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inverse problems setup

• X , Y Banach spaces, dom(F ) ⊂ X closed, convex
• F : dom(F )→ Y continuous, injective forward operator
• u† ∈ dom(F ) unknown quantity, g† := F (u†) observable

quantity, gobs observations/measurements of g†

• ill-posedness: Typically F−1 not continuous

aims:
• Construct “good” estimators ûα of u† given gobs

• Prove convergence of ûα to u† as gobs tends to g† in some
sense



Examples of noise models

• finite dimensional noise models
• white noise models Lecture 1
• point processes, e.g. Poisson processes
• impulsive noise (only deterministic so far)

In all cases (except possibly the last one) we have gobs /∈ Y!



data fidelity functional

• ‖gobs − F (u)‖Y not well defined if gobs /∈ Y!
• We assume that we can associate with each gobs a convex

data fidelity functional

Sgobs (·) : Y → (−∞,∞]

such that Sgobs

(
g†
)
≈ infg∈Y Sgobs (g).

• We only access the data gobs via its associated data fidelity
functional Sgobs (·).

• natural choice of S: negative log-likelihood functional

Sgobs (g) = − lnPg[gobs] + C

with C independent of g.



variational regularization

ûα ∈ argmin u∈dom(F )

[
Sgobs (F (u)) + αR(u)

]
examples of penalty functionals:
• R(u) = ‖u − u0‖pX for some p ≥ 1
• R(u) =

∑
j |
〈
u, vj

〉
| for some ONB or frame {vj}

• R(u) = |u|TV

• R(u) =
∫

u(x) ln u(x) dx (entropy regularization)



effective noise level
data fidelity functional for exact data g† := F (u†):
• Tg† : ran(F )→ [0,∞]

• assumed property: Tg†(g) = 0 ⇔ g = g†

• frequent choice: Tg† (g) = E
[
Sgobs (g)− Sgobs

(
g†
)]

Definition Let Cerr ≥ 1 and Ỹ ⊂ ran(F ).

errỸ := supg∈Ỹ

[
−Sgobs (g) + Sgobs

(
g†
)

+
1

Cerr
Tg† (g)

]
We call err := errran(F ) (or errỸ ) the effective noise level (on Ỹ).

errỸ is defined s.t. ∀g ∈ Ỹ

Sgobs (g)− Sgobs

(
g†
)

≥ 1
Cerr
Tg† (g)− errỸ



estimating the effective noise level
Gaussian white noise

Assume that gobs = g† + ξ where ξ is Gaussian white noise
• Choose Sgobs (g) := ‖g‖2 − 2

〈
gobs,g

〉
.

• Choose Tg† (g) = E
[
Sgobs (g)− Sgobs

(
g†
)]

= ‖g − g†‖2

• For Cerr = 1 we get

errỸ = 2 sup
g∈Ỹ

〈
ξ,g − g†

〉
.

• Concentration inequalities for err are a well-studied in
probability theory.



estimating the effective noise level
standard deterministic noise model

If ‖gobs − g†‖Y ≤ δ and

Sg1 (g2) = Tg1 (g2) = ‖g1 − g2‖pY ,

then the effective noise level on Y with Cerr = 2p−1 is bounded
by

err ≤ 2δp.



estimating the effective noise level
discrete noise model

noise model: gobs
i = g†(xi) + εi , i = 1, . . . ,n

quadrature rule: Qnϕ :=
∑n

i=1 αiϕ(xi) ≈
∫

Ω ϕ(x) dx
data fidelity functionals:

Sgobs (g) := ‖g‖2 − 2
n∑

i=1

αigobs
i g(xi)

Tg† (g) := ‖g − g†‖2L2(Ω)

effective noise level for Cerr = 1:

errỸ := sup
g∈Ỹ

[
(Qn − I)(g†(g − g†))︸ ︷︷ ︸

discretization error

+
n∑

i=1

αiεi(g(xi)− g†(xi))︸ ︷︷ ︸
random error

]
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Bregman distances
Definition
Let X be a Banach space, R : X → R ∪ {∞} convex, u1 ∈ X ,
and u∗1 ∈ ∂R(u1). Then

Du∗1
R (u2,u1) := R(u2)−R(u1)− 〈u∗1,u2 − u1〉

is called the Bregman distance of R at u1 and u2.
properties:
• Du∗1

R (u2,u1) ≥ 0, and Du∗1
R (u1,u1) = 0.

