Universität

Adaptive Model Hierarchies for Multi-Query Scenarios

MATHMOD 2025 – Minisymposium on "Recent Advances in Model Order Reduction and Data-driven Modelling" Hendrik Kleikamp, Mario Ohlberger (University of Münster)

February 20, 2025

living.knowledge

Motivation and general construction

Full order model Drojection based reduced model

- Projection-based reduced model
- Machine learning surrogate

Adaptive Model Hierarchies for Multi-Query Scenarios

Motivation for model hierarchies Full order model, reduced model, machine learning surrogate, ...

Availability of different models with different advantages and disadvantages, such as

▶ ...

Motivation for model hierarchies Full order model, reduced model, machine learning surrogate, ...

- Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Projection-based reduced model
 - Machine learning surrogate
 - ▶ ...
- ► Typical strategy: Train a suitable surrogate offline and use it online.

Motivation for model hierarchies Full order model, reduced model, machine learning surrogate, ...

- ► Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Projection-based reduced model
 - Machine learning surrogate
 - ▶ ...
- ► Typical strategy: Train a suitable surrogate offline and use it online.
- ▶ <u>Idea:</u> Train surrogates adaptively and try to leverage their advantages.

Motivation for model hierarchies Full order model, reduced model, machine learning surrogate, ...

- Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Projection-based reduced model
 - Machine learning surrogate
 - ▶ ...
- ► Typical strategy: Train a suitable surrogate offline and use it online.
- ▶ <u>Idea:</u> Train surrogates adaptively and try to leverage their advantages.

 \implies Combine all available models in an adaptive and certified hierarchy!

Description of the main building block Multi-fidelity assumptions

Assumptions:

- Model M_l can be solved faster than Model M_{l+1}
- Model M_{l+1} is more accurate than Model M_l
- Model M_l can be improved by means of information from Model M_{l+1}

General definition of an adaptive model hierarchy Combination of several components in multiple stages

4

Adaptive model hierarchy for parametrized problems Adaptivity vs. offline-online decomposition

Adaptive model hierarchy for parametrized problems Adaptivity vs. offline-online decomposition

Examples and numerical results

Example 1 – Parametrized parabolic PDEs Problem setting – PDE-constrained optimization

Advection-diffusion-reaction equation with parameter $\mu = (Da, Pe) \in \mathfrak{P} = [0.01, 10] \times [9, 11]$:

Example 1 – Parametrized parabolic PDEs Problem setting – PDE-constrained optimization

Advection-diffusion-reaction equation with parameter $\mu = (Da, Pe) \in \mathcal{P} = [0.01, 10] \times [9, 11]$:

$$\begin{array}{c} \partial_{t}u_{\mu}-\nabla\cdot\left(\kappa\nabla u_{\mu}\right)+\text{Pe}\,\nabla\cdot\left(\vec{b}\,u_{\mu}\right)+\text{Da}\,\chi_{\Omega_{w}}u_{\mu}=0 & \text{in }(0,T)\times\Omega,\\ \\ & \overset{\Omega=\Omega_{c}\cup\Omega_{w}}{\overset{\text{channel}}{\overset{\alpha_{c$$

PDE-constrained optimization problem:

$$\min_{\mu\in\mathcal{P}} \mathcal{J}(\mu) \coloneqq \|\hat{\Phi} - \Phi_{\mathsf{adapt}}(\mu)\|_{\mathsf{L}^\infty([0,\mathsf{T}])}.$$

Here, $\hat{\Phi} = \Phi(\hat{\mu})$ is a desired break-through curve with $\hat{\mu} = (5.005, 10)$ and $\Phi_{adapt}(\mu)$ is the output of the adaptive model hierarchy.

