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a diffusion coefficient that depends on the medium. Combining these gives:



Fick’s, Darcy’s . . . law + Continuity equation: J = ρ∇u ∂u

∂t
= ∇ · J

Here u = u(x, t) can be thought of as temperature, J as heat flux, and ρ is

a diffusion coefficient that depends on the medium. Combining these gives:

• In the time­independent/steady­state case: Laplace’s equation: △u = 0

• The heat equation ut = ∇·ρ∇u and with ρ = 1

• Fundamental solution K(x, t) = 1√
4πt

e−
x2

4t

• Decay rate is a Gaussian distribution: 〈x2〉 ∝ t



Fick’s, Darcy’s . . . law + Continuity equation: J = ρ∇u ∂u

∂t
= ∇ · J

Here u = u(x, t) can be thought of as temperature, J as heat flux, and ρ is

a diffusion coefficient that depends on the medium. Combining these gives:

• In the time­independent/steady­state case: Laplace’s equation: △u = 0

• The heat equation ut = ∇·ρ∇u and with ρ = 1

• Fundamental solution K(x, t) = 1√
4πt

e−
x2

4t

• Decay rate is a Gaussian distribution: 〈x2〉 ∝ t

Many ways to argue this.

• Foundation was Brownian motion. Made explicit by Einstein in 1905: verified

by Perrin to compute Avogadro’s number (Nobel Prize 1926).

• A statistician might argue this as follows: The particle jumps should be

independent random variables. In the limit or aggregate, by the Central

Limit Theorem, these should approach a Gaussian distribution.

• Einstein demonstrated 〈x2〉 ∝ t2 gave straight line motion ­ wave equation.
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In the last 40 years accumulated evidence indicates not

all diffusion processes seem to obey this law.

So what if we allow the more general version 〈x2〉 ∝ φ(t)

– and (somehow) find the φ that “best fits the data?”

Will we still get a nice partial differential equation?

• Drop the “nice” for a moment. Just will it be a pde?

Unless f(t) = tn and n an integer, not under almost any setting.

Nice (in the sense of beauty) is always in the eyes of the beholder.

If in the sense of mathematical analysis, then, frankly, no.



Where do the fractions enter?

Anomalous (fractional) Diffusion: 〈x2〉 ∝ tα , α 6= 1 leads to a continuous

time random walk and a fractional derivative in the time variable Dα
0,tu ,

If α < 1 we have sub­diffusion; α > 1 gives super diffusion.



Where do the fractions enter?

Anomalous (fractional) Diffusion: 〈x2〉 ∝ tα , α 6= 1 leads to a continuous

time random walk and a fractional derivative in the time variable Dα
0,tu ,

If α < 1 we have sub­diffusion; α > 1 gives super diffusion.

Anything more general than simple powers?

Of course! How close to a pde do you want? One aim would be to preserve as

much structure as possible in the resulting “differential” equations and prevent

the analysis from being overly challenging or too abstract.

The fractional power law is already hard enough.

Remember Einstein’s quote

“Always keep things simple, but no simpler”



Where do the fractions enter?

Anomalous (fractional) Diffusion: 〈x2〉 ∝ tα , α 6= 1 leads to a continuous

time random walk and a fractional derivative in the time variable Dα
0,tu ,

If α < 1 we have sub­diffusion; α > 1 gives super diffusion.

Anything more general than simple powers?

Of course! How close to a pde do you want? One aim would be to preserve as

much structure as possible in the resulting “differential” equations and prevent

the analysis from being overly challenging or too abstract.

The fractional power law is already hard enough.

Remember Einstein’s quote

“Always keep things simple, but no simpler”

Will lead to very different physics.

In turn will lead to interesting inverse problems.
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t = ∇·J
Fractional differential equation

Dα
0,tu−Dβ

0,xu+ aux + bu = f

with α ∈ (0, 1) , β ∈ (1, 2) being the order of “differentiation” at a micro­
scopical level: (Can also have 1 < α < 2 for “fractional wave equation”).

In the case of space fractional derivatives we might need
n∑

i=1

aiD
αi
xi
u+

n∑

i=1

biD
βi
xi
u+ cu = f 1 < αi ≤ 2, 0 < βi ≤ 1
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• Abel’s integral equation for tautochrone problem (1823): µ ∈ (0, 1) ,

Iµ[ϕ] =

∫ x

0

(x−t)−µ
ϕ(t)dt = f(x)

Two limiting cases:

limµ→1−
1

Γ(1−µ)
Iµ[ϕ] = ϕ(x) limµ→0+

1
Γ(1−µ)

Iµ[ϕ] =
∫ x

0
ϕ(t) dt

⇒ L.H.S. is a fractional integral of order 1 − µ



Some members of the fractional derivative zoo of order α ∈ (n− 1, n)

[a] Riemann­Liouville fractional derivative

∂α
t u(t) =RDα

t u(t) =
1
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[b] Caputo fractional derivative (Dzherbashyan, 1960, Caputo, 1967)

CDα
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1
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0
(t−s)n−1−αu(n)(s) ds

[But this really should be called the Dzherbashyan­Caputo derivative.]
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Some members of the fractional derivative zoo of order α ∈ (n− 1, n)

[a] Riemann­Liouville fractional derivative
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t u(t) =RDα

t u(t) =
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Γ(n−α)
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0
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[b] Caputo fractional derivative (Dzherbashyan, 1960, Caputo, 1967)

CDα
t u(t) =

1

Γ(n−α)

∫ t

0
(t−s)n−1−αu(n)(s) ds

[But this really should be called the Dzherbashyan­Caputo derivative.]