• If R is strictly convex, then Du∗1
R (u2,u1) = 0 implies u2 = u1.

• In a Hilbert space with R(u1) = ‖u1‖2 we have
∂R(u1) = {2u∗1} and Du∗1

R (u1,u2) = ‖u1 − u2‖2.

P Eggermont. Maximum entropy regularization for Fredholm integral equations
of the first kind, SIAM J. Math. Anal. 24:1557–1576, 1993

M. Burger, S. Osher. Convergence rates of convex variational regularization.
Inverse Problems 20:1411–1422, 2004.



source conditions

spectral source condition:

u† = ϕ
(

F ′[u†]∗F ′[u†]
)

w

variational source condition (VSC): Let β ∈ (0,1].

βDR(u,u†) ≤ R(u)−R(u†)+ψ
(
TF (u†) (F (u))

)
for all u ∈ dom(F ).

First used (with ψ(t) = c
√

t) in

B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer. A convergence rates
result for Tikhonov regularization in Banach spaces with non-smooth operators.
Inverse Problems 23:987–1010, 2007.

Here ϕ,ψ : [0,∞)→ [0,∞) are non-decreasing and vanish at
0. ψ is assumed be concave.



advantages of variational vs. spectral
source conditions

• simpler proofs
• not only sufficient, but even necessary for certain rates of

convergence (for linear operators in Hilbert spaces)1

• VSCs do not involve F ′  no need of tangential cone
condition or related conditions

• VSC work for Banach spaces and general R, S.

1) see:

J. Flemming, B. Hofmann, and P. Mathé. Sharp converse results for the
regularization error using distance functions. Inverse Problems, 27:025006,
2011.



convergence of Tikhonov regularization
Theorem
Assume VSC and the existence of a global minimizer of the
Tikhonov functional.

1 Let (−ψ)∗(s) := supt≥0[ts + ψ(t)] denote the Fenchel
conjugate. Then

βDR(ûα,u†) ≤
err
α

+ (−ψ)∗
(
− 1

Cerrα

)
.

2 If we choose −1
Cerrα

∈ ∂(−ψ)(Cerrerr), then

βDR(ûα,u†) ≤ Cerrψ(err) .

M. Grasmair. Generalized Bregman distances and convergence rates for
non-convex regularization methods. Inverse Problems 26:115014 (16p.), 2010.

R. I. Bot and B. Hofmann. An extension of the varionational inequality approach
for nonlinear ill-posed problems. J. Int. Eq. Appl. 22:369–392, 2010.

J. Flemming. Theory and examples of variational regularisation with non-metric
fitting functionals. J. Inv. Ill-Posed Probl. 18:677–699, 2010.



Proof of convergence theorem, part 1
Proof. By the definition of ûα we have

Sgobs

(
F (ûα)

)
+ αR(ûα) ≤ Sgobs

(
F (u†)

)
+ αR(u†) . (1)

It follows that

βDR(ûα,u†)
Ass. SC
≤ R(ûα)−R(u†) + ψ

(
TF (u†)

(
F (ûα)

))
(1)
≤ 1
α

(
Sgobs

(
F (u†)

)
− Sgobs

(
F (ûα)

))
+ ψ

(
TF (u†)

(
F (ûα)

))
Ass. N
≤ err

α
− 1

Cerrα
TF (u†)

(
F (ûα)

)
+ ψ

(
TF (u†)

(
F (ûα)

))
≤ err

α
+ sup

t≥0

[
t

−Cerrα
− (−ψ)(t)

]
=

err
α

+ (−ψ)∗
(
− 1

Cerrα

)
.