Example 1 – Parametrized parabolic PDEs Three-stage hierarchy

M₃: Full order model (FOM)

- arbitrarily accurate solutions (serves as the reference for error estimators)
- very slow for fine discretizations or many time steps

Example 1 – Parametrized parabolic PDEs Three-stage hierarchy

M₃: Full order model (FOM)

- arbitrarily accurate solutions (serves as the reference for error estimators)
- very slow for fine discretizations or many time steps

M₂: Reduced basis ROM (RB-ROM)

- reduced basis model based on Galerkin projection
- construction of reduced basis using HaPOD
- + faster than FOM
- + residual-based a posteriori error estimator
- slow iterative time stepping
- requires solving dense linear system in each time step

Adaptive Model Hierarchies for Multi-Ouerv Scenarios

Example 1 – Parametrized parabolic PDEs Three-stage hierarchy

M₃: Full order model (FOM)

- + arbitrarily accurate solutions (serves as the reference for error estimators)
- verv slow for fine discretizations or many time steps

 M_2 : Reduced basis ROM (RB-ROM)

- reduced basis model based on Galerkin projection
- construction of reduced basis using HaPOD
- + faster than FOM
- + residual-based a posteriori error estimator
- slow iterative time stepping
- requires solving dense linear system in each time step

 M_1 : Machine learning (ML-ROM)

- approximates reduced coefficients of the RB-ROM
- based on the same reduced basis as the RB-ROM
- + faster than RB-ROM
- + parallel evaluation for many time instances possible
- + allows to reuse a posteriori error estimator of RB-ROM
- requires training of machine learning algorithm

Example 1 – Parametrized parabolic PDEs Numerical results

Adaptive Model Hierarchies for Multi-Query Scenarios

hendrik.kleikamp@uni-muenster.de

9

Examples 2 and 3 Optimal control of (parametric) systems

Examples 2 and 3 Optimal control of (parametric) systems

Please come to my poster for examples 2 and 3!

Adaptive Model Hierarchies for Multi-Query Scenarios

hendrik.kleikamp@uni-muenster.de

Thank you for your attention!

If you would like to discuss in more detail, come to my poster!

Example 2 – Parametrized optimal control problems Problem setting – Monte Carlo simulations

$$\min_{u \in L^{2}([0,T];U)} \quad \frac{1}{2} \left[\underbrace{\left\| y_{\mu}(T) - y_{\mu}^{T} \right\|_{Y}^{2}}_{\substack{\text{deviation from target} \\ \text{at final time}}} + \underbrace{\int_{0}^{T} \langle u(t), R(t)u(t) \rangle_{U \times U'} \, dt}_{\text{control energy}} \right],$$

Example 2 – Parametrized optimal control problems Problem setting – Monte Carlo simulations

$$\begin{split} & \underset{u \in L^{2}([0,T];U)}{\text{min}} \quad \frac{1}{2} \left[\underbrace{\left\| y_{\mu}(T) - y_{\mu}^{T} \right\|_{Y}^{2}}_{\text{deviation from target}} + \underbrace{\int_{0}^{T} \left\langle u(t), R(t)u(t) \right\rangle_{U \times U'} \, dt}_{\text{control energy}} \right], \\ & \text{such that} \quad \begin{cases} E \frac{d}{dt} \mathbf{x}_{\mu}(t) &= A(\mu;t) \mathbf{x}_{\mu}(t) + B(\mu;t)u(t) \quad \text{for } t \in [0,T], \\ y_{\mu}(t) &= C \mathbf{x}_{\mu}(t) \qquad \text{for } t \in [0,T], \\ \mathbf{x}_{\mu}(0) &= \mathbf{x}_{\mu}^{0}, \end{cases} \end{split}$$

Target output: $y_{\mu}^{T} = C x_{\mu}^{T}$

Example 2 – Parametrized optimal control problems Optimality system and final time adjoints

Theorem (K./Renelt'24)