• Composition of fractional derivatives: α ∈ (1, 2)

(R
D

α
2

0 )2u(x) = R
D

α
0 u(x), if u(0) = 0,

(C
D

α
2

0 )2u(x) = C
D

α
0 u(x) − u′(0)

Γ(2−α)
x

1−α
, if u ∈ C

2[0, 1].
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Some members of the fractional derivative zoo of order α ∈ (n− 1, n)

[a] Riemann­Liouville fractional derivative

∂α
t u(t) =RDα

t u(t) =
1

Γ(n−α)

dn

dtn

∫ t

0
(t−s)n−1−αu(s) ds

[b] Caputo fractional derivative (Dzherbashyan, 1960, Caputo, 1967)

CDα
t u(t) =

1

Γ(n−α)

∫ t

0
(t−s)n−1−αu(n)(s) ds

[But this really should be called the Dzherbashyan­Caputo derivative.]

• No product rule
RDα

0 (fg) 6= (RDα
0 f)g + f(RDα

0 g),
CDα

0 (fg) 6= (CDα
0 f)g + f(CDα

0 g)

⇒ no usual integration by parts!! ⇒ no Green’s Theorem!!

Massive Difference from classical case.
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If t is a time variable, then it appears one can get comfortably along with just

these two as the left to right definition corresponds to increasing time.



Some members of the fractional derivative zoo of order α ∈ (n− 1, n)
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CDα
t u(t) =

1

Γ(n−α)

∫ t

0
(t−s)n−1−αu(n)(s) ds

[But this really should be called the Dzherbashyan­Caputo derivative.]

If x is a space variable, then we might need further animals; for example,

◦ Iβ
[0,1][u](x) = 1

2 [R0D
β
x + R

1D
β
x ]u(x) , with 1<β<2 , x∈ [0, 1]

◦ Fractional Laplacian (with/without various boundary conditions)

In R
d use Fourier transforms: ̂−△αf(s) = |s|2αf̂(s)

In Ω⊂R
d , A sectorial: Aαf =

sin(πα)

π

∫ ∞
0
λα−1A(λI+A)−1f dλ
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• R­L and Grünwald­Letnikov have the same Fourier transforms

• Implicit/explicit schemes based on the Grünwald­Letnikov formula are

unstable. The trick is to use a shifted formula

◦ Even here, the scheme is only O(h) .



Numerics: the history mechanism changes the game ...

• Requires retaining all previous numerical steps ⇒ huge storage needs

• More limited smoothing property renders the analysis challenging, espe­

cially for nonsmooth data

• The Grünwald­Letnikov derivative

Dα
xf(x) := limh→0

1

hα

⌊x−a
h ⌋∑

j=0

(−1)jΓ(j + α)

j!Γ(1 + α− j)
f(x− jh)

• If f is bounded, f (j) ∈ L1(R) for j ≤ n with n > 1 + α then Dα
xf

has Fourier transform (iξ)αf̂(ξ) .

• R­L and Grünwald­Letnikov have the same Fourier transforms

• Not surprisingly, there is developing a vast literature for all the derivatives

(but especially Riemann­Liouville) based on finite elements.
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The efficient and accurate numerical computation of the Mittag­ Leffler function

is delicate. An efficient algorithm relies on partitioning the complex plane
where different approximations, i.e., power series, integral representation and

asymptotic values for small, intermediate and large values of the argument

respectively, are used for efficient numerical computation.

The special (and for fractional diffusion, important) case of the Mittag­Leffler

function Eα,β(z) with real argument z can also be efficiently computed with

a combination of Laplace transforms and suitable quadrature rules.
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Important point: for α<1 ,

Eα,β has exponential [ e(z
1/α

] growth for large x

Eα,β has polynomial decay for large −x
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Also need the Wright function (1933) Wρ,µ(z) =
∞∑

k=0

zk

k! Γ(ρk + µ)
,

ρ, µ ∈ R , ρ > −1 , z ∈ C . It is an entire function of order 1/(1+ρ) .

The computation of the Wright function W (z) is even more delicate. An

algorithm for the Wright over the whole complex plane with rigorous error

analysis is still missing.