Proof of convergence theorem, part 2

inf
α>0

[
err
α

+ (−ψ)∗
(
− 1

Cerrα

)]
=− sup

t<0
[tCerrerr− (−ψ)∗(t)]

=− (−ψ)∗∗(Cerrerr)

=ψ(Cerrerr) ≤ Cerrψ(err) .

By the conditions for equality in Young’s inequality, the
supremum is attained at α if and only if −1

Cerrα
∈ ∂(−ψ)(Cerrerr).



selection of the regularization
parameter

Note: discrepancy principle not applicable in general.

Lepskiı̆ balancing principle: Let αj := r jerr with r > 1 and
choose

αbal := max
{

j ∈ N : ‖uαj − uαk‖ ≤ 4(4CX r−j)
1
q for k = 0, . . . , j − 1

}
.

Theorem
If ψ1+ε is concave for some ε > 0 then

‖uαbal − u†‖2 ≤ Cψ(err) .

F. Werner, T. Hohage. Convergence rates in expectation for Tikhonov-type
regularization of inverse problems with Poisson data, Inverse Problems
28:104004 (16p.), 2012.



Newton-type methods
Disadvantages of Tikhonov-type regularization: minimization of
non-convex functional, no uniqueness of minimizers.
Alternative: Choose αk = α0ρ

k for some ρ ∈ (0,1) and set

uk+1 ∈ argmin u∈dom(F )

[
Sgobs

(
F ′[uk ](u−uk )+F (uk )

)
+ αkR(u)

]
If S and R are convex, a convex optimization problem has to be
solved in each Newton step. We use an algorithm from

A. Chambolle, T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis 40:120-145, 2011.

T. Hohage, C. Homann. A Generalization of the Chambolle-Pock algorithm to
Banach spaces with Applications to Inverse Problems. arXiv 1412.0126, 2014.

Under an additional assumption on the local approximation
quality of F ′ (a tangential cone condition) we can show similar
results as for Tikhonov regularization.

T. Hohage, F. Werner. Iteratively regularized Newton-type methods for general
data misfit functionals and applications to Poisson data. Numer. Math., Numer.
Math. 123:745–779, 2013.
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photonic imaging

• Neglecting read-out errors, photon data can be considered
as realizations of a Poisson process.

• After binning data consist of vectors or arrays of
independent Poisson distributed integers.

• examples:
• coherent x-ray imaging (with Tim Salditt)
• scanning fluorescence microscopy, e.g. standard confocal,

4Pi or STED microscopy (with Stefan Hell, Alexander
Egner)

• Positron Emission Tomography (PET)
• astronomical imaging



point processes

A point process on subman-
ifold M ⊂ Rd can either be
defined as
• a random finite set of

points {x1, . . . , xN} ⊂M
• or as a finite sum of

Dirac measures:
Y =

∑N
i=1 δxi .

In general N is random.

A point process is called
Poisson process with density
g ∈ L1(M), g ≥ 0 if:
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0

0.2

0.4

0.6

0.8

1

Figure: simulated point process



Poisson processes: first defining
property

N (A) := #
{

i ∈ {1, ...,N}
∣∣ xi ∈ A

}
1. independence

For any disjoint, measurable
subsets A1, ...,An ⊂ M the
random numbers

N (A1) , ...,N (An)

are independent.
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N (A1) = 4
N (A2) = 3

N (A3) = 0



Poisson processes: second defining
property

N (A) := #
{

i ∈ {1, ...,N}
∣∣ xi ∈ A

}
2. expectation= intensity
For any measurable A ⊂M

E [N (A)] =

∫
A

g(x) dx .