The optimal state x^*_{μ} , control u^*_{μ} and adjoint ϕ^*_{μ} can be characterized as solution to the system:

$$\begin{split} \mathsf{E} & \frac{d}{dt} \mathbf{x}_{\mu}(t) = \mathsf{A}(\mu; t) \mathbf{x}_{\mu}(t) + \mathsf{B}(\mu; t) \mathbf{u}_{\mu}(t), \qquad (\textit{state equation}) \\ & u_{\mu}(t) = -\mathsf{R}(t)^{-1} \mathsf{B}(\mu; t)^* \boldsymbol{\phi}_{\mu}(t), \qquad (\textit{control equation}) \\ -\mathsf{E}_{\mathsf{ad}} & \frac{d}{dt} \boldsymbol{\phi}_{\mu}(t) = \mathsf{A}(\mu; t)^* \boldsymbol{\phi}_{\mu}(t), \qquad (\textit{adjoint equation}) \end{split}$$

for almost all $t\in[0,T]$ with initial condition $x_{\mu}(0)=x_{\mu}^{0}$ and terminal condition

 $\Re_X E^* \phi_\mu(T) = M\left(\mathbf{x}_\mu(T) - \mathbf{x}_\mu^T \right)$,

where $\Re_X \colon X \to X'$ is the Riesz map, $E_{ad} \coloneqq \Re_X E^* \Re_X^{-1}$ and $M \coloneqq C^* \Re_Y C$.

Example 2 – Parametrized optimal control problems Linear system for optimal final time adjoints

Lemma (K./Renelt'24)

The optimal final time adjoint $\phi^*_{\mu}(T) \in X$ solves the linear system

$$S(\mu)\phi_{\mu}^{*}(\mathsf{T}) = g(\mu)$$

where

- $S(\mu)$ involves solving high-dimensional parametric systems,
- $g(\mu)$ is a parameter-dependent right hand side.

Example 2 – Parametrized optimal control problems Linear system for optimal final time adjoints

Lemma (K./Renelt'24)

The optimal final time adjoint $\phi^*_{\mu}(T) \in X$ solves the linear system

 $S(\mu)\phi_{\mu}^{*}(T)=g(\mu)$

where

- $S(\mu)$ involves solving high-dimensional parametric systems,
- $g(\mu)$ is a parameter-dependent right hand side.

\implies Costly to solve!

Example 2 – Parametrized optimal control problems Linear system for optimal final time adjoints

Lemma (K./Renelt'24)

The optimal final time adjoint $\phi_{\mu}^{*}(T)\in X$ solves the linear system

$$S(\mu)\phi_{\mu}^{*}(T) = g(\mu) \qquad \Longleftrightarrow \qquad \phi_{\mu}^{*}(T) = \arg\min_{p \in X} \| g(\mu) - S(\mu)p \|_{X}^{2}$$

where

- $S(\mu)$ involves solving high-dimensional parametric systems,
- $g(\mu)$ is a parameter-dependent right hand side.

\implies Costly to solve!

 $\begin{array}{c} \underbrace{\frac{M_{4}: \text{ FOM}}{\text{Optimal final time adjoint}}}_{\phi_{\mu}^{*}(T) = \mathop{\arg\min}_{p \in X} \|g(\mu) - S(\mu)p\|_{X}^{2}} \end{array}$

 $\begin{array}{c} \underbrace{\frac{M_{4}: \text{ FOM}}{\text{Optimal final time adjoint}}}_{\phi_{\mu}^{*}(T) = \mathop{\arg\min}_{p \in X} \|g(\mu) - S(\mu)p\|_{X}^{2}} \end{array}$

$$\label{eq:primal and adjoint systems} \begin{aligned} & \mathsf{Primal and adjoint systems} \\ & \mathsf{E}\frac{d}{dt} \mathtt{x}_{\mu}(t) = \mathsf{A}(\mu; t) \mathtt{x}_{\mu}(t) + \mathsf{B}(\mu; t) \mathtt{u}_{\mu}(t) \\ & -\mathsf{E}_{\mathsf{ad}}\frac{d}{dt} \phi_{\mu}(t) = \mathsf{A}(\mu; t)^{*} \phi_{\mu}(t) \end{aligned}$$

$$\begin{split} & \text{Primal and adjoint systems} \\ & \text{E}\frac{d}{dt}x_{\mu}(t) = A(\mu;t)x_{\mu}(t) + B(\mu;t)u_{\mu}(t) \\ & -\text{E}_{ad}\frac{d}{dt}\phi_{\mu}(t) = A(\mu;t)^{*}\phi_{\mu}(t) \end{split}$$

