
𝜇,2: optimal control, second component

0 1

−4
−2

0
2

⋅10−2

𝑥

Ad
jo
in
t

𝜑∗
𝜇(𝑇 ): optimal final time adjoint

Figure: Optimal control 𝑢∗
𝜇 (left) and optimal final time adjoint 𝜑∗

𝜇(𝑇 ) (right) for the
parameter 𝜇 = (1.5, 0.75) in the heat equation example.
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Numerical example: Parametrized heat equation
Results of running the greedy algorithm with 64 uniformly distributed training parameters:
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Singular value decay of optimal final time adjoints
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Numerical example: Parametrized heat equation

Results on a set of 100 randomly drawn test parameters:

Method Avg. error adjoint Avg. error control Avg. runtime (s) Avg. speedup

Exact solution − − 6.2760 −
RB ROM 5.3 ⋅ 10−8 5.4 ⋅ 10−9 2.6526 2.37
DNN ROM 5.8 ⋅ 10−6 2.0 ⋅ 10−6 0.1623 40.33
VKOGA ROM 1.8 ⋅ 10−5 6.9 ⋅ 10−6 0.1580 41.03
GPR ROM 2.2 ⋅ 10−6 7.6 ⋅ 10−7 0.1572 41.40
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Outlook: Adaptive model hierarchy [Haasdonk et al’23]
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Future research
▶ Application of the adaptive model hierarchy from [Haasdonk et al’23].

▶ Advection-diffusion-reaction equations in higher space dimensions as test cases.

▶ Incorporation of theoretical approximation results for the machine learning methods.

▶ Additional speedup by applying model order reduction to the parametrized control
system, i.e. approximation of the state and adjoint dynamics.

▶ Extension to other classes of optimal control problems, such as linear time-varying
systems or problems with constraints on the control.
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Thank you for your attention!

For more details, see:
H. Kleikamp, M. Lazar, C. Molinari.
Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems.
https://arxiv.org/abs/2307.15590

The source code for the paper is available open source:
▶ https://github.com/HenKlei/ML-OPT-CONTROL
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