Then N(A) can be shown to
be Poisson distributed with
parameter λ =

∫
A g(x) dx ,

i.e.
P [N(A) = n] = exp(−λ)λ

n

n! .
0 0.2 0.4 0.6 0.8 1
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properties of Poisson processes

Writing the Poisson process as Y =
∑N

j=1 δxj we have

∫
ψdY =

N∑
j=1

ψ(xj)

If Y has density g† and ψ : M→ R is measurable, then

E
[∫

M
ψdY

]
=

∫
M
ψg† dx

Var
[∫

M
ψdY

]
=

∫
M
ψ2g† dx

whenever the integrals on the rhs exist.



log-likelihood
• negative log-likelihood (with scaling factor 1/t , up to

additive constants)

SYt (g) =

{∫
M g dx −

∫
M ln(g) dYt =

∫
M g dx −

∑N
j=1

1
t ln(g(xj)), if g ≥ 0

∞, else.

• expectation: (convention ln(x) := −∞ for x ≤ 0)

E [SYt (g)] =

∫
M

[
g − g† ln(g)

]
dx .

• Kullback-Leibler divergence
Tg† (g) = E

[
SYt (g)− SYt

(
g†
)]

= KL
(
g†; g

)
where

KL
(

g†; g
)

:=

∫
M

[
g − g† − g† ln

(
g
g†

)]
dx .



setup for Poisson data

• X Banach space, Y = L1(M) ∩ L∞(M).
• F : dom(F )→ Y satisfies F (u) ≥ 0 for all u ∈ dom(F ).
• tYt , t > 0 Poisson process with intensity tg†.
• Tg† (g) := KL

(
g† + σ; g + σ

)
with small σ > 0.

• Sg† (g) :=
∫
M g dx −

∫
M ln(g + σ)(dYt + σdx)

t can often be interpreted as exposure time and is proportional
to the expected number of photons.
aims:
• Prove convergence as t →∞

or answer the question
• How much can we learn from N photons?



Yt with t = 100 expected points



Yt with t = 500 expected points



Yt with t = 1000 expected points



Yt with t = 5000 expected points



Yt with t = 10.000 expected points



Yt with t = 50.000 expected points



Yt with t = 100.000 expected points



Yt with t = 1.000.000 expected points



the true intensity g†



effective noise level

err(g) =

∫
M

g + σ

g† + σ
(dYt − g†dx)

• uniform boundedness of integrands essential for
concentration inequalities

• need offset σ > 0
• σ can be chosen very small (= 10−4 or 10−6), only

logarithmic dependence on σ



a concentration inequality
Proposition Let Y = L1(M) with M ⊂ Rd a bounded Lipschitz
domain. Assume that F (u) ≥ 0 for all u ∈ dom(F ) and

sup
u∈dom(F )

‖F (u)‖Hs <∞ for some s > d/2.

Then there exists C > 0 such that

P
[

err ≥ ρ√
t

]
≤ exp

(
− ρ

C

)
, ∀t , ρ ≥ 1.

Proof based on
P. Reynaud-Bouret. Adapative estimation of the intensity of inhomogeneous
Poisson processes via concentration inequalities. Prob. Theory Rel.
126:103–153, 2003.

P. Massart. About the constants in Talagrand’s concentration inequalities for
empirical processes. Ann.Prob. 28:863–884, 2000.

M. Talagrand. New concentration inequalities in product spaces. Invent. Math.
126:505–563, 1996.



convergence in expectation for Poisson
data

Corollary
Under the assumptions of the previous proposition and
Assumption SC generalized Tikhonov regularization with
a-priori parameter choice rule −1

α ∈ ∂(−ψ)(t−1/2) fulfills the
error estimate

E
[
‖û − u†‖2

]
= O

(
ψ
(

t−1/2
))

t →∞.

A similar result holds for a Lepskiı̆ stopping rule, but we loose a
logarithmic factor in t .

