#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness Tikhonov regularization Beyond Tikhonov

Michael Moeller Computer Vision Department of Computer Science TU München

# Chapter 1 Theory

Variational Image Processing Summer School on Inverse Problems 2015

## Why do we see this unstable behavior?



### **Representation of images:**

- Discrete: Pixel values stored in a matrix R<sup>n×m×c</sup>
  - Representation for computer screen
  - Important for algorithms

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

## Why do we see this unstable behavior?



### Representation of images:

- Discrete: Pixel values stored in a matrix ℝ<sup>n×m×c</sup>
  - Representation for computer screen
  - Important for algorithms
- **Continuous**: Function  $f : \Omega \subset \mathbb{R}^2 \to \mathbb{R}^c$ 
  - Preferable to understand certain behaviors

#### Theory

#### Michael Moeller



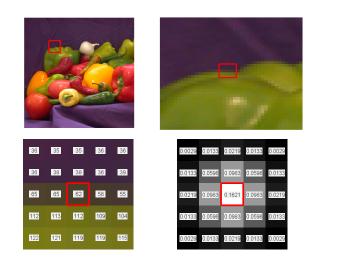
Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

## What happened on a discrete level?



Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness Tikhonov regularization Beyond Tikhonov

At each blurry pixel is formed as a weighted average over the sharp pixels. The weights for the averaging are given in the convolution kernel.

## What happened on a discrete level?

Sharp image:  $u \in \mathbb{R}^{n \times m}$  (grayscale)

**Blur kernel:**  $b \in \mathbb{R}^{r \times r}$ , typically  $r \ll \min\{n, m\}$ , for example

|     | / 0.0030                                         | 0.0133 | 0.0219 | 0.0133 | 0.0030 |   |
|-----|--------------------------------------------------|--------|--------|--------|--------|---|
|     | 0.0133                                           | 0.0596 | 0.0983 | 0.0596 | 0.0133 |   |
| b = | 0.0219                                           | 0.0983 | 0.1621 | 0.0983 | 0.0219 |   |
|     | 0.0133                                           | 0.0596 | 0.0983 | 0.0596 | 0.0133 |   |
|     | ( 0.0030<br>0.0133<br>0.0219<br>0.0133<br>0.0030 | 0.0133 | 0.0219 | 0.0133 | 0.0030 | ) |

Blurry image:

$$f_{i,j} = \sum_{h=1}^{r} \sum_{l=1}^{r} b_{h,r} u_{i+h-\frac{r+1}{2},j+l-\frac{r+1}{2}}$$

Linear equations! Can be written as

$$\vec{f} = B\vec{u}$$

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational

regularization methods

### Understanding the continuous case

Continuous model for a blurred image:

$$f(x) = \int_{\Omega} b(x, y) u(y) \, dy$$

with a kernel  $b \in L^2(\Omega \times \Omega)$  (typically being a function of x - y).



Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

regularization methods

### Understanding the continuous case

Continuous model for a blurred image:

$$f(x) = \int_{\Omega} b(x, y) u(y) \, dy$$

with a kernel  $b \in L^2(\Omega \times \Omega)$  (typically being a function of x - y).

Linear map

$$B: L^{2}(\Omega) \to L^{2}(\Omega)$$
$$u \mapsto \int_{\Omega} b(\cdot, y) u(y) \, dy$$

seems to be difficult to "invert".



Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

regularization methods

## Well-posedness

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

#### Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

### Variational

regularization methods

Existence and uniqueness Tikhonov regularization Beyond Tikhonov

### Well-posedness

- A solution exists
- The solution is unique
- The solution depends continuously on the data

Consider a problem of recovering *u* from f = Au for a linear operator  $A : X \rightarrow Y$ .

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Consider a problem of recovering *u* from f = Au for a linear operator  $A : X \rightarrow Y$ .

There could not be a solution!

