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Variational Methods

u(α) ∈ arg min
u

H(u, f ) + αJ(u)

Inverse problems perspective:
Variational methods allow to reestablish the continuous
dependence on the data. They provide a tool for tackling
ill-posed problems.

Modelling perspective:
How can we design H(u, f ) and J(u) such that a low value of
the resulting energy yields a desired solution in various
applications?
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Image Deblurring

Seen this morning:

u(α) ∈ arg min
u

H(u, f ) + αJ(u)

for

H(u, f ) =
1
2
‖Au − f‖2

2, J(u) = TV (u)

where A was a linear blur operator.

By simply changing the meaning of A, we can already tackle
many classical image processing problems!
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Image inpainting
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Image inpainting

How can we unleash the lion?

Input image f Mask m
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Image inpainting

How can we unleash the lion?

Input image f Mask m

Joint inpainting and denoising:

We already know how to solve

u(α) = arg min
u

1
2
‖Au − f‖2

2 + αTV (u)

Choose

Au(x) =

{
u(x) if m(x) = 0,
0 if m(x) = 1
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Image inpainting

Exemplar base methods.

Find an image u, coefficients c, based on a dictionary of known
patches P via

min
u,c
‖Pc − u‖2

2 + iuI =fI (u) + i∆(c) + αR(c),

such that the regularizer R(c) encourages translations.

image is taken from: Exemplar-based inpainting from a variational point for
view. Aujol, Ladjal, Masnou.

Nonlocal patch-based image inpainting. Esser, Zhang.
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Image demosaicking

The way a camera records colors:

Inpainting problem:

u(α) = arg min
u

1
2
‖Au− f‖2

2 +αR(u)

Choose

Au(x) =

{
u(x) if color known,
0 if color not known.



Applications in Image
Processing and
Computer Vision

Michael Moeller

Image Restoration
Problems
Inpainting

Image Zooming

Medical Imaging

Denoising

Decompression

Nonlinear Inverse
Problems
Optical Flow

Stereo Matching

8/31

Image Zooming

Input image f Bigger image?
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Image Zooming

Input image f Bilinear interpolation
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Image Zooming

Input image f Bilinear interpolation

High res. Blurred Mask Input data

Invert this chain!
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Image Zooming

Input image f Bilinear interpolation

We already know how to solve inpainting and deblurring.
Combine

A = A1︸︷︷︸
Subsampling operator

A2︸︷︷︸
Blur operator

and solve

u(α) = arg min
u

1
2
‖Au − f‖2

2 + αTV (u).
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Image Zooming

TV upsampled Bilinear interpolation

We already know how to solve inpainting and deblurring.
Combine

A = A1︸︷︷︸
Subsampling operator

A2︸︷︷︸
Blur operator

and solve

u(α) = arg min
u

1
2
‖Au − f‖2

2 + αTV (u).
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Medical Imaging
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Medical Imaging

CT Scanning: Reconstruct an image from its line integrals

1
2
‖Au − f‖2 + αTV (u)

with
Au(Θ, s) =

∫
x·~Θ=s

u(x)dx⊥
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Medical Imaging

Courtesy of Jahn Müller and Ralf Engbers!
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Medical Imaging

Courtesy of Jahn Müller and Ralf Engbers!
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Medical Imaging

Egg interior reconstruction!

Courtesy of Jahn Müller and Ralf Engbers!

images/Auto2.mp4
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Image denoising

Most obvious extension/simplification: Use

1
2
‖Au − f‖2

2 + αTV (u)

with A = Id for image denoising.

So far: Modifications of A. But we are not limited to the L2

distance as a data term!

u(α) = arg min
u
‖u − f‖1 + αTV (u)

More robust towards outliers / impulse noise.
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Image denoising

u(α) = arg min
u
‖u − f‖1 + αTV (u)

Kodak image database: http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/
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Image denoising

u(α) = arg min
u
‖u − f‖1 + αTV (u)

Kodak image database: http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/
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Image decompression

How do you usually store an image? Maybe as a .jpg?

What does .jpg do?