For real z a divide and conquer approach for small, intermediate and large

values is necessary. The intermediate range (which is very large) is aided by

an integral represention formula.

Unfortunately, this has a singular kernel but a transformation allows Gauss­

Jacobi quadrature to be used effectively [Luchko, 2008; Jin­R, 2015]
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Fundamental solutions at t = 1 :
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• What about inverse problems???

◦ The analysis is definitely going to be more challenging,

◦ But will there be new physics?.

◦ Or just tedius analysis leading to the same conclusions?.
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Amazingly ill­posed

Dα
t u = uxx

u(x, t) =
∑

cnEα,1(−λntα)φn(x)

u0(x) =
∑

dn[Eα,1(−λnTα)]−1φn(x)

Recover {cn} : cn = 1
Eα,1(−λnT α)

dn

How ill­posed?
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The nth Fourier mode of u0 equals that of g multiplied by λn ≈ n2π2

– a two derivative loss in Fourier space.
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Look at the asymptotic: if λnT >> 1 , Eα,1(−λnT
α) ≈ CλnT

α .

The nth Fourier mode of u0 equals that of g multiplied by λn ≈ n2π2

– a two derivative loss in Fourier space.

Stability estimate (Sakamoto­Yamamoto 2011)

c‖u(T )‖H2 ≤ ‖u(0)‖L2 ≤ C‖u(T )‖H2

The backwards fractional derivative problem is only mildly ill­conditioned

Fractional diffusion completely changes the paradigm here

But do we have the complete story?

Conjecture:

Reconstructing u0 from u(x, T ) is always easier in the fractional case

The answer is no, and the difference can be substantial.
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For example, at T = 0.001 , the first twenty singular values for the heat

equation are larger than the fractional counterpart.
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The singular value spectrum of the map F : u0 → g for α= 1
2 and α=1
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∂α
t u−△u = f in Ω × (0, T ],

∂α
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Assume an initial condition u(0) = u0 + suitable boundary conditions.

Goal: Recover the source term f from lateral boundary or final time data.
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Goal: Recover the source term f from lateral boundary or final time data.

We consider only the one­dimensional model; the analysis and computation

can be extended into the general multi­dimensional case.

u(x, 0) = u0(x)

u(0, t) = a0(t) u(1, t) = a1(t)

ux(0, t) = h(t)
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Recovery of unknown source terms

∂α
t u− uxx = f in [0, 1] × (0, T ],

∂α
t u denotes the Djrbashian­Caputo fractional derivative of order α ∈ (0, 1) .

Assume an initial condition u(0) = u0 + suitable boundary conditions.

Goal: Recover the source term f from lateral boundary or final time data.

Clearly, one piece of boundary data or final time data alone is insufficient to

uniquely determine a general source term f(x, t) and so we break things

down into two cases; a spatially unknown term and a time­dependent one.

We can include additional terms without much additional theoretical difficulties

so, for example our base model might become

∂α
t u− (a(x)ux)x + q(x) = φ(t)f(x)

where a(x) , q(x) , φ(t) are given while we seek f(x) .

[However we won’t clutter the discussion with these additions.]

Also, by linearity of the problem, w.l.o.g. we can assume initial data, u0 = 0 .
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Space­dependent source, final time data

∂α
t u− uxx = f(x) in [0, 1] × (0, T ], u(x, T ) = g(x)

The solution u to the forward problem is given by

u(t) =
∑∞

j=1

∫ t

0
(t− τ)α−1Eα,α(−λj(t− τ)α)(f, φj)φjdτ

=
∑∞

j=1 λ
−1
j (1 −Eα,1(−λjt

α))(f, φj)φj .

Hence the measured data g = u(T ) is given by

g =
∞∑

j=1

1

λj

(1 − Eα,1(−λjT
α))(f, φj)φj.

By taking the inner product with φj on both sides, we obtain the representation

f =
∞∑

j=1

λj
(g, φj)

1 − Eα,1(−λjTα)
φj .

Note: E1,1(x) = ex
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By the complete monotonicity of the Mittag­Leffler function Eα,1(−t) on the

positive real axis, we deduce 1 > Eα,1(−λ1T
α) > Eα,1(−λ2T

α),
Thus (*) is well defined for any T > 0 , and gives the precise condition for the

existence of a source term.
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Each frequency component (f, φj) differs from (g, φj) essentially by a factor

λj , which amounts to a two derivative loss in space.
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λj
(g, φj)

1 − Eα,1(−λjTα)
φj . (∗)

By the complete monotonicity of the Mittag­Leffler function Eα,1(−t) on the

positive real axis, we deduce 1 > Eα,1(−λ1T
α) > Eα,1(−λ2T

α),
Thus (*) is well defined for any T > 0 , and gives the precise condition for the

existence of a source term.

Even with a modest value of the terminal time T , the factor

1 − Eα,1(−λjT
α) ≈ 1 for all α ≈ 0

Each frequency component (f, φj) differs from (g, φj) essentially by a factor

λj , which amounts to a two derivative loss in space.

