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Why do we see this unstable behavior?

Representation of images:

• Discrete: Pixel values stored in a matrix Rn×m×c

• Representation for computer screen
• Important for algorithms

• Continuous: Function f : Ω ⊂ R2 → Rc

• Preferable to understand certain behaviors
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What happened on a discrete level?

At each blurry pixel is formed as a weighted average over the
sharp pixels. The weights for the averaging are given in the
convolution kernel.
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What happened on a discrete level?

Sharp image: u ∈ Rn×m (grayscale)

Blur kernel: b ∈ Rr×r , typically r << min{n,m}, for example

b =


0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030


Blurry image:

fi,j =
r∑

h=1

r∑
l=1

bh,r ui+h− r+1
2 ,j+l− r+1

2

Linear equations! Can be written as

~f = B~u
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Understanding the continuous case

Continuous model for a blurred image:

f (x) =

∫
Ω

b(x , y)u(y) dy

with a kernel b ∈ L2(Ω×Ω) (typically being a function of x − y ).

Linear map

B : L2(Ω)→ L2(Ω)

u 7→
∫

Ω

b(·, y)u(y) dy

seems to be difficult to ”invert”.
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Well-posedness

Well-posedness

• A solution exists
• The solution is unique
• The solution depends continuously on the data



Theory

Michael Moeller

Image Deconvolution
Discrete

Continuous

Linear ill-posed
problems
Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

Beyond Tikhonov

7/26

Linear inverse problems

Consider a problem of recovering u from f = Au for a linear
operator A : X → Y .

There could not be a solution!

Definition

We call u a least-squares solution of Au = f if

‖Au − f‖ = inf{‖Av − f‖ | v ∈ X}

The least-squares solution might not be unique.

Definition

We call u a minimal-norm solution of Au = f if

‖u‖ = inf{‖v‖ | v is least-squares solution of Au = f}
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Linear inverse problems

How can we recover minimal-norm solutions?

Moore-Penrose inverse

One can define a linear operator A†, such that for any
f ∈ R(A) +R(A)⊥, the equation Ax = f has a unique
minimal-norm solution given by

x† := A†f .

Remember the SVD

Au =
∑

n

σn〈un,u〉vn

Then
A†f =

∑
n

1
σn
〈vn, f 〉un



Theory

Michael Moeller

Image Deconvolution
Discrete

Continuous

Linear ill-posed
problems
Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

Beyond Tikhonov

8/26

Linear inverse problems

How can we recover minimal-norm solutions?

Moore-Penrose inverse

One can define a linear operator A†, such that for any
f ∈ R(A) +R(A)⊥, the equation Ax = f has a unique
minimal-norm solution given by

x† := A†f .

Remember the SVD

Au =
∑

n

σn〈un,u〉vn

Then
A†f =

∑
n

1
σn
〈vn, f 〉un



Theory

Michael Moeller

Image Deconvolution
Discrete

Continuous

Linear ill-posed
problems
Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

Beyond Tikhonov

8/26

Linear inverse problems

How can we recover minimal-norm solutions?

Moore-Penrose inverse

One can define a linear operator A†, such that for any
f ∈ R(A) +R(A)⊥, the equation Ax = f has a unique
minimal-norm solution given by

x† := A†f .

Remember the SVD

Au =
∑

n

σn〈un,u〉vn

Then
A†f =

∑
n

1
σn
〈vn, f 〉un



Theory

Michael Moeller

Image Deconvolution
Discrete

Continuous

Linear ill-posed
problems
Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

Beyond Tikhonov

9/26

Back to deblurring

In finite dimensions: For ‖f − f δ‖ ≤ δ do we have

f δ ≈ f ?⇒ B†~f ≈ B† ~f δ ?

Possible answers:

• Yes – in the sense that limδ→0 B† ~f δ = B†~f (continuity).

• No – since B could be very ill-conditioned!

Observation in practice: Finer resolution→ worse condition
of B. Does the continuous case reveal a problem?
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Understanding the continuous case

Definition: Compact linear operator

A linear operator A : X → Y is said to be compact if for every
bounded sequence {xn} ⊂ X , {Axn} has a convergent
subsequence.

Theorem: Ill-posedness of compact linear operators

Let the linear operator linear operator A : X → Y be compact,
and let the dimension of its range, R(A) ⊂ Y , be infinite.

Then A† is not continuous.
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Compact linear operators

What kind of operators are compact?