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Consider a problem of recovering *u* from f = Au for a linear operator  $A : X \rightarrow Y$ .

There could not be a solution!

Definition

We call u a *least-squares solution* of Au = f if

$$||Au - f|| = \inf\{||Av - f|| \mid v \in X\}$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Consider a problem of recovering *u* from f = Au for a linear operator  $A : X \rightarrow Y$ .

There could not be a solution!

Definition

We call u a *least-squares solution* of Au = f if

$$||Au - f|| = \inf\{||Av - f|| \mid v \in X\}$$

The least-squares solution might not be unique.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Consider a problem of recovering *u* from f = Au for a linear operator  $A : X \rightarrow Y$ .

There could not be a solution!

Definition

We call u a *least-squares solution* of Au = f if

$$||Au - f|| = \inf\{||Av - f|| \mid v \in X\}$$

The least-squares solution might not be unique.

### Definition

We call u a minimal-norm solution of Au = f if

 $||u|| = \inf\{||v|| \mid v \text{ is least-squares solution of } Au = f\}$ 

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

How can we recover minimal-norm solutions?

### **Moore-Penrose inverse**

One can define a linear operator  $A^{\dagger}$ , such that for any  $f \in \mathcal{R}(A) + \mathcal{R}(A)^{\perp}$ , the equation Ax = f has a unique minimal-norm solution given by

$$x^{\dagger} := A^{\dagger} f.$$



Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Moore-Penrose inverse

Compact operators

Variational regularization methods

How can we recover minimal-norm solutions?

### **Moore-Penrose inverse**

One can define a linear operator  $A^{\dagger}$ , such that for any  $f \in \mathcal{R}(A) + \mathcal{R}(A)^{\perp}$ , the equation Ax = f has a unique minimal-norm solution given by

$$x^{\dagger} := A^{\dagger} f.$$

### Remember the SVD

$$Au = \sum_{n} \sigma_n \langle u_n, u \rangle v_n$$

Then

$$A^{\dagger}f = \sum_{n} \frac{1}{\sigma_{n}} \langle v_{n}, f \rangle u_{n}$$



#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems Existence and uniqueness

Moore-Penrose inverse Compact operators

Variational regularization methods

How can we recover minimal-norm solutions?

### **Moore-Penrose inverse**

One can define a linear operator  $A^{\dagger}$ , such that for any  $f \in \mathcal{R}(A) + \mathcal{R}(A)^{\perp}$ , the equation Ax = f has a unique minimal-norm solution given by

$$x^{\dagger} := A^{\dagger} f.$$

### Remember the SVD

$$Au = \sum_{n} \sigma_n \langle u_n, u \rangle v_n$$

Then

$$A^{\dagger}f = \sum_{n} \frac{1}{\sigma_{n}} \langle v_{n}, f \rangle u_{n}$$



#### Michael Moeller



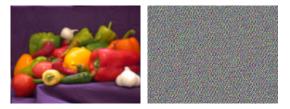
Image Deconvolution Discrete Continuous

Linear ill-posed problems Existence and uniqueness

Moore-Penrose inverse Compact operators

Variational regularization methods

### **Back to deblurring**



In finite dimensions: For  $||f - f^{\delta}|| \leq \delta$  do we have

$$f^{\delta} \approx f \qquad \stackrel{?}{\Rightarrow} \qquad B^{\dagger}\vec{f} \approx B^{\dagger}\vec{f^{\delta}} ?$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems Existence and uniqueness

Moore-Penrose inverse

Compact operators

Variational regularization methods

### **Back to deblurring**



In finite dimensions: For  $||f - f^{\delta}|| \leq \delta$  do we have

$$f^{\delta} \approx f \qquad \stackrel{?}{\Rightarrow} \qquad B^{\dagger}\vec{f} \approx B^{\dagger}\vec{f^{\delta}} ?$$

Possible answers:

- **Yes** in the sense that  $\lim_{\delta \to 0} B^{\dagger} \vec{f}^{\delta} = B^{\dagger} \vec{f}$  (continuity).
- No since B could be very ill-conditioned!