Actually one can show ‖f‖L2(Ω) ≤ c‖g‖H2(Ω) .

This behavior is identical to that for the backward fractional diffusion.

Holds also for the inverse source problem for the classical diffusion case.



This is not surprising, since with a space dependent source term f , the

solution u to the forward problem can be split into the steady solution us and

the decaying transient solution ud : u = us + ud , where us and ud solve

respectively

−u′′s = f, us(0) = us(1) = 0,

and

∂α
t ud − ud,xx = 0, ud(0, x) = f(x), ud(0, t) = ud(1, t) = 0,

The steady state component us is dominating, which amounts to a two spatial

derivative loss and this is confirmed by numerical experiments where

◦ The condition number is almost independent of the fractional order α .

◦ For large T , the singular value spectra are almost identical for all fractional

orders, decaying to zero at an algebraic rate.
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We have a source term f of form f(x, t) = p(t)q(x) , with q(x) known and
seek to recover p(t) from data u(x, T ) = g .

The inclusion of a nontrivial term q(x) is essential to retain uniqueness. even

in the classical case. To see this, take u to satisfy

ut − uxx = f(t), (x, t) ∈ (0, 1) × (0, T )

u(x, 0) = 1, −ux(0, t) = ux(1, t) = 0.
with

u(x, T ) = g(x) = 1.

Then one solution is given by u(x, t) = 1 and f ≡ 0 ,

but another is u(x, t) = cos(2πt/T ) and f = (−2π/T )sin(2πt/T ) .

In the fractional case, take u = cos(2πt/T ) for the second solution and

define f to be its α th order Djrbashian­Caputo fractional derivative in time.



Like previously, the solution u is given by
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∫ t

0
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∫ T

0
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This resembles a finite­time Laplace transform or moment problem, and thus

highly smoothing, which renders the inverse source problem severely ill­posed.
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∫ t
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t near T . Otherwise, the information is severely damped, especially for high

frequency modes.



Like previously, the solution u is given by

u(t) =
∑∞

j=1

∫ t

0
(t− τ)α−1Eα,α(−λj(t− τ)α)p(τ)dτ(q, φj)φj .

Hence the measured data g(x) = u(x, T ) is given by

g(x) =
∑∞

j=1

∫ T

0
(T − τ)α−1Eα,α(−λj(T − τ)α)p(τ)dτ(q, φj)φj(x).

By taking the inner product with φj on both sides, we deduce

(g, φj) = (q, φj)

∫ T

0

(T − τ)α−1Eα,α(−λj(T − τ)α)p(τ)dτ.

In the fractional case, the forward map F from the unknown to the data is
clearly compact, and thus the problem is still ill­posed.

However, the kernel tα−1Eα,α(−λjt
α) is less smooth and decays much

slower.

Thus one might expect that the problem is less ill­posed than the classical

counterpart . . .



To examine the point, we examine the singular values of the problem.

• Irrespective of the fractional order α , the singular values decay exponen

tially to zero without a distinct gap in the spectrum.

◦ In particular, for the terminal time T = 1 , the spectrum is almost

identical for all fractional orders α .

• For small T , the singular values still decay exponentially, but the rate is

different: the smaller is the fractional order α , the faster is the decay.

◦ In other words, due to a slower local decay of the exponential function
e−λt , compared with the Mittag­Leffler function tα−1Eα,α(−λtα) ,

more frequency modes can be picked up by normal diffusion than the

fractional counterpart.
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◦ In particular, for the terminal time T = 1 , the spectrum is almost

identical for all fractional orders α .

• For small T , the singular values still decay exponentially, but the rate is

different: the smaller is the fractional order α , the faster is the decay.

◦ In other words, due to a slower local decay of the exponential function
e−λt , compared with the Mittag­Leffler function tα−1Eα,α(−λtα) ,

more frequency modes can be picked up by normal diffusion than the

fractional counterpart.



In summary:

Both classical and fractional diffusion paradigms lead to a severely ill­posed

problems; in the (colloquial) language they are exponentially ill­conditioned in

that the forwards map from p(t) → u(x, T ) is infinitely smoothing ­ u(x, T )
is analytic in x for p(t) continuous.

This price has to be repaid when we invert.

But from a quantitative standpoint, fractional diffusion is always at least as

ill­conditoned as the classical counterpart.
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Overposed data can also be the flux at an end point −ux(0, t) = g(t) .

We seek the recovery of a time dependent component p(t) in the source term

f = q(x)p(t) from g(t) .
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Overposed data can also be the flux at an end point −ux(0, t) = g(t) .

We seek the recovery of a time dependent component p(t) in the source term

f = q(x)p(t) from g(t) .

Previous arguments lead to showing g(t) is related to the unknown p(t) by

g(t) = −∑∞
j=1

∫ t

0
(t−τ)α−1Eα,α(−λj(t−τ)α)p(τ)dτ〈q(x), φj〉φ′j(0).

