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Convex optimization

Form of the minimization problems for variational image

processing

Michael Moeller

Assumptions [ General assumptions
Throughout this chapter, | will assume we have discretized all The subdferental
minimization problems. In other words, our problems are of the  fens =™
fOI’m A proximal point
algorithm
Uearg m;ly G(u) + F(Ku) (1)
ueRr”n

for a matrix K and extended real valued functions
G:R" - RU{oo}, F:R™ - RU{oo}, and a matrix K € R™<".
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Example problem

Throughout the whole chapter, the classical 1d TV-denoising
problem arising from (1) via

1 1
G(u) = 5llu—flF =5 > _(ui—£)?
i
F(Ku) = az |uj — Uj—1| = o|[Kul[1
i>1

will serve as an example.
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Example problem

Throughout the whole chapter, the classical 1d TV-denoising
problem arising from (1) via

1 1
G(u) = 5llu—fl3 = 5 > (i — £)*
i

F(Ku) = az |uj — Uj—1| = o|[Kul[1

i>1

will serve as an example.

Completely analog things can be done in 2d.
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Domain and properness G

processing

Michael Moeller

Definition The subdifferential
e For E:R" — RU{co}, we call el s

A proximal point

dom(E) := {u e R" | E(u) < oo}

the domain of E.
o We call E proper if dom(E) # 0.
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Form of the minimization problems

More assumptions...
In our problems

U e arg 52{[3 G(u) + F(Ku)

we assume
e F and G are convex.
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In our problems

U e arg 52%1” G(u) + F(Ku)
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e [ and G are convex.
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Form of the minimization problems

More assumptions...
In our problems

Uearg 52{[3 G(u) + F(Ku)

we assume
e [ and G are convex.
e dom(G) Nndom(F o K) # .
e F and G are lower-semi continuous, i.e.
liminf E(v) > E(u)

v—u

holds for E = F and E = G.
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Form of the minimization problems

More assumptions...
In our problems

Uearg 52{[3 G(u) + F(Ku)

we assume
e [ and G are convex.
e dom(G) Nndom(F o K) # .
e F and G are lower-semi continuous, i.e.
liminf E(v) > E(u)

v—u

holds for E = F and E = G.
e G(u) + F(Ku) is coercive, i.e.

G(u) + F(Ku) — oo for ||u|| — oo

Convex optimization
for variational image
processing

Michael Moeller

(1) ceneralassumptions -
The subdifferential

Relation to convex
conjugate

A proximal point
algorithm

5/22



Form of the minimization problems G

processing

Michael Moeller

Existence of minimiziers

Under the above assumptions [
~ q The subdifferential
uc arg mlnn G(U) + F(KU) Relation to convex

uekr conjugate

A proximal point

eXiStS. algorithm

Summary of the assumptions
e G and F are convex (and not crazy).
e The energy can "control” ||u||.
o All constraints are < or > and never < or >.
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bearg mglg E(u)?
ueRn
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Convex optimization

Variational Pr0b|ems for variational image
processing
What is an optimality condition for Michael Moeller

ueRr”

General assumptions

 The subdifferential
Definition: Subdifferential Relation to convex
conjugate
We Ca" A proximal point
algorithm

OE(u)={peR"| E(v)— E(u) — (p,v—u) >0, Vv e R"}

the subdifferential of E at u.
e Elements of 9E(u) are called subgradients.
o If OE(u) # (), we call E subdifferentiable at E.
¢ By convention, 0E(u) = 0 for u # dom(E).

7/22



Variational Problems S

processing

What is an optimality condition for Michael Moeller

ueRr”?

General assumptions

 The subdifferential
Definition: Subdifferential Relation to convex
conjugate
We Ca" A proximal point
algorithm

OE(u)={peR"| E(v)— E(u) — (p,v—u) >0, Vv e R"}

the subdifferential of E at u.
e Elements of 9E(u) are called subgradients.
o If OE(u) # (), we call E subdifferentiable at E.
¢ By convention, 0E(u) = 0 for u # dom(E).

Theorem: Optimality condition
Let 0 € OE(T). Then & € argmin, E(u).
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Variational Problems
Examples for non-differentiable functions:
e The ¢! norm.
e Functional

= 2 Mgl
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Variational Problems S

processing

Examples for non-differentiable functions: Michael Moeller

e The ¢! norm.
e Functional

0 if ue [0, OO[ General assumptions

Ew) - {

00 else. e suderental
Relation to convex
conjugate

A proximal point
algorithm

Definition: Relative Interior
The relative interior of a convex set M is defined as

M) ={xeM|VyeM, Ix>1, st Ax+(1-N)yeM}

Theorem: Subdifferentiability?