F. Werner, T. Hohage. Convergence rates in expectation for Tikhonov-type
regularization of inverse problems with Poisson data, Inverse Problems
28:104004 (16p.), 2012.
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phase retrieval in optics

refractive index: n(x, z) = 1− δ(x, z) + iβ(x, z), 0 ≤ β, δ � 1
unknown: u(x) = κ

∫ 0
−∞[δ(x, z)− iβ(x, z)] dz

forward operator: Fγ : Ls(Bρ,C) −→ L1(R2) parameterized by
dimensionless Fresnel number γ > 0 proportional to 1/d :

(Fγ(u))(x) :=
∣∣∣ ∫

Bρ
exp(iγ|x − y |2)eiu(y) dy

∣∣∣2
far-field case: Limit γ → 0 or d →∞ (after a rescaling)

(F0(u))(x) :=
∣∣∣ ∫

Bρ
exp(ix · y)eiu(y) dy

∣∣∣2.



uniqueness results

Theorem
For all γ > 0 the operator Fγ is injective.

• Surprising since Fγ maps complex to real images.
• Only assumption: Compactness of supp(u)

• Proof relies on theory of entire functions

S. Maretzke A uniqueness result for propagation-based phase contrast imaging
from a single measurement. Inverse Problems 31:065003 (16p), 2015. 2015,
31, 065003, 16

uniqueness for F0 only under strong additional assumptions:
• symmetry
• analyticity close to boundary, C4 elsewhere

M. V. Klibanov. On the recovery of a 2-D function from the modulus of its Fourier
transform. J. Math. Anal. Appl. 323:818–843, 2006.



exact diffraction pattern and photon
counts

100 200
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Expected total number of photon counts = 106



simulated phase object and
reconstruction
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t 103 104 105 106 107 108

L2-fidelity 58.8 50.7 31.5 16.6 9.46 9.21

S-fidelity 53.2 39.2 29.3 13.8 8.77 7.38



reconstruction of a cell from
holographic experimental data in the

Fresnel regime

experimental data published in:
K. Giewekemeyer, S.P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, T. Salditt.
X-ray propagation microscopy of biological cells using waveguides as a
quasipoint source. Phys. Rev. A 83:023804. 2011



3D reconstructions from tomographic
experimental data

source:
S.Maretzke Regularized Newton methods for simultaneous Radon inversion and
phase retrieval in phase contrast tomography. Master thesis. arXiv:1502.05073,
2015.
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statement of the problem:

Consider a stochastic differential equation

dYt = µ(Yt ) dt + σ(Yt )dWt .

inverse problem: Given the values Y(j)
T , j = 1, . . . ,n of N

independent paths starting at Y0 = 0 for some time T > 0 and
given σ, estimate the drift coefficient µ!



Fokker-Planck equation

Assume that Yt has a density g(·, t) w.r.t. the Lebesgue
measure for all t ∈ [0,T ]. Then g solves the Fokker-Planck
equation (also called Kolmogoroff forward equation)

∂g
∂t

= div
(
σσ>

2
grad g − µg

)
.

formulation as an operator equation: Introduce F : Hs → L1

with s > d/2 + 1 by F (µ) := g(·,T ) where g solves the
Fokker-Planck equation with initial values g(·,0) = δ0.

Data consist of N independent samples Y(1)
T , . . . ,Y(N)

T drawn
from the distribution with density g† = F (µ†).



second scenario: equidistant
observations of an ergodic process

A similar problem arises if a single path is observed at
equidistant time points and ergodicity is assumed. The density
g of the observations satisfies the stationary Fokker Planck
equation

0 = div
(
σσ>

2
grad g − µg

)
,

∫
g dx = 1.



negative log-likelihood

Let YN := 1
N
∑N

j=1 δYj denote the empirical measure.

negative log-likelihood:

SYN (g) = − 1
N

lnPg [Y1, . . . ,YN ] = − 1
N

ln
N∏

j=1

g(Yj)

= − 1
N

N∑
j=1

ln g(Yj) = −
∫

ln(g) dYN .

nonnegative deterministic data-fidelity term:

Tg† (g) = E
[
SYN (g)− SYN

(
g†
)]

= KL
(

g†; g
)

where KL
(
g†; g

)
:=
∫

g† ln g†
g ,dx .



convergence in expectation

For the second scenario all assumptions of our convergence
theorems both for generalized Tikhonov regularization and
iteratively regularized Newton methods could be verified.
The final result for an a-priori choice of α or the stopping index
is convergence in expectation of the form

E
[
‖µ̂α − µ†‖2Hs

]
≤ Cψ

(
1√
N

)
, N →∞.