It can be deduced that ([SakamotoYamamoto:2011])

‖p‖C[0,T ] ≤ c‖∂α
t g‖C[0,T ].

• The inverse problem roughly amounts to taking the α th order Djrbashian­

Caputo fractional derivative in time.

• as the fractional order α ց from 1 → 0 , it becomes less and less ill­

posed. (for α close to zero, it is nearly well­posed, at least numerically).

[More precisely, the condition number of the discrete forward map F
decreases monotonically as the fractional order α decreases from 1 → 0 ].



Now the case of recovering a space­dependent component q(x) in the source

term f = q(x)p(t) from flux data at x = 0 .
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term f = q(x)p(t) from flux data at x = 0 .

We omit the details as the have much in common with the previous cases, but
here is the outcome:

• The inverse source problem of recovering a space dependent component

from the lateral Cauchy data is severely ill­posed for both fractional and

normal diffusion. In the simplest case of a space dependent only source

term, it is mathematically equivalent to unique continuation.



Now the case of recovering a space­dependent component q(x) in the source

term f = q(x)p(t) from flux data at x = 0 .

We omit the details as the have much in common with the previous cases, but
here is the outcome:

• The inverse source problem of recovering a space dependent component

from the lateral Cauchy data is severely ill­posed for both fractional and

normal diffusion. In the simplest case of a space dependent only source

term, it is mathematically equivalent to unique continuation.



Epitaph:

The following “folk theorem” was formulated by John Cannon 50 years ago:

Folk Theorem. An inverse problem for a partial differential equation where the

unknown function and the data are aligned in the same direction is usually only

mildly ill-posed; if the directions are different it surely will be severely ill-posed.

In the case of unknown sources the fractional diffusion equation obeys the same

“theorem” ­ although there may be quantitive differences from the classical case

(and in both directions).



Consider the one­dimensional boundary value problem

ut = uxx 0 < x < 1, t > 0

u(x, 0) = 0, ux(0, t) = g0(t), u(L, t) = f1(t)

The solution can be written explicitly as

u(x, t) = −2

∫ t

0

θ(x, t−τ)g0(τ) dτ+2

∫ t

0

θx(x−L, t−τ)f1(τ) dτ (∗)

where

θ(x, t) =
∞∑

m=−∞
K(x+2m, t), K(x, t) =

1√
4πt

e−
x2

4t (∗∗)

Thus one can recover, for example, f0(t) = u(0, t) .
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ut = uxx 0 < x < 1, t > 0

u(x, 0) = 0, ux(0, t) = g0(t), u(L, t) = f1(t)

The solution can be written explicitly as

u(x, t) = −2

∫ t

0

θ(x, t−τ)g0(τ) dτ+2

∫ t

0

θx(x−L, t−τ)f1(τ) dτ (∗)

where

θ(x, t) =
∞∑

m=−∞
K(x+2m, t), K(x, t) =

1√
4πt

e−
x2

4t (∗∗)

Thus one can recover, for example, f0(t) = u(0, t) .

The sideways heat problem turns this around:

Given f0 , g0 recover f1 .



From (*) we obtain a formula for f1 as
∫ t

0
R(t−τ)f1(τ) dτ =

∫ t

0
θx(−L, t−τ)f1(τ) dτ = known(f0, g0)

The bad news: this is a Volterra equation of the first kind whose kernel R(s)

satisfies
dm

dsm
R(s)

∣∣∣
s=0

= 0 for all m ≥ 0 . Thus severely ill­posed.

R(s) = L
2
√

π
s−

3
2 e−

L2

4s ∈ C∞(0,∞).
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∫ t

0
R(t−τ)f1(τ) dτ =

∫ t

0
θx(−L, t−τ)f1(τ) dτ = known(f0, g0)

The bad news: this is a Volterra equation of the first kind whose kernel R(s)

satisfies
dm

dsm
R(s)

∣∣∣
s=0

= 0 for all m ≥ 0 . Thus severely ill­posed.

R(s) = L
2
√

π
s−

3
2 e−

L2

4s ∈ C∞(0,∞).

What happens for the case of Dα
t − uxx ?

Same formula (*) holds but with θα(x, t) and Kα(x, t)

Rα(s) =
1

2sα
W−α

2
,2−α

2
(−Ls−α/2) =

∞∑

k=0

(−L)ks−k α
2
−α

k! Γ(−α
2 k + 2 − α

2 )

Again get a first kind integral equation for f0 with kernel Rα(s) such that

dm

dsm
Rα(s)

∣∣
s=0

= 0, ∀m ≥ 0, ⇒ Still severely ill­conditioned.



The solution f(t) can be recovered by an inverse Laplace transform arugment

f(t) =
1

2πi

∫

Br

f̂eztdz, (∗)

where Br = {z ∈ C : ℜz = σ, σ > 0} is the Bromwich path.