Theorem: Operators with Hilbert-Schmidt kernel are compact

Let
Au(x) =

∫
Ω

k(x , y)u(y) dy

with kernel k ∈ L2(Ω× Ω). Then A ∈ L(L2(Ω),L2(Ω)) is
compact.

A kernel k ∈ L2(Ω× Ω) is called a Hilbert-Schmidt kernel from
Ω× Ω→ R.
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Differentiation: Finding u(x) for given
∫ x

0 u(y)dy
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Deconvolution: Finding u(x) for given
∫

Ω
b(x − y)u(y)dy

Ill-posed inverse problems!
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Variational methods

Let f δ be such that ‖f δ − f‖2
2 ≤ δ, f = Aû for some (compact)

linear operator A, (and û being a minimal norm solution).

We know A, f δ and δ. Task: Find a good approximation of û!

Variational regularization methods

Determine

u(α) = arg min
u

1
2
‖Au − f δ‖2

2 + αJ(u)

for a suitable regularization functional J and a regularization
parameter α based on δ and f δ.
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2 ≤ δ, f = Aû for some (compact)
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Existence and uniqueness of solutions

Before we can tackle the question if

u(α) = arg min
u∈L2(Ω)

1
2
‖Au − f δ‖2

2 + αJ(u)

is a good approximation of û with f = Aû, we have to consider:

1 Does u(α) even exist?
2 If yes, is u(α) unique?

General setting we will consider:

u(α) ∈ arg min
u∈X

Eα(u)

for a Banach space X .
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Existence of solutions

Fundamental theorem of optimization

Let E : (X , τ)→ R ∪ {∞} be a functional on a topological
space X with topology τ such that the following two conditions
are met:

• Lower semi-continuity: For uk → u in the topology τ it
holds that

E(u) ≤ lim
k

inf E(uk )

• Precompactness of the sub-level-sets: There exists an
β ∈ R such that

Sβ := {u ∈ X | E(u) ≤ β}

is not empty and precompact (Sβ compact) in τ .
Then there exists a minimizer û ∈ X , i.e.

E(û) = inf
u∈X

E(u).
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Uniqueness of solutions

Convex and strictly convex functions

Let E : M → R, M ⊂ X being a convex subset of a Banach
space.
• E is called convex if

E(βx1 + (1− β)x2) ≤ βE(x1) + (1− β)E(x2)

holds for all x1, x2 ∈ M and β ∈ [0,1].
• E is called strictly convex if the strict inequality holds for all

x1, x2 ∈ M, x1 6= x2 and β ∈]0,1[.

Uniqueness of minimizers

• Any local minimum of a convex function E is a global
minimum.

• If E is strictly convex, the minimum is unique.



Theory

Michael Moeller

Image Deconvolution
Discrete

Continuous

Linear ill-posed
problems
Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

Beyond Tikhonov

16/26

Uniqueness of solutions

Convex and strictly convex functions

Let E : M → R, M ⊂ X being a convex subset of a Banach
space.
• E is called convex if

E(βx1 + (1− β)x2) ≤ βE(x1) + (1− β)E(x2)

holds for all x1, x2 ∈ M and β ∈ [0,1].
• E is called strictly convex if the strict inequality holds for all

x1, x2 ∈ M, x1 6= x2 and β ∈]0,1[.

Uniqueness of minimizers

• Any local minimum of a convex function E is a global
minimum.

• If E is strictly convex, the minimum is unique.



Theory

Michael Moeller

Image Deconvolution
Discrete

Continuous

Linear ill-posed
problems
Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

Beyond Tikhonov

17/26

Variational methods

Back to our original question:
• Noisy data f δ (given)
• Clean data f (unknown)
• Noise level δ = ‖f − f δ‖2 (known)
• Data generation model: û = A†f ; linear op. A known.

Continuous dependence on the data?

Does
u(α) = arg min

u

1
2
‖Au − f δ‖2

2 + αJ(u)

for a suitable regularization functional J and a regularization
parameter α based on δ and f δ converge to û for δ → 0?
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• Clean data f (unknown)
• Noise level δ = ‖f − f δ‖2 (known)
• Data generation model: û = A†f ; linear op. A known.

Continuous dependence on the data?