4Rockafellar, Convex Analysis, Theorem 23.4

If E is a proper convex function and u € ri(dom(E)), then
OE(u) is non-empty and bounded.
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Convex optimization

Varlational Pr0b|ems for variational image

processing

Michael Moeller

Subdifferential calculus -

e Generalized derivative: If E is differentiable at u, then General assumptions
[ The subdiferential
8E(U) = {VE(U)} ?:r:?lj:;;oconvex

A proximal point
algorithm

e Sum rule: If ri(dom(E;)) Nri(dom(Ez)) # 0, then

A(Es + E2)(u) = OE; (u) + 0E(u)
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Variational Problems

Subdifferential calculus
o Generalized derivative: If E is differentiable at u, then

OE(u) = {VE(u)}.

e Sum rule: If ri(dom(E;)) Nri(dom(Ez)) # 0, then

A(Es + E2)(u) = OE; (u) + 0E(u)

e Cain rule: If ri(dom(E)) Nnrange(A) # 0 then
I(E o A)(u) = A*0E(Au)
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Convex optimization

Example problems with explicit solution e T T

processing

Michael Moeller

Examples
General assumptions
N 1  The subdiferential
u = min —||U - V”g + aE(U) (prOX) Relation to convex
u 2 conjugate
A proximal point
for algorithm
_1 2
e E(u) = 3llu—fl3
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Example problems with explicit solution I

processing

Michael Moeller

Examples
General assumptions
N 1  The subdiferential
u= §||U - V||2 ate aE( ) (prOX) Relation to convex
conjugate
A proximal point
for algorithm
E(u) = 3llu—f|3
E(u) = [|ull4

Observation: For typical choices of F and G, problem (prox)
(with E = F or E = G) is easy to solve.
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Relation to convex conjugate

Fenchel-Young Inequality?

aBorwein, Zhu Techniques of variational analysis, Proposition 4.4.1

Let E be proper, convex and lower semi-continuous,
u e dom(E) Cc R”, and p € R”, then

E(u) + E*(p) = (u, p).

Equality holds if and only if p € OE(u).
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Relation to convex conjugate

Fenchel-Young Inequality?

aBorwein, Zhu Techniques of variational analysis, Proposition 4.4.1

Let E be proper, convex and lower semi-continuous,
u e dom(E) Cc R”, and p € R”, then

E(u) + E*(p) = (U, p).
Equality holds if and only if p € 0E(u).

Theorem: Subgradient of convex conjugate?®

4Rockafellar, Convex Analysis, Theorem 23.5

Let E be proper, convex and lower semi-continuous, then the
following two conditions are equivalent:

o pcdE(u)
e uc JE*(p)
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U e arg 52%1” G(u) + F(Ku)
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Optimality condition G

processing

Michael Moeller

bearg n;i[y G(u) + F(Ku)
u n

Optimality condition

General assumptions

The subdifferential

0 S 86( U) + K*aF(KU) . Relation to convex
conjugate
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Optimality condition
U € arg min G(u) + F(Ku)
ueRr”

Optimality condition
0 € 0G(u) + K*OF(Ku).

Introduce g € 0F(Ku) and use convex conjugate to obtain
o

0caF (g - K
o) +K§

0 € 9G(

or in stacked form:

o)< (e 2e) 2

Convex optimization
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Convex optimization

optimality condition for variational image

processing

Michael Moeller

We need to find (g, &) with

General assumptions

o

The subdifferential

0 c oF* —K
0 K * a G Relation to convex
conjugate

but how? _

<
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Convex optimization

The proximal pOint algorithm for variational image

processing

Michael Moeller

Monotone operators
A set valued operator T is called monotone, if for all z{, z, and

p1 € Tz1, po € Tz it holds that ER
The subdifferential
<p1 - p23 Z1 — 22> Z o Relation to convex
conjugate
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The proximal point algorithm e

processing

Michael Moeller

Monotone operators

A set valued operator T is called monotone, if for all z{, z, and
p‘] € TZ1, p2 € T22 |t holds that General assumptions

The subdifferential

<p1 —P2,Z21 — 22> 2 0. Relation to convex

conjugate
Proximal point algorithm (PPA)

Good candidate for finding a point Z with 0 € TZ for T being
monotone:
0 e TZK1 4 M(ZK+1 — 29

for a symmetric positive definite matrix M.

Rockafellar, Monotone operators and the proximal point algorithm.
Eckstein, Splitting methods for monotone operators with applications to parallel
optimization.
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The proximal point algorithm

Applicability of PPA
The operator

oF* —-K
K* 0G

is monotone.