Upon suitably deforming the contour, (*) leads to an efficient numerical scheme

via quadrature rules provided the Cauchy data is available for all t > 0 .
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where Br = {z ∈ C : ℜz = σ, σ > 0} is the Bromwich path.

Upon suitably deforming the contour, (*) leads to an efficient numerical scheme

via quadrature rules provided the Cauchy data is available for all t > 0 .

The expression (*) indicates the fractional sideways problem still suffers from

severe ill­posedness in theory, since the high frequency modes of the data

perturbation are amplified by an exponentially growing multiplier ezα/2

.

Numerically, the degree of ill­posedness decreases dramatically as α de­

creases from 1 → 0 ; as α→ 0+ , the multipliers grow at a much slower rate,

⇒ better chance of recovering many more modes of f .



The solution f(t) can be recovered by an inverse Laplace transform arugment

f(t) =
1

2πi

∫

Br

f̂eztdz, (∗)

where Br = {z ∈ C : ℜz = σ, σ > 0} is the Bromwich path.

Upon suitably deforming the contour, (*) leads to an efficient numerical scheme

via quadrature rules provided the Cauchy data is available for all t > 0 .

The expression (*) indicates the fractional sideways problem still suffers from

severe ill­posedness in theory, since the high frequency modes of the data

perturbation are amplified by an exponentially growing multiplier ezα/2

.

Both classical and fractional sideways problems are severely ill­posed in the
sense of norm error estimates between the data and unknown h . But with a

fixed frequency range, the time fractional problem can be much less ill­posed.

Both classical and fractional sideways problems are Hence, anomalous diffusion

mechanism does help substantially since much more effective reconstructions

are possible in the fractional case.



The case of space fractional derivatives

Consider the one­dimensional “sideways heat problem”

Du(x, t) =CDβ
0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(0, t) = f(t), ux(0, t) = g(t), t > 0

We wish to compute the solution at x = 1 , i.e., h(t) := u(1, t) .



The case of space fractional derivatives
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Du(x, t) =CDβ
0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(0, t) = f(t), ux(0, t) = g(t), t > 0

We wish to compute the solution at x = 1 , i.e., h(t) := u(1, t) .

In the case β = 2 , the model recovers the standard diffusion equation, and
we have already discussed the severe ill­conditioning .

Due to the nonlocal nature of the fractional derivative, one might expect that in

the space fractional case, the sideways problem is less ill­posed.
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0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(0, t) = f(t), ux(0, t) = g(t), t > 0

We wish to compute the solution at x = 1 , i.e., h(t) := u(1, t) .

Take Laplace transforms in time to obtain

pû(x, p) − CDβ
0,xû(t) with û(0, p) = f̂(p), ûx(0, p) = ĝ(p).

The solution is given as: û(x, p) = f̂(p)Eβ,1(px
β)+ ĝ(p)xEβ,2(p, x

β) .

Thus

ĥ(p) = f̂(p)Eβ,1(p) + ĝ(p)Eβ,2(p) ⇒ h(t) =

∫

Br

eptĥ(p) dp
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The solution is given as: û(x, p) = f̂(p)Eβ,1(px
β)+ ĝ(p)xEβ,2(p, x

β) .

Thus

ĥ(p) = f̂(p)Eβ,1(p) + ĝ(p)Eβ,2(p) ⇒ h(t) =

∫

Br

eptĥ(p) dp

If β = 2 , this gives cosh
√
p and sinh

√
p/

√
p multipliers to the data f̂(p)

and ĝ(p) resulting in the known exponential ill­conditioning.



The case of space fractional derivatives

Consider the one­dimensional “sideways heat problem”

Du(x, t) =CDβ
0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(0, t) = f(t), ux(0, t) = g(t), t > 0

We wish to compute the solution at x = 1 , i.e., h(t) := u(1, t) .

Take Laplace transforms in time to obtain

pû(x, p) − CDβ
0,xû(t) with û(0, p) = f̂(p), ûx(0, p) = ĝ(p).

The solution is given as: û(x, p) = f̂(p)Eβ,1(px
β)+ ĝ(p)xEβ,2(p, x

β) .

Thus

ĥ(p) = f̂(p)Eβ,1(p) + ĝ(p)Eβ,2(p) ⇒ h(t) =

∫

Br

eptĥ(p) dp

For β ∈ (1, 2) , the Mittag­Leffler funcion asymptotics shows the problem still

suffers from exponentially growing multipliers to the data and these becomes

asymptotically larger as the fractional order β → 1 .



The case of space fractional derivatives

Consider the one­dimensional “sideways heat problem”

Du(x, t) =CDβ
0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(0, t) = f(t), ux(0, t) = g(t), t > 0

We wish to compute the solution at x = 1 , i.e., h(t) := u(1, t) .

Take Laplace transforms in time to obtain

pû(x, p) − CDβ
0,xû(t) with û(0, p) = f̂(p), ûx(0, p) = ĝ(p).