**Observation in practice:** Finer resolution  $\rightarrow$  worse condition of *B*. Does the continuous case reveal a problem?

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

## Understanding the continuous case

### **Definition: Compact linear operator**

A linear operator  $A : X \to Y$  is said to be *compact* if for every bounded sequence  $\{x_n\} \subset X$ ,  $\{Ax_n\}$  has a convergent subsequence.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness

Moore-Penrose inverse Compact operators

Variational regularization methods

## Understanding the continuous case

### **Definition: Compact linear operator**

A linear operator  $A : X \to Y$  is said to be *compact* if for every bounded sequence  $\{x_n\} \subset X$ ,  $\{Ax_n\}$  has a convergent subsequence.

### Theorem: Ill-posedness of compact linear operators

Let the linear operator linear operator  $A : X \to Y$  be compact, and let the dimension of its range,  $\mathcal{R}(A) \subset Y$ , be infinite.

Then  $A^{\dagger}$  is not continuous.

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness

Moore-Penrose inverse Compact operators

Variational regularization methods

### **Compact linear operators**

### What kind of operators are compact?

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems Existence and uniqueness

Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness Tikhonov regularization

Beyond Tikhonov

## **Compact linear operators**

### What kind of operators are compact?

Theorem: Operators with Hilbert-Schmidt kernel are compact Let

$$Au(x) = \int_{\Omega} k(x, y)u(y) dy$$

with kernel  $k \in L^2(\Omega \times \Omega)$ . Then  $A \in \mathcal{L}(L^2(\Omega), L^2(\Omega))$  is compact.

A kernel  $k \in L^2(\Omega \times \Omega)$  is called a *Hilbert-Schmidt kernel* from  $\Omega \times \Omega \to \mathbb{R}$ .

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems Existence and uniqueness

Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness Tikhonov regularization Beyond Tikhonov

## **Differentiation**: Finding u(x) for given $\int_0^x u(y) dy$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

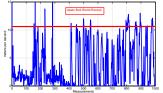


## **Differentiation**: Finding u(x) for given $\int_0^x u(y) dy$



#### Michael Moeller





## **Deconvolution**: Finding u(x) for given $\int_{\Omega} b(x - y)u(y)dy$



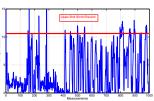
Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

## **Differentiation**: Finding u(x) for given $\int_0^x u(y) dy$



## **Deconvolution**: Finding u(x) for given $\int_{\Omega} b(x - y)u(y)dy$



### Ill-posed inverse problems!

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

## Variational methods

Let  $f^{\delta}$  be such that  $||f^{\delta} - f||_2^2 \le \delta$ ,  $f = A\hat{u}$  for some (compact) linear operator *A*, (and  $\hat{u}$  being a minimal norm solution).

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

regularization methods

## Variational methods

Let  $f^{\delta}$  be such that  $||f^{\delta} - f||_2^2 \le \delta$ ,  $f = A\hat{u}$  for some (compact) linear operator *A*, (and  $\hat{u}$  being a minimal norm solution).

We know *A*,  $f^{\delta}$  and  $\delta$ . Task: Find a good approximation of  $\hat{u}$ !

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

regularization methods

## Variational methods

Let  $f^{\delta}$  be such that  $||f^{\delta} - f||_2^2 \le \delta$ ,  $f = A\hat{u}$  for some (compact) linear operator *A*, (and  $\hat{u}$  being a minimal norm solution).

We know *A*,  $f^{\delta}$  and  $\delta$ . Task: Find a good approximation of  $\hat{u}$ !

### Variational regularization methods

Determine

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha J(u)$$

for a suitable *regularization functional J* and a *regularization parameter*  $\alpha$  based on  $\delta$  and  $f^{\delta}$ .