836 657 -61 -129 19 23 4 -1
304 239 -22 -47 7 8 2 0
-166 -130 12 26 -4 -5 -1 0
55 43 -4 -8 1 1 0 0
-14 -11 1 2 0 0 0 0
10 8 -1 -2 0 0 0 0
-6 -4 0 1 0 0 0 0
-1 -1 0 0 0 0 0 0

840 630 -70 -140 0 0 0 0
280 210 0 -70 0 0 0 0
-140 -140 0 0 0 0 0 0
70 70 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

DCT coef. original patch Quantized coefficients
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Image decompression

• DCT is nothing but an orthonormal transform A.
• Inverse problem to quantization: Coefficients are restricted

to certain intervals!

Variational model

min
u

TV (u) s.t. li,j ≤ Au(i , j) ≤ bi,j
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Image decompression

• DCT is nothing but an orthonormal transform A.
• Inverse problem to quantization: Coefficients are restricted

to certain intervals!

Variational model

min
u

TV (u) s.t. li,j ≤ Au(i , j) ≤ bi,j

With code from: M. Holler, K. Bredis. A TGV-based framework for variational image
decompression, zooming and reconstruction.
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Optical Flow

Given a video, can we estimate the motion in the video?

Middleburry benchmark, A Database and Evaluation Methodology
for Optical Flow, IJCV. http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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Optical Flow

Given a video, can we estimate the motion in the video?

Most common assumption: color constancy!

v(α) = arg min
v

1
2

∫
Ω

(f1(x)− f2(x + v(x))2 dx + αTV (v)

Middleburry benchmark, A Database and Evaluation Methodology
for Optical Flow, IJCV. http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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Optical Flow

Given a video, can we estimate the motion in the video?

Difficulty:
(A(v)) (x) := f2(x + v(x))

is not a linear operator!

Middleburry benchmark, A Database and Evaluation Methodology
for Optical Flow, IJCV. http://vision.middlebury.edu/flow/

http://vision.middlebury.edu/flow/
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Nonlinear inverse problems

Form of the optical flow problem:

v(α) = arg min
v

1
2
‖A(v)− f‖2

2 + αR(v),

for a nonlinear operator A!

One strategy for nonlinear inverse problems of the above form:

Iteratively regularized Gauss-Newton-type methods

vk+1 = arg min
v

1
2
‖A(vk ) + A′(vk )(v − vk )− f‖2

2 + αR(v),

Idea:
• Linearize A around current iterate vk .
• Solve linear inverse problem.
• Repeat until convergence.

Convergence analysis requires smoothness of A.
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Optical flow

First order Taylor expansion:

f2(x + v(x)) ≈ f2(x + vk (x)) +∇f2(x + vk (x)) · (v(x)− vk (x))
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Optical flow

First order Taylor expansion:

f2(x + v(x)) ≈ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

+∇ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

·(v(x)− vk (x))
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Optical flow

First order Taylor expansion:

f2(x + v(x)) ≈ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

+∇ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

·(v(x)− vk (x))

vk+1 = arg min
v

1
2
‖f1 − f k

2 −∇f k
2 · (v − vk )‖2

2 + αTV (v)
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Optical flow

First order Taylor expansion:

f2(x + v(x)) ≈ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

+∇ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

·(v(x)− vk (x))

vk+1 = arg min
v

1
2
‖f1 − f k

2 −∇f k
2 · (v − vk )‖2

2 + αTV (v)

Common strategies:
• Pyramid scheme, coarse-to-fine

• Different measures of distances:
• Robustness, e.g. L1

• Patch-based fidelities (piecewise rigid motion)

• (Smoothed) brute-force search for good initialization
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Optical flow

First order Taylor expansion:

f2(x + v(x)) ≈ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

+∇ f2(x + vk (x))︸ ︷︷ ︸
”Warping” f k

2

·(v(x)− vk (x))

vk+1 = arg min
v

1
2
‖f1 − f k

2 −∇f k
2 · (v − vk )‖2

2 + αTV (v)

Common strategies:
• Pyramid scheme, coarse-to-fine

• Different measures of distances:
• Robustness, e.g. L1

• Patch-based fidelities (piecewise rigid motion)

• (Smoothed) brute-force search for good initialization
Example video.

images/flow/flow_fast.avi


Applications in Image
Processing and
Computer Vision

Michael Moeller

Image Restoration
Problems
Inpainting

Image Zooming

Medical Imaging

Denoising

Decompression

Nonlinear Inverse
Problems
Optical Flow

Stereo Matching

22/31

Stereo Matching

For known camera positions, we can relate the optical flow to
the 3d coordinates!