The solution is given as: û(x, p) = f̂(p)Eβ,1(px
β)+ ĝ(p)xEβ,2(p, x

β) .

Thus

ĥ(p) = f̂(p)Eβ,1(p) + ĝ(p)Eβ,2(p) ⇒ h(t) =

∫

Br

eptĥ(p) dp

In other words, anomalous diffusion in space does not mitigate the ill­conditioned

nature of the sideways problem, but actually worsens the conditioning severely.



The case of space fractional derivatives

Consider the one­dimensional “sideways heat problem”

Du(x, t) =CDβ
0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(0, t) = f(t), ux(0, t) = g(t), t > 0

We wish to compute the solution at x = 1 , i.e., h(t) := u(1, t) .

In the case β = 2 , one may equally measure the lateral Cauchy data at
x = 1 , and aim at recovering the solution at x = 0 . Clearly, this does not

change the nature of the inverse problem, and it is equally ill­posed.

Due to the directional nature of the Djrbashian­Caputo derivative CDβ
0,x , one

naturally wonders whether this “directional” feature does influence the ill­posed

nature of the sideways problem.



The “ reversed sideways heat problem”

Du(x, t) =CDβ
0,xu(x, t), x > 0, t > 0 β ∈ (1, 2)

u(x, 0) = 0, u(1, t) = f(t), ux(1, t) = g(t), t > 0

We now wish to compute the solution at x = 0 , i.e., h(t) := u(0, t) .

The analysis is quite tricky.

However, the key factor is the sign reversal in x translating into evaluating the

Mittag­Leffler functions in a direction where they are only polynomially growing.

This in turns results in only polynomial growth multipliers for ĝ(p) and f̂(p) .

Thus provided one stays away from β = 2 . . .

This version of the sideways heat problem is only mildly ill­posed !!



Not every reasonable inverse problem for the parabolic case has a counterpart

in the fractional case with very different properties.



Not every reasonable inverse problem for the parabolic case has a counterpart

in the fractional case with very different properties.

• Although the work involved in showing this is usually much delicate.

◦ Caused by limited tools (there is a weak maximum principle though).

◦ Lack of usual parabolic strong regularity results.



Recovering a nonlinear boundary term: find g(u) from
C

D
α
t u − uxx = γ(x, t) x ∈ (0, 1) t > 0

− ux(0, t) = k(t) ux(1, t) = g(u(1, t)) t > 0

u(x0) = u0(x)

The functions γ , k and u0 are given. The overposed data is the profile

u(0, t) = h(t) t > 0 .
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Recovering a nonlinear source term: find f(u) from

CDα
t u−△u = f(u) x ∈ Ω ⊂ R

n t > 0

∂u

∂ν
= ψ x ∈ ∂Ω t > 0

u(x0) = u0(x) x ∈ Ω

given the overposed data u(x0, t) = h(t) x0 ∈ ∂Ω t > 0
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D
α
t u − uxx = γ(x, t) x ∈ (0, 1) t > 0
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Recovering a nonlinear source term: find f(u) from

CDα
t u−△u = f(u) x ∈ Ω ⊂ R

n t > 0

∂u

∂ν
= ψ x ∈ ∂Ω t > 0

u(x0) = u0(x) x ∈ Ω

given the overposed data u(x0, t) = h(t) x0 ∈ ∂Ω t > 0

• Uniqueness and reconstruction algorithm (Luchko­R­Yamamoto­Zuo, 2013)



• With α < 1 one can take the same approach although there are now

many more technical difficulties and a weaker result follows. The difficulties

surround the regularity of the solution and being able to impose conditions

that guarantee the maximum temperature range occurs on the left boundary.



• With α < 1 one can take the same approach although there are now

many more technical difficulties and a weaker result follows. The difficulties

surround the regularity of the solution and being able to impose conditions

that guarantee the maximum temperature range occurs on the left boundary.

• The parabolic version is only mildly ill­posed: equivalent to a derivative loss.

• The fractional version is even less ill­posed: equivalent to a fractional

derivative loss.

• This means that an optimal regularization requires working with a penalty

term involving fractional integral norms.



And last, but not least, we have . . .



Inverse Sturm Liouville problem

This is a basic building block of many undetermined coefficient problems as

well as important in its own right.

−Dα
0,xu+ qu = λu , x ∈ (0, 1) u(0) = u(1) = 0.
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• 1<α<2 , space fractional diffusion ⇐ Levy motion



Inverse Sturm Liouville problem

This is a basic building block of many undetermined coefficient problems as

well as important in its own right.

−Dα
0,xu+ qu = λu , x ∈ (0, 1) u(0) = u(1) = 0.