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

#### regularization methods

## Existence and uniqueness of solutions

Before we can tackle the question if

$$u(\alpha) = \arg\min_{u \in L^2(\Omega)} \frac{1}{2} \|Au - f^{\delta}\|_2^2 + \alpha J(u)$$

is a good approximation of  $\hat{u}$  with  $f = A\hat{u}$ , we have to consider:

- **1** Does  $u(\alpha)$  even exist?
- **2** If yes, is  $u(\alpha)$  unique?

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

```
Variational
regularization methods
Existence and uniqueness
```

## Existence and uniqueness of solutions

Before we can tackle the question if

$$u(\alpha) = \arg\min_{u \in L^2(\Omega)} \frac{1}{2} \|Au - f^{\delta}\|_2^2 + \alpha J(u)$$

is a good approximation of  $\hat{u}$  with  $f = A\hat{u}$ , we have to consider:

- **1** Does  $u(\alpha)$  even exist?
- **2** If yes, is  $u(\alpha)$  unique?

General setting we will consider:

 $u(\alpha) \in \arg\min_{u \in X} E_{\alpha}(u)$ 

for a Banach space X.



Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

```
Variational
regularization methods
Existence and uniqueness
Tikhonov regularization
```

Beyond Tikhonov

### Fundamental theorem of optimization

Let  $E : (\mathcal{X}, \tau) \to \mathbb{R} \cup \{\infty\}$  be a functional on a topological space  $\mathcal{X}$  with topology  $\tau$  such that the following two conditions are met:

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

### Fundamental theorem of optimization

Let  $E : (\mathcal{X}, \tau) \to \mathbb{R} \cup \{\infty\}$  be a functional on a topological space  $\mathcal{X}$  with topology  $\tau$  such that the following two conditions are met:

Lower semi-continuity: For u<sub>k</sub> → u in the topology τ it holds that

$$E(u) \leq \lim_{k} \inf E(u_k)$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational

regularization methods Existence and uniqueness

### Fundamental theorem of optimization

Let  $E : (\mathcal{X}, \tau) \to \mathbb{R} \cup \{\infty\}$  be a functional on a topological space  $\mathcal{X}$  with topology  $\tau$  such that the following two conditions are met:

Lower semi-continuity: For u<sub>k</sub> → u in the topology τ it holds that

 $E(u) \leq \liminf_{k} E(u_k)$ 

• **Precompactness of the sub-level-sets**: There exists an  $\beta \in \mathbb{R}$  such that

 $S_{\beta} := \{ u \in \mathcal{X} \mid E(u) \leq \beta \}$ 

is not empty and precompact ( $\overline{S_{\beta}}$  compact) in  $\tau$ .

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational

regularization methods Existence and uniqueness Tikhonov regularization Beyond Tikhonov

### Fundamental theorem of optimization

Let  $E : (\mathcal{X}, \tau) \to \mathbb{R} \cup \{\infty\}$  be a functional on a topological space  $\mathcal{X}$  with topology  $\tau$  such that the following two conditions are met:

Lower semi-continuity: For u<sub>k</sub> → u in the topology τ it holds that

 $E(u) \leq \liminf_{k} E(u_k)$ 

• **Precompactness of the sub-level-sets**: There exists an  $\beta \in \mathbb{R}$  such that

 $S_{\beta} := \{ u \in \mathcal{X} \mid E(u) \leq \beta \}$ 

is not empty and precompact ( $\overline{S_{\beta}}$  compact) in  $\tau$ . Then there exists a minimizer  $\hat{u} \in \mathcal{X}$ , i.e.

$$E(\hat{u}) = \inf_{u \in \mathcal{X}} E(u).$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

## **Uniqueness of solutions**

### **Convex and strictly convex functions**

Let  $E: M \to \mathbb{R}$ ,  $M \subset X$  being a convex subset of a Banach space.