Convex optimization
for variational image
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The proximal point algorithm G
processing

Michael Moeller

Applicability of PPA

The operator -

*
T = aF K General assumptions
K* 8G The subdifferential

Relation to convex
conjugate

is monotone. _

Conclusion: The proximal point algorithm

0 oF* —-K qk+1 M, M, qk+1 — qk
€ + ,
0 K* 080G/ \ukt My My ) \uktt — yk
will converge to a solution of our minimization problem, if M is
positive definite.
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Convex optimization

The pI’OXima| pOint algorlthm for variational image

processing

Michael Moeller

Applicability of PPA
The operator -

3 p—
T = aF K General assumptions
K* 86 The subdifferential

Relation to convex
conjugate

is monotone. _

Conclusion: The proximal point algorithm

0 . OF* —K\ (gt n My Mo\ (gt — gk
0 K* oG/ \ukt! My My ) \ukt! —uk )’

will converge to a solution of our minimization problem, if M is
positive definite.

We need to ensure two things with the M;:
@ Make sure each iteration is easy to evaluate.
® Make sure M is symmetric positive definite.
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Convex optimization

The proximal pOint algorithm for variational image

processing
0\ _ (0F =K\ (g7 (M M\ (¢! —g*
0 K< 9G) \uk My M) \uktt —uk )’

Step 1: Make sure each iteration is easy to evaluate. General assumptions

The subdifferential

Michael Moeller
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The proximal point algorithm

0\ _(9F -K g+ (M Me gt — gk
0 K* 0G| \ukt Ms M) \uktt —

Step 1: Make sure each iteration is easy to evaluate.
Choose M, = K|

Convex optimization
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The proximal point algorithm S eaton

for variational image
processing

Michael Moeller
0 OF* —K qk+1 /w1 Mg qk+1 _ qk
€ + ,
0 K* 090G/ \ukt My My \uktt — gk
Step 1: Make sure each iteration is easy to evaluate. General assumptions

Choose M, = K| The subdifferential

Relation to convex
0 . OF* —K qk+1 N M1 K qk+1 _ qk conjugate
0 K* aG Uk+1 M3 M4 Uk+1 . Uk ) _

Advantage: The first inclusion is independent of uk*'! Given uk
and g, solve for g<*1!

Remark: An alternate choice would have been Mz = —K* with
a similar effect for uf*1.
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Convex optimization

The proximal pOint algorithm for variational image

processing
0 . OF* —K qk+1 N /w1 K qk+1 _ qk
0 K+ aG) \u My My) \uktt —uk )’

Step 2: Make sure M symmetric positive definite. General assumptions
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Convex optimization

The proximal point algorithm for variational image

processing
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0 oOF* —K\ (gt M K gkt — gk
€ + ;
0 K* 090G/ \ukt M; My \uktt — gk
Step 2: Make sure M symmetric positive definite. General assumptions
A simple optionis My = 11, My = 1, M3 = K*, 70||K||3 < 1. The subiferentia
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Convex optimization

The proximal point algorithm for variational image

processing

Michael Moeller

0 . OF* —K qk+1 N /w1 K qk+1_qk
0 K* oG/ \ukt! My My ) \ukt! —uk )’

Step 2: Make sure M symmetric positive definite. General assumptions

A simple option is My = 11, My = 1, Ms = K*, 70||K||3 < 1. The subdiferenta
Relation to convex
conjugate

0 oF* —K\ (g 11 K\ (gt —gF Apinaoan
(o) © (K* ae) (uk+1> i (K* L) \uktt —uk )"

17/22



Convex optimization
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0 oOF* —K\ (gt M K gkt — gk
€ + ;
0 K* 090G/ \ukt M; My \uktt — gk
Step 2: Make sure M symmetric positive definite. General assumptions
A simple optionis My = 11, My = 1, M3 = K*, 70||K||3 < 1. The subiferentia
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—_—

=T —.zk+1 =M Zk+1—zK

17/22



Convex optimization

The proximal point algorithm for variational image

processing

Michael Moeller

0 oOF* —K\ (gt M K gkt — gk
€ + ;
0 K* 090G/ \ukt M; My \uktt — gk
Step 2: Make sure M symmetric positive definite. General assumptions
A simple optionis My = 11, My = 1, M3 = K*, 70||K||3 < 1. The subiferentia

Relation to convex
conjugate

0 OF —K\ (gt 11 K\ (g — g Aot
(0) © (K* ae) (uk+1> i (K* L) \uktt —uk )’
—_—

=T —.zk+1 =M Zk+1—zK

0 TZK" 4 M2 — 2K)

— Proximal point algorithm —
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Computing the updates for veriatonal image
processing
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0 . OF* —K qk+1 . ;I K qk+1 _ qk
0 K* 9G k1 K* %I uktt — gk ’

General assumptions
The subdifferential
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Computing the updates for veriatonal image
processing
And how do we actually do the updates? Michael Moeller

0 . OF* —K qk+1 . ;I K qk+1 _ qk
0 K* 9G k1 K* %I uktt — gk ’

General assumptions

Update for q: The subdifferential

Relation to convex
conjugate

’
0 0F (g + —(¢"" — g" — TKu¥) Apodmalport

’
k+1 . b Ak k2 *
q*" =argmin (27||q q“ —TKu[lz + F (Q)>
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Computing the updates
And how do we actually do the updates?