Does
u(α) = arg min

u

1
2
‖Au − f δ‖2

2 + αJ(u)

for a suitable regularization functional J and a regularization
parameter α based on δ and f δ converge to û for δ → 0?
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Tikhonov regularization

Tikhonov regularization

u(α) = arg min
u

1
2
‖Au − f δ‖2

2 +
α

2
‖u‖2

2

Optimality condition

0 = A∗(Au(α)− f δ) + αu(α)

⇒ u(α) = (A∗A + αI)−1A∗f δ

Denote Rα = (A∗A + αI)−1A∗. Then

‖u(α)− û‖2 = ‖Rαf δ − A†f‖2

= ‖Rαf − A†f + Rα(f δ − f )‖2

≤ ‖Rαf − A†f‖2︸ ︷︷ ︸
Approximation error

+ ‖Rα(f δ − f )‖2︸ ︷︷ ︸
Data error
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Tikhonov regularization

‖u(α)− û‖2 ≤ ‖Rαf − A†f‖2︸ ︷︷ ︸
Approximation error

+ ‖Rα(f δ − f )‖2︸ ︷︷ ︸
Data error

≤ ‖Rαf − A†f‖2 + δ‖Rα‖2

What happens for δ → 0? Do we get u(α)→ û?

• We need to choose a rule α = α(δ).
(Also called a-priori parameter choice rule)

• For the approximation error to go to zero, we need

α(δ)→ 0

• The data error increases as α(δ)→ 0. Trade-off!
How does ‖Rα(δ)‖2 increase?
Remember Rα = (A∗A + αI)−1A∗

For singular values σ we have to consider σ
σ2+α(δ)

.

Worst case: σ =
√

α(δ). Therefore

‖Rα(δ)‖2 ≤
1

2
√

α(δ)
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Tikhonov regularization

‖u(α)− û‖2 ≤ ‖Rαf − A†f‖2 +
δ

2
√
α(δ)

Convergence of Tikhonov regularization

For Tikhonov regularization to converge we need

α(δ)
δ→0→ 0 and

δ√
α(δ)

δ→0→ 0

Some remarks about this convergence:
• Without add. assumptions the rate can be arbitrarily slow.
• Source conditions allow to derive convergence rates.
• The rate of convergence is always strictly worse than O(δ)!
• Further readings:

• H.W. Engl, M. Hanke, G. Neubauer. Regularization of Inverse
Problems.

• M. Burger, S. Osher. Convergence Rates of Convex Variational
Regularization.

• M. Benning, M. Burger. Error Estimates for General Fidelities.
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Beyond Tikhonov regularization

Seen: Tikhonov regularization

u(α) = arg min
u

1
2
‖Au − f δ‖2

2 +
α

2
‖u‖2

2

stabilizes the reconstruction. For δ → 0 and a suitable
α(δ)→ 0 one converges to the minimal norm solution.

But is this always desired?

Regularizations can be much more powerful!

u(α) = arg min
u

1
2
‖Au − f δ‖2

2 + αJ(u)

J allows to impose a-priori information on the solution!
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What is a good regularization for images?

Task: Distinguish between signal and noise.

Bad! J(u) large! Good! J(u) small!

Noisy is highly oscillatory!

Regularization ‖u‖2
2 does not ”see” the oscillations.
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What is a good regularization for images?

Idea: Penalize the gradient of the reconstructed image.

J(u) =
1
2
‖∇u‖2

2

Problem: Discontinuous functions are not admissible!

J(u) ≈ 170 J(u) ≈ 1200

Discrete: The finer the discretization the bigger is the
difference between sharp and blurry images.

Functions: Discontinuous functions are not in W 1,2
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What is a good regularization for images?

Derivatives should be allowed to be distributions.

TV (u) = sup
q∈C∞

0 (Ω,R2),
|q(x)|≤1

∫
Ω

u div(q) dx

For u ∈W 1,1 : TV (u) =

∫
Ω

|∇u(x)| dx

TV (u) ≈ 945 TV (u) ≈ 958
‖∇u‖2 ≈ 18 ‖∇u‖2 ≈ 916
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Regularization via Total Variation

Example: TV-Image deblurring

u(α) = arg min
u

1
2
‖Au − f δ‖2

2 + αTV (u)
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Regularization via Total Variation

Example: TV-Image deblurring

u(α) = arg min
u

1
2
‖Au − f δ‖2

2 + αTV (u)

Analysis of TV-model (existence, continuous dependence, ...):
Important to choose the right topology! Further readings:
• Image recovery via total variation minimization and related problems.

Chambolle, Lions.
• A Guide to the TV Zoo. Burger, Osher.
• Mathematische Bildverarbeitung. Bredis, Lorenz. E.g. Satz 6.115.
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Generalizations and Extensions

If changing J(u) can improve the results, we might as well
consider more general data terms, too!

What are applications beyond image deblurring?

General modeling of variational methods of the form

u(α) = arg min
u

H(u, f ) + αJ(u)

To be continued...
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