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Form of the minimization problems

Assumptions

Throughout this chapter, I will assume we have discretized all
minimization problems. In other words, our problems are of the
form

ũ ∈ arg min
u∈Rn

G(u) + F (Ku) (1)

for a matrix K and extended real valued functions
G : Rn → R∪ {∞}, F : Rm → R∪ {∞}, and a matrix K ∈ Rm×n.
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Example problem

Throughout the whole chapter, the classical 1d TV-denoising
problem arising from (1) via

G(u) =
1
2
‖u − f‖2

2 =
1
2

∑
i

(ui − fi)2

F (Ku) = α
∑
i>1

|ui − ui−1| = α‖Ku‖1

will serve as an example.

Completely analog things can be done in 2d.
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Domain and properness

Definition

• For E : Rn → R ∪ {∞}, we call

dom(E) := {u ∈ Rn | E(u) <∞}

the domain of E .
• We call E proper if dom(E) 6= ∅.
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Form of the minimization problems

More assumptions...

In our problems

ũ ∈ arg min
u∈Rn

G(u) + F (Ku) (1)

we assume
• F and G are convex.

• dom(G) ∩ dom(F ◦ K ) 6= ∅.
• F and G are lower-semi continuous, i.e.

lim inf
v→u

E(v) ≥ E(u)

holds for E = F and E = G.
• G(u) + F (Ku) is coercive, i.e.

G(u) + F (Ku)→∞ for ‖u‖ → ∞
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Form of the minimization problems

Existence of minimiziers

Under the above assumptions

ũ ∈ arg min
u∈Rn

G(u) + F (Ku)

exists.

Summary of the assumptions

• G and F are convex (and not crazy).
• The energy can ”control” ‖u‖.
• All constraints are ≤ or ≥ and never < or >.
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Variational Problems

What is an optimality condition for

û ∈ arg min
u∈Rn

E(u)?

Definition: Subdifferential

We call

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0, ∀v ∈ Rn}

the subdifferential of E at u.
• Elements of ∂E(u) are called subgradients.
• If ∂E(u) 6= ∅, we call E subdifferentiable at E .
• By convention, ∂E(u) = ∅ for u 6= dom(E).

Theorem: Optimality condition

Let 0 ∈ ∂E(û). Then û ∈ arg minu E(u).
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Variational Problems

Examples for non-differentiable functions:
• The `1 norm.

• Functional

E(u) =
{

0 if u ∈ [0,∞[
∞ else.

Definition: Relative Interior

The relative interior of a convex set M is defined as

ri(M) := {x ∈ M | ∀y ∈ M, ∃λ > 1, s.t. λx + (1− λ)y ∈ M}

Theorem: Subdifferentiabilitya

aRockafellar, Convex Analysis, Theorem 23.4

If E is a proper convex function and u ∈ ri(dom(E)), then
∂E(u) is non-empty and bounded.



Convex optimization
for variational image
processing

Michael Moeller

General assumptions

The subdifferential

Relation to convex
conjugate

A proximal point
algorithm

8/22

Variational Problems

Examples for non-differentiable functions:
• The `1 norm.
• Functional

E(u) =
{

0 if u ∈ [0,∞[
∞ else.

Definition: Relative Interior

The relative interior of a convex set M is defined as

ri(M) := {x ∈ M | ∀y ∈ M, ∃λ > 1, s.t. λx + (1− λ)y ∈ M}

Theorem: Subdifferentiabilitya

aRockafellar, Convex Analysis, Theorem 23.4

If E is a proper convex function and u ∈ ri(dom(E)), then
∂E(u) is non-empty and bounded.



Convex optimization
for variational image
processing

Michael Moeller

General assumptions

The subdifferential

Relation to convex
conjugate

A proximal point
algorithm

8/22

Variational Problems

Examples for non-differentiable functions:
• The `1 norm.
• Functional

E(u) =
{

0 if u ∈ [0,∞[
∞ else.

Definition: Relative Interior

The relative interior of a convex set M is defined as

ri(M) := {x ∈ M | ∀y ∈ M, ∃λ > 1, s.t. λx + (1− λ)y ∈ M}

Theorem: Subdifferentiabilitya

aRockafellar, Convex Analysis, Theorem 23.4

If E is a proper convex function and u ∈ ri(dom(E)), then
∂E(u) is non-empty and bounded.



Convex optimization
for variational image
processing

Michael Moeller

General assumptions

The subdifferential

Relation to convex
conjugate

A proximal point
algorithm

9/22

Variational Problems

Subdifferential calculus

• Generalized derivative: If E is differentiable at u, then

∂E(u) = {∇E(u)}.