F. Dunker, T. Hohage. On parameter identification in stochastic differential
equations by penalized maximum likelihood. Inverse Problems 30:095001,
2014.



reconstructions from single path
observations

N 125 250 500 1000
L2-fidelity 0.28 0.22 0.18 0.14
S-fidelity 0.18 0.14 0.11 0.096



reconstructions from many paths at
fixed time
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comparison of L2 and L1 data fidelity
for impulsive noise

F = linear integral operator (two times smoothing)

µ̂α = argmin µ∈L2

[
‖Fµ− gobs‖pLp + α‖µ‖2L2

]
, p = 1,2

Computation of L1 minimizer via dual formulation, see
C. Clason, B. Jin, K. Kunisch. A semismooth Newton method for L1 data fitting
with automatic choice of regularization parameters and noise calibration. SIAM
J. Imaging Sci. 3:199–231, 2010.



obstacle scattering
• aim: find boundary
∂D =

{
µ
(
x̂
)

x̂
∣∣ x̂ ∈ S1}

• v(x) = exp(ikd ·x) + vs(x)

∆v + k2v = 0 in R2 \ D
∂v
∂n

= 0 on ∂D

√
r
(
∂vs

∂r
−ikvs

)
r→∞→ 0

• v(x) ≈ eik|x|√
|x |

v∞
(

x
|x |

)
.

• forward operator

F : Hs
(

S1
)
→ L1(S1),

µ† 7→ v∞

−2 0 2

−2

0

2



inverse obstacle scattering with
impulsive noise

−1 0 1

−1

0

1

µ†

µ̂L1
α

µ̂L2
α

0 2 4 6

−2

−1

0

angle

gobs

F
(
µ̂L1

α

)
F
(
µ̂L2

α

)



a limiting case

Let Y = L1(Ω) and
gobs = g† +

∑J
j=1 cjδxj .

Recall that L1(Ω) is isometrically embedded inM(Ω), the
space of signed finite Borel measures.
• ‖gobs − g†‖M(Ω) =

∑J
j=1 |cj |, so the classical noise level

may be large.
• Choose Sg1 (g2) := ‖g1 − g2‖M, Tg1 (g2) := ‖g1 − g2‖L1 .

• Sgobs (g) = ‖g − g†‖L1 +
∑J

j=1 |cj |
• Hence, Sgobs (g)− Sgobs

(
g†
)

= Tg† (g), so for Cerr = 1 we
get

err = 0.

T. Hohage, F. Werner. Convergence rates for inverse problems with impulsive
noise. SIAM J. Numer. Anal. 52:1203–1221, 2014.



impulsive noise model and improved
error bound

There exist η, ε ≥ 0 and a measurable Mη ⊂M such that

|Mη| ≤ η, ‖g† − gobs‖L1(M\Mη) ≤ ε .

assumptions:
• X Hilbert space and F : X →W k ,2(M) Lipschitz continous

bounded with M ⊂ Rd and k > d/2
• variational source condition with ψ(t) = ctµ

Then
‖µ̂α − µ†‖X = O

(
εµ/2 + η

µ
2+µ

( k
d + 1

2 )
)
.



impulsive noise for infinitely smoothing
operators

Recall noise model: ∃η, ε ≥ 0, Mη ⊂M measurable such that

|Mη| ≤ η, ‖g† − gobs‖L1(M\Mη) ≤ ε .

For inverse problems in PDEs the forward operator F is very
often not only finitely, but infinitely smoothing.
assumptions:
• F maps boundedly into a space of analytic functions
• logarithmic source condition

Then
• only logarithmic convergence rates in ε, but still high

polynomial rates in η

T. Hohage, C. König, F. Werner. Convergence Rates for Exponentially Ill-Posed
Inverse Problems with Impulsive Noise. arXiv: 1506.02126, 2015.
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