0 . OF* —K qk+1 . ;I K qk+1 _ qk
0 K* 9G k1 K* %I uktt — gk ’

Update for g:
0 € OF*(q"1) + 1(g"1 — ¢t — 7K
1
k+1 . b Ak k2 *
@' — argmin (Zan o — KU |G+ F (q))

For F*(q) = ij.|.<a(q) One obtains

1! it (F +7KUF); > a

(@K + 7KUY, if (¢ + TKUF); € [~a,q]
e} =
—a if (g8 +7KUF); < —a

Convex optimization
for variational image
processing

Michael Moeller
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Computing the updates for veriatonal image
processing
And how do we actually do the updates? Michael Moeller

0 . OF* —K qk+1 . ;I K qk+1 _ qk
0 K* 9G k1 K* %I uktt — gk ’

General assumptions

Update for u: The subdifferential

Relation to convex
conjugate

1
k+1y (kb1 ok *(ok+1 _ K
0. € OG )+ (U — U + oK (29° — ) Fo ol

1 argmpn (g o+ ok (@4~ 13 + G
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Computing the updates for veriatonal image
processing
And how do we actually do the updates? Michael Moeller

0 . OF* —K qk+1 . ;I K qk+1 _ qk
0 K* 9G k1 K* %I uktt — gk ’
General assumptions

Update for u: The subdifferential

Relation to convex
conjugate

0 € AG(UFH) + ; (41 = v+ oK* (294" — ¢)) .
1 argmpn (g o+ ok (@4~ 13 + G
For G(u) = §||u — |2 one obtains
U — 1 (u Yof— aK*(2qk+1 _qk))

1+o
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Convex optimization

1d TV minimization for variational image

processing

Michael Moeller

Primal-dual TV-minimization algorithm: O
The subdifferential
(qk aF TKUk),’ if (qk P TKUk)j € [—Oé, Ol] Relation to convex
gt ={ a if (¢ +7KU); > a oo

—a if (K +7KU¥); < —a A

’
U = — (uk +of —oK* (29" - q"))
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The general algorithm o
Solving

processing

Michael Moeller

muin G(u) + F(Ku)

Primal-dual minimization algorithm:

-1 General assumptions
qk+1 = arg min <2||q = qk = TKUng + F*(q)> The subdifferential
q T

Relation to convex
conjugate

U+ arg min (21U||u — UK oK (29K — g + G(u)>

with F*(q) = sup,(q, v) — F(v) generalizing i, . <.(q)-

A Convex Relaxation Approach for Computing Minimal Partitions,
Chambolle, Cremers, Bischof, Pock.
An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image
Restoration, Zhu, Chan.
A General Framework for a Class of First Order Primal-Dual Algorithms for
Convex Optimization in Imaging Science. Esser, Chan, Zhang.
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to
Imaging, Chambolle, Pock.
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Deriving other methods

Framework

0 . OF* —K\ (gt M, K gkt
0 K* oG/ \uft

allows to derive many more interesting algorithms.
o My = AKK*, My = }l: ADMM
o My =M\, My= }K*K: ADMM
¢ Diagonal matrices, e.g. in the framework of

-q
K* M4 uk+1 _

Convex optimization
for variational image
processing

Michael Moeller

k

k ’
u
General assumptions
The subdifferential

Relation to convex
conjugate

e Zhang, Burger, Osher, A unified primal-dual algorithm framework

based on Bregman iteration.

e Pock, Chambolle, Diagonal preconditioning for first order

primal-dual algorithms in convex optimization.
Further overviews and extensions:

o First Order Algorithms in Variational Image Processing.

Burger, Sawatzky, Steidl.

e An inertial forward-backward method for monotone

inclusions. Lorenz, Pock.
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Convex optimization
Summary for variational image

processing
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Interested in trying things out yourself?

Matlab implementation + GUI for solving Denoising, Deblurring,
Zooming, Inpainting, Motion Estimation, and Segmentation
with the presented primal-dual algorithm: oo o o
http://gpudvision.icg.tugraz.at/index.php? conjugate

content=downloads.php 1 _

General assumptions

The subdifferential

"Replace isrgb(img) with size(img,3)==3 22122


http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
http://vision.in.tum.de/jobs
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Interested in trying things out yourself?

Matlab implementation + GUI for solving Denoising, Deblurring,
Zooming, Inpainting, Motion Estimation, and Segmentation
with the presented primal-dual algorithm: oo o o
http://gpudvision.icg.tugraz.at/index.php? conjugate

content=downloads.php 1 _

General assumptions
The subdifferential
Open positions: http://vision.in.tum.de/jobs

Thank you!

michael.moeller@in.tum.de
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