Optimize photo-consistency to find depth:∑
i

1
2

∫
Ω

|f1(x)− fi (π(gi (u · x))| dx + αTV (u)
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3d Reconstruction

Full 3d reconstruction (segmentation problem in 3d):

A Convex Relaxation Approach to Space Time Multi-view 3D
Reconstruction. Oswald, Cremers.

images/flow/domeMovie.avi
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Stereo Matching
Simpler version of the optical flow: Stereo matching!

Stereo images after rectification

From: Wikipedia, https://de.wikipedia.org/wiki/Stereokamera
Scharstein, Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. http://vision.middlebury.edu/stereo/

 https://de.wikipedia.org/wiki/Stereokamera
http://vision.middlebury.edu/stereo/
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Stereo Matching

v(α) = arg min
v

1
2

∫
Ω

(f1(x1, x2)− f2(x1, x2 + v(x1, x2)))2 dx + TV (v)
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Stereo Matching

v(α) = arg min
v

1
2

∫
Ω

(f1(x1, x2)− f2(x1, x2 + v(x1, x2)))2︸ ︷︷ ︸
=ρ(x,v) nonconvex, but 1d!

dx + TV (v)
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Stereo Matching

v(α) = arg min
v

1
2

∫
Ω

(f1(x1, x2)− f2(x1, x2 + v(x1, x2)))2︸ ︷︷ ︸
=ρ(x,v) nonconvex, but 1d!

dx + TV (v)

First option: Same as optical flow:

f2(x1, x2 + v(x1, x2)) ≈ f k
2 + (v − vk ) ∂x f k

2
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Stereo Matching

v(α) = arg min
v

1
2

∫
Ω

(f1(x1, x2)− f2(x1, x2 + v(x1, x2)))2︸ ︷︷ ︸
=ρ(x,v) nonconvex, but 1d!

dx + TV (v)

First option: Same as optical flow:

f2(x1, x2 + v(x1, x2)) ≈ f k
2 + (v − vk ) ∂x f k

2

Second option: Can we convexify the data term at each point?
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Convex Conjugate

Convex conjugate

Let F : X → R ∪ {∞}. We define F ∗ : X ∗ → R ∪ {∞} by

F ∗(p) = sup
u∈X
〈u,p〉 − F (u)

Note that
F (u) + F ∗(p) ≥ 〈u,p〉

for all u, p.

Note that F ∗(p) is convex.

Note that
F (u) ≥ F ∗∗(u)



Applications in Image
Processing and
Computer Vision

Michael Moeller

Image Restoration
Problems
Inpainting

Image Zooming

Medical Imaging

Denoising

Decompression

Nonlinear Inverse
Problems
Optical Flow

Stereo Matching

26/31

Convex Conjugate

Convex conjugate

Let F : X → R ∪ {∞}. We define F ∗ : X ∗ → R ∪ {∞} by

F ∗(p) = sup
u∈X
〈u,p〉 − F (u)

Note that
F (u) + F ∗(p) ≥ 〈u,p〉

for all u, p.

Note that F ∗(p) is convex.

Note that
F (u) ≥ F ∗∗(u)



Applications in Image
Processing and
Computer Vision

Michael Moeller

Image Restoration
Problems
Inpainting

Image Zooming

Medical Imaging

Denoising

Decompression

Nonlinear Inverse
Problems
Optical Flow

Stereo Matching

26/31

Convex Conjugate

Convex conjugate

Let F : X → R ∪ {∞}. We define F ∗ : X ∗ → R ∪ {∞} by

F ∗(p) = sup
u∈X
〈u,p〉 − F (u)

Note that
F (u) + F ∗(p) ≥ 〈u,p〉

for all u, p.

Note that F ∗(p) is convex.