• E is called convex if

$$E(\beta x_1 + (1-\beta)x_2) \leq \beta E(x_1) + (1-\beta)E(x_2)$$

holds for all  $x_1, x_2 \in M$  and  $\beta \in [0, 1]$ .

• *E* is called strictly convex if the strict inequality holds for all  $x_1, x_2 \in M, x_1 \neq x_2$  and  $\beta \in ]0, 1[$ .

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

regularization methods Existence and uniqueness Tikhonov regularization Bevond Tikhonov

## **Uniqueness of solutions**

### **Convex and strictly convex functions**

Let  $E: M \to \mathbb{R}$ ,  $M \subset X$  being a convex subset of a Banach space.

E is called convex if

$$E(\beta x_1 + (1-\beta)x_2) \leq \beta E(x_1) + (1-\beta)E(x_2)$$

holds for all  $x_1, x_2 \in M$  and  $\beta \in [0, 1]$ .

• *E* is called strictly convex if the strict inequality holds for all  $x_1, x_2 \in M, x_1 \neq x_2$  and  $\beta \in ]0, 1[$ .

### **Uniqueness of minimizers**

- Any local minimum of a convex function *E* is a global minimum.
- If E is strictly convex, the minimum is unique.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

#### Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

#### Variational

regularization methods Existence and uniqueness Tikhonov regularization Bevond Tikhonov

### Variational methods

### Back to our original question:

- Noisy data f<sup>δ</sup> (given)
- Clean data f (unknown)
- Noise level  $\delta = \|f f^{\delta}\|_2$  (known)
- Data generation model:  $\hat{u} = A^{\dagger} f$ ; linear op. A known.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness

Tikhonov regularization Beyond Tikhonov

### Variational methods

### Back to our original question:

- Noisy data f<sup>δ</sup> (given)
- Clean data f (unknown)
- Noise level  $\delta = \|f f^{\delta}\|_2$  (known)
- Data generation model:  $\hat{u} = A^{\dagger} f$ ; linear op. A known.

#### Continuous dependence on the data?

Does

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha J(u)$$

for a suitable *regularization functional J* and a *regularization parameter*  $\alpha$  based on  $\delta$  and  $f^{\delta}$  converge to  $\hat{u}$  for  $\delta \rightarrow 0$ ?

#### Theory

Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

```
Variational
```

regularization methods Existence and uniqueness Tikhonov regularization

### **Tikhonov regularization**

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{2}^{2}$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness

Tikhonov regularization

#### **Tikhonov regularization**

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{2}^{2}$$

### **Optimality condition**

$$0 = A^* (Au(\alpha) - f^{\delta}) + \alpha u(\alpha)$$
  
$$\Rightarrow u(\alpha) = (A^*A + \alpha I)^{-1} A^* f^{\delta}$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

#### **Tikhonov regularization**

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{2}^{2}$$

### **Optimality condition**

$$0 = A^* (Au(\alpha) - f^{\delta}) + \alpha u(\alpha)$$
  
$$\Rightarrow u(\alpha) = (A^*A + \alpha I)^{-1} A^* f^{\delta}$$

Denote  $R_{\alpha} = (A^*A + \alpha I)^{-1}A^*$ . Then

$$\begin{aligned} \|u(\alpha) - \hat{u}\|_{2} &= \|R_{\alpha}f^{\delta} - A^{\dagger}f\|_{2} \\ &= \|R_{\alpha}f - A^{\dagger}f + R_{\alpha}(f^{\delta} - f)\|_{2} \\ &\leq \underbrace{\|R_{\alpha}f - A^{\dagger}f\|_{2}}_{\text{Approximation error}} + \underbrace{\|R_{\alpha}(f^{\delta} - f)\|_{2}}_{\text{Data error}} \end{aligned}$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

```
Variational
regularization methods
Existence and uniqueness
```

Tikhonov regularization