• Sum rule: If ri(dom(E1)) ∩ ri(dom(E2)) 6= ∅, then

∂(E1 + E2)(u) = ∂E1(u) + ∂E2(u)

• Cain rule: If ri(dom(E)) ∩ range(A) 6= ∅ then

∂(E ◦ A)(u) = A∗∂E(Au)
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Example problems with explicit solution

Examples

û = min
u

1
2
‖u − v‖2

2 + αE(u) (prox)

for
• E(u) = 1

2‖u − f‖2
2

• E(u) = ‖u‖1

Observation: For typical choices of F and G, problem (prox)
(with E = F or E = G) is easy to solve.
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Relation to convex conjugate

Fenchel-Young Inequalitya

aBorwein, Zhu Techniques of variational analysis, Proposition 4.4.1

Let E be proper, convex and lower semi-continuous,
u ∈ dom(E) ⊂ Rn, and p ∈ Rn, then

E(u) + E∗(p) ≥ 〈u,p〉.

Equality holds if and only if p ∈ ∂E(u).

Theorem: Subgradient of convex conjugatea

aRockafellar, Convex Analysis, Theorem 23.5

Let E be proper, convex and lower semi-continuous, then the
following two conditions are equivalent:

• p ∈ ∂E(u)
• u ∈ ∂E∗(p)
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Optimality condition

ũ ∈ arg min
u∈Rn

G(u) + F (Ku)
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0 ∈ ∂G(u) + K ∗∂F (Ku).
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Optimality condition

ũ ∈ arg min
u∈Rn

G(u) + F (Ku)

Optimality condition

0 ∈ ∂G(u) + K ∗∂F (Ku).

Introduce q ∈ ∂F (Ku) and use convex conjugate to obtain

0 ∈ ∂F ∗(q̃)− K ũ
0 ∈ ∂G(ũ) + K ∗q̃

or in stacked form:(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
q̃

ũ

)



Convex optimization
for variational image
processing

Michael Moeller

General assumptions

The subdifferential

Relation to convex
conjugate

A proximal point
algorithm

13/22

Optimality condition

We need to find (q̃, ũ) with(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
q̃

ũ

)
,

but how?
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The proximal point algorithm

Monotone operators

A set valued operator T is called monotone, if for all z1, z2, and
p1 ∈ Tz1, p2 ∈ Tz2 it holds that

〈p1 − p2, z1 − z2〉 ≥ 0.

Proximal point algorithm (PPA)

Good candidate for finding a point ẑ with 0 ∈ T ẑ for T being
monotone:

0 ∈ Tzk+1 + M(zk+1 − zk )

for a symmetric positive definite matrix M.
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A set valued operator T is called monotone, if for all z1, z2, and
p1 ∈ Tz1, p2 ∈ Tz2 it holds that

〈p1 − p2, z1 − z2〉 ≥ 0.

Proximal point algorithm (PPA)

Good candidate for finding a point ẑ with 0 ∈ T ẑ for T being
monotone:

0 ∈ Tzk+1 + M(zk+1 − zk )

for a symmetric positive definite matrix M.

Rockafellar, Monotone operators and the proximal point algorithm.
Eckstein, Splitting methods for monotone operators with applications to parallel
optimization.
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The proximal point algorithm

Applicability of PPA

The operator

T =

(
∂F ∗ −K

K ∗ ∂G

)

is monotone.

Conclusion: The proximal point algorithm(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
M1 M2

M3 M4

)(
qk+1 − qk

uk+1 − uk

)
,

will converge to a solution of our minimization problem, if M is
positive definite.
We need to ensure two things with the Mi :

1 Make sure each iteration is easy to evaluate.
2 Make sure M is symmetric positive definite.
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He, Yuan. Convergence Analysis of Primal-Dual Algorithms for Total Variation
Image Restoration.
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The proximal point algorithm

(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
M1 M2

M3 M4

)(
qk+1 − qk

uk+1 − uk

)
,

Step 1: Make sure each iteration is easy to evaluate.

Choose M2 = K !(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
M1 K

M3 M4

)(
qk+1 − qk

uk+1 − uk

)
,

Advantage: The first inclusion is independent of uk+1! Given uk

and qk , solve for qk+1!

Remark: An alternate choice would have been M3 = −K ∗ with
a similar effect for uk+1.
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The proximal point algorithm

(
0
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)(
qk+1
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)
+

(
M1 K

M3 M4

)(
qk+1 − qk

uk+1 − uk
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,

Step 2: Make sure M symmetric positive definite.