Note that
F (u) ≥ F ∗∗(u)



Applications in Image
Processing and
Computer Vision

Michael Moeller

Image Restoration
Problems
Inpainting

Image Zooming

Medical Imaging

Denoising

Decompression

Nonlinear Inverse
Problems
Optical Flow

Stereo Matching

26/31

Convex Conjugate

Convex conjugate

Let F : X → R ∪ {∞}. We define F ∗ : X ∗ → R ∪ {∞} by

F ∗(p) = sup
u∈X
〈u,p〉 − F (u)

Note that
F (u) + F ∗(p) ≥ 〈u,p〉

for all u, p.

Note that F ∗(p) is convex.

Note that
F (u) ≥ F ∗∗(u)



Applications in Image
Processing and
Computer Vision

Michael Moeller

Image Restoration
Problems
Inpainting

Image Zooming

Medical Imaging

Denoising

Decompression

Nonlinear Inverse
Problems
Optical Flow

Stereo Matching

27/31

Convex Conjugate

Biconjugate

The biconjugate F ∗∗ of F is the largest lower semi-continuous
convex underapproximation of F , i.e. F ∗∗ ≤ F .

If F is a proper, lower-semi continuous, convex function, then
F ∗∗ = F .
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Functional lifting
Discuss (=try to draw) some convex relaxations!
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Functional lifting
Discuss (=try to draw) some convex relaxations!

May work very well and may come at the risk to loose some
information.
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Functional lifting
Discuss (=try to draw) some convex relaxations!

May work very well and may come at the risk to loose some
information.

Idea to have a convex problem but approximate the original
energy more closely:
Move to a higher dimensional space!
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Functional lifting
Discuss (=try to draw) some convex relaxations!

May work very well and may come at the risk to loose some
information.

Idea to have a convex problem but approximate the original
energy more closely:
Move to a higher dimensional space!

Consider E : R→ R nonconvex and try to find minv E(v).
• Idea: Discretize the possible values of v : v1, ..., vl .
• Move to higher dimensions: u ∈ Rl with

u = ei means v = vi

– Functional lifting –
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Functional lifting
Discuss (=try to draw) some convex relaxations!

May work very well and may come at the risk to loose some
information.

Idea to have a convex problem but approximate the original
energy more closely:
Move to a higher dimensional space!

Consider E : R→ R nonconvex and try to find minv E(v).
• Idea: Discretize the possible values of v : v1, ..., vl .
• Move to higher dimensions: u ∈ Rl with

u = ei means v = vi

– Functional lifting –
Reformulate energy

Ē(u) =

{
E(vi ) if u = ei
∞ else.
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Convex relaxation

The functional

Ē(u) =

{
E(vi ) if u = ei
∞ else.

is (still) not convex.

Compute the best possible convex underapproximation (E∗∗):

Ē∗∗(u) =

{ ∑
i ui (x)E(vi ) if ui ≥ 0,

∑
i ui = 1

∞ else.

Or for ρi := E(vi )

Ē∗∗(u) =

{
〈u, ρ〉 if ui ≥ 0,

∑
i ui = 1

∞ else.
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Back to Stereo Matching
Stereo matching energy:

v(α) = arg min
v

1
2

∫
Ω

(f1(x1, x2)− f2(x1, x2 + v(x1, x2)))2 dx︸ ︷︷ ︸
=ρ(x,v) nonconvex, but 1d!

+TV (v)

Introduce a variable u that is lifted for each x , i.e. u(x) ∈ Rn.

Total energy:

E(u) =
1
2

∫
Ω

〈u(x), ρ(x)〉 dx + αR(u) + i∆(u)

for a suitable regularization R which mimics TV (v).

Further readings:
• Convex Relaxation of Vectorial Problems with Coupled Regularization.

Strekalovskiy, Chambolle, Cremers. References therein.
• Nonsmooth Convex Variational Approaches to Image Analysis. PhD

thesis Jan Lellmann.
• High-dimension multi-label problems: convex or non convex relaxation?

Papadakis, Yildizoglu, Aujol, Caselles.
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Can you do all this yourself?

We have seen a great number of applications, all based on

u(α) = arg min
u

Eα(u)

(mostly for convex energies E).

Next lecture:

How can we solve these problems in practice?
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