• α = 2 : RD2
0u(x) = CD2

0u(x) = u′′(x) ;

• 1<α<2 , space fractional diffusion ⇐ Levy motion

Direct problem: Given q(x) determine {λn}
classical, α = 2 R­L. case D­C case

λn =zeros of E2,2(−λ) Eα,α(−λ) Eα,2(−λ)
eigenfunction sin

√
λnx xα−1Eα,α(−λnx

α) xEα,2(−λnx
α)

asymptotic λn = (nπ)2 , |λn| ∼ (nπ)α |λn| ∼ (nπ)α

asymptotic arg (λn) = 0 arg (λn) ∼ 2−α
2 π arg (λn) ∼ 2−α

2 π



• q=0 : Dirichlet eigenvalues of −D2 = zeros of E2,2(−z)= sinh(
√
−z)√

−z
,

λn = (nπ)2 , Dirichlet eigenfunctions of −D2 = sin
√
λx .



• q=0 : Dirichlet eigenvalues of −D2 = zeros of E2,2(−z)= sinh(
√
−z)√

−z
,

λn = (nπ)2 , Dirichlet eigenfunctions of −D2 = sin
√
λx .

• q ∈ L2 : asymptotics: λn(0) = (nπ)2 , arg(λn) = 0

λn(q) = λn(0) +
∫ 1

0
q(x)dx + cn {cn} ∈ ℓ2 : for smooth q ,

limn→∞ cn → 0 rapidly. φn(x) = 1√
λn

sin
√

λnx + O
(

1
λn

)
.
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• q=0 : Dirichlet eigenvalues of −D2 = zeros of E2,2(−z)= sinh(
√
−z)√

−z
,

λn = (nπ)2 , Dirichlet eigenfunctions of −D2 = sin
√
λx .

• q ∈ L2 : asymptotics: λn(0) = (nπ)2 , arg(λn) = 0

λn(q) = λn(0) +
∫ 1

0
q(x)dx + cn {cn} ∈ ℓ2 : for smooth q ,

limn→∞ cn → 0 rapidly. φn(x) = 1√
λn

sin
√

λnx + O
(

1
λn

)
.

• q ∈ L2 : Eigenfunctions {φn} are mutually orthogonal, complete in L2

• q ∈ L2 : q=0 : Dirichlet eigenvalues of −RDα
0 = zeros of Eα,α(−z)

• q ∈ L2 : q=0 : Dirichlet eigenfunctions of −CDα
0 = xα−1Eα,2(−λxα)

Asymptotically: zeros of Eα,α(z) are distributed as

z
1
α
n = 2nπi − (α−1)

(
log2π|n| + π

2 sign(n) i
)

+ log(α/Γ(2−α)) + dn

• Both fractional cases have complex eigenvalues:

• Computation of eigenvalues and eigenvectors quite tricky
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Inverse eigenvalue problem: recover q(x) from the spectrum {λk}
• For general q this is insufficient.

• A second spectrum arising from a change of boundary conditions, or
norming constants or endpoint data – in addition to the original, is sufficient.

• If q is symmetric about x= 1
2

then a single spectrum suffices.

• If q is known on [0, 1
2
] , a single spectrum allows unique recovery on [1

2
, 1]
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In the case with the fractional operator (−uxx)α in H2∩H1
0 (0, 1) :

• Same eigenfunctions sin
√
λn ­ no fundamental change.



Inverse eigenvalue problem: recover q(x) from the spectrum {λk}
• For general q this is insufficient.

• A second spectrum arising from a change of boundary conditions, or
norming constants or endpoint data – in addition to the original, is sufficient.

• If q is symmetric about x= 1
2

then a single spectrum suffices.

• If q is known on [0, 1
2
] , a single spectrum allows unique recovery on [1

2
, 1]

In the Riemann­Liouville case with 1<α<2 we observe that

• If q is symmetric about x = 1
2

then a single spectrum suffices.

[Can prove that at least this much information is required].

• If q is known on [0, 1
2
] , a single spectrum allows unique recovery on [1

2
, 1]

• There seems to be no difference in uniqueness in the general case.

• Analysis of uniqueness extremely difficult.

• Computations are much more complex.
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• A single (Dirichlet) spectra is sufficient to recover a general q !!
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• For general q this is insufficient.

• A second spectrum arising from a change of boundary conditions, or
norming constants or endpoint data – in addition to the original, is sufficient.

• If q is symmetric about x= 1
2

then a single spectrum suffices.

• If q is known on [0, 1
2
] , a single spectrum allows unique recovery on [1

2
, 1]

In the Dzherbashyan­Caputo case with 1<α<2 we observe that

• A single (Dirichlet) spectra is sufficient to recover a general q !!

• The eigenvalues occur in complex­conjugate pairs.

• The real and imaginary parts of the eigenfunctions have resp. odd and

even number of zeros and seem to span distinct subspaces and so give

distinct information. But proving this . . . .

• Problem is only mildly ill posed for 1<α< 4
3

but ill­conditioning increases

rapidly with increasing α . For α>1.9 condition numbers exceed 1010 .
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