[Haasdonk/Ohlberger'11]

$$\label{eq:primal and adjoint systems} E \frac{d}{dt} x_{\mu}(t) = A(\mu; t) x_{\mu}(t) + B(\mu; t) u_{\mu}(t) \\ - E_{ad} \frac{d}{dt} \phi_{\mu}(t) = A(\mu; t)^{*} \phi_{\mu}(t)$$

$$\label{eq:relation} \begin{split} \hline & \mbox{Reduced primal and adjoint systems} \\ \hat{\mathbb{E}}_{\mbox{pr}} \frac{d}{dt} \hat{x}_{\mbox{μ}}(t) = \hat{A}_{\mbox{pr}}(\mbox{μ};t) \hat{x}_{\mbox{μ}}(t) + \hat{\mathbb{B}}_{\mbox{pr}}(\mbox{μ};t) u_{\mbox{μ}}(t) \\ - \hat{\mathbb{E}}_{\mbox{ad}} \frac{d}{dt} \hat{\phi}_{\mbox{μ}}(t) = \hat{A}_{\mbox{ad}}(\mbox{μ};t)^* \hat{\phi}_{\mbox{μ}}(t) \end{split}$$

Adaptive Model Hierarchies for Multi-Ouerv Scenarios

Universität

MM

Adaptive Model Hierarchies for Multi-Ouerv Scenarios

- Universitä

MM

The cookie baking example [Rave/Saak'21] Problem setting

Heat equation as state system:

$$\begin{split} \partial_{t}\theta(t;\mu) - \nabla\cdot(\sigma(t;\mu)\nabla\theta(t;\mu)) &= 0 \quad \text{ in } \Omega, \\ \sigma(t;\mu)\nabla\theta(t;\mu)\cdot\vec{n} &= u(t) \quad \text{ on } \Gamma_{in}. \end{split}$$

+ homogeneous initial, Dirichlet and Neumann conditions

- Parametric and time-dependent diffusivity σ
- Output quantities: Average temperature in the four cookies
- ► Target state: Prescribed average temperature in all cookies

Example 2 – Parametrized optimal control problems Numerical results

MM

Model	Number of solves	Number of error estimates	Total time for error est. and solving [s]	Average time for error est. and solving per solve [s]
FOM	4	_	304.95	76.24
RB-ROM	12	16	234.56	19.55
F-ROM	437	453	450.39	1.03
ML-F-ROM	9,547	10,000	5,136.95	0.54

Adaptive Model Hierarchies for Multi-Query Scenarios

hendrik.kleikamp@uni-muenster.de

For more details, see:

- B. HAASDONK, H. KLEIKAMP, M. OHLBERGER, F. SCHINDLER, AND T. WENZEL. A new certified hierarchical and adaptive *RB-ML-ROM surrogate model for parametrized PDEs, (2023).* SIAM J. Sci. Comput., 45(3), A1039–A1065.
- T. WENZEL, B. HAASDONK, H. KLEIKAMP, M. OHLBERGER, AND F. SCHINDLER. *Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling, (2024).* Proceeding of the LSSC 2023 Conference.
- H. KLEIKAMP. Application of an adaptive model hierarchy to parametrized optimal control problems, (2024). Proceedings of the Conference Algoritmy, 66–75.
- H. KLEIKAMP AND L. RENELT. Two-stage model reduction approaches for the efficient and certified solution of parametrized optimal control problems, (2024) arXiv preprint.

The source code for the papers is available open source:

- Parametrized parabolic PDEs
 - Three-stage hierarchy: https://github.com/ftschindler/ paper-2022-certified-adaptive-RB-ML-ROM-hierarchy
- Parametrized optimal control problems
 - Three-stage hierarchy: https://doi.org/10.5281/zenodo.10669855
 - Four-stage hierarchy: https://doi.org/10.5281/zenodo.13652744