A simple option is M1 = 1
τ I, M4 = 1

σ , M3 = K ∗, τσ‖K‖2
2 < 1.(

0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)
︸ ︷︷ ︸

=:T

(
qk+1

uk+1

)
︸ ︷︷ ︸
=:zk+1

+

(
1
τ I K

K ∗ 1
σ I

)
︸ ︷︷ ︸

=:M

(
qk+1 − qk

uk+1 − uk

)
︸ ︷︷ ︸

zk+1−zk

,

0 ∈ Tzk+1 + M(zk+1 − zk )

– Proximal point algorithm –
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τ I, M4 = 1
σ , M3 = K ∗, τσ‖K‖2

2 < 1.(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
1
τ I K

K ∗ 1
σ I

)(
qk+1 − qk

uk+1 − uk

)
,

(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)
︸ ︷︷ ︸

=:T

(
qk+1

uk+1

)
︸ ︷︷ ︸
=:zk+1

+

(
1
τ I K

K ∗ 1
σ I

)
︸ ︷︷ ︸

=:M

(
qk+1 − qk

uk+1 − uk

)
︸ ︷︷ ︸

zk+1−zk

,

0 ∈ Tzk+1 + M(zk+1 − zk )

– Proximal point algorithm –
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Computing the updates

And how do we actually do the updates?(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
1
τ I K

K ∗ 1
σ I

)(
qk+1 − qk

uk+1 − uk

)
,
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And how do we actually do the updates?(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
1
τ I K

K ∗ 1
σ I

)(
qk+1 − qk

uk+1 − uk

)
,

Update for q:

0 ∈ ∂F ∗(qk+1) +
1
τ
(qk+1 − qk − τKuk )

qk+1 = arg min
q

(
1
2τ
‖q − qk − τKuk‖2

2 + F ∗(q)
)
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1
τ
(qk+1 − qk − τKuk )

qk+1 = arg min
q

(
1
2τ
‖q − qk − τKuk‖2

2 + F ∗(q)
)

For F ∗(q) = i‖·‖∞≤α(q) one obtains

qk+1
i =


(qk + τKuk )i if (qk + τKuk )i ∈ [−α, α]
α if (qk + τKuk )i > α
−α if (qk + τKuk )i < −α
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τ I K

K ∗ 1
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)(
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)
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Update for u:

0 ∈ ∂G(uk+1) +
1
σ

(
uk+1 − uk + σK ∗(2qk+1 − qk )

)
uk+1 = arg min

q

(
1

2σ
‖u − uk + σK ∗(2qk+1 − qk )‖2

2 + G(u)
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uk+1 = arg min

q

(
1

2σ
‖u − uk + σK ∗(2qk+1 − qk )‖2

2 + G(u)
)

For G(u) = 1
2‖u − f‖2

2 one obtains

uk+1 =
1

1 + σ

(
uk + σf − σK ∗(2qk+1 − qk )

)
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1d TV minimization

Primal-dual TV-minimization algorithm:

qk+1
i =


(qk + τKuk )i if (qk + τKuk )i ∈ [−α, α]
α if (qk + τKuk )i > α
−α if (qk + τKuk )i < −α

uk+1 =
1

1 + σ

(
uk + σf − σK ∗(2qk+1 − qk )

)
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The general algorithm
Solving

min
u

G(u) + F (Ku)

Primal-dual minimization algorithm:

qk+1 = arg min
q

(
1
2τ
‖q − qk − τKuk‖2

2 + F ∗(q)
)

uk+1 = arg min
q

(
1

2σ
‖u − uk + σK ∗(2qk+1 − qk )‖2

2 + G(u)
)

with F ∗(q) = supv 〈q, v〉 − F (v) generalizing i‖·‖∞≤α(q).

A Convex Relaxation Approach for Computing Minimal Partitions,
Chambolle, Cremers, Bischof, Pock.
An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image
Restoration, Zhu, Chan.
A General Framework for a Class of First Order Primal-Dual Algorithms for
Convex Optimization in Imaging Science. Esser, Chan, Zhang.
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to
Imaging, Chambolle, Pock.
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Deriving other methods

Framework(
0

0

)
∈

(
∂F ∗ −K

K ∗ ∂G

)(
qk+1

uk+1

)
+

(
M1 K

K ∗ M4

)(
qk+1 − qk

uk+1 − uk

)
,

allows to derive many more interesting algorithms.
• M1 = λKK ∗, M4 = 1

λ I: ADMM

• M1 = λI, M4 = 1
λK ∗K : ADMM

• Diagonal matrices, e.g. in the framework of
• Zhang, Burger, Osher, A unified primal-dual algorithm framework

based on Bregman iteration.
• Pock, Chambolle, Diagonal preconditioning for first order

primal-dual algorithms in convex optimization.

Further overviews and extensions:
• First Order Algorithms in Variational Image Processing.

Burger, Sawatzky, Steidl.
• An inertial forward-backward method for monotone

inclusions. Lorenz, Pock.
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Summary

Interested in trying things out yourself?

Matlab implementation + GUI for solving Denoising, Deblurring,
Zooming, Inpainting, Motion Estimation, and Segmentation
with the presented primal-dual algorithm:
http://gpu4vision.icg.tugraz.at/index.php?
content=downloads.php 1

Open positions: http://vision.in.tum.de/jobs

Thank you!
michael.moeller@in.tum.de

1Replace isrgb(img) with size(img,3)==3

http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
http://gpu4vision.icg.tugraz.at/index.php?content=downloads.php
http://vision.in.tum.de/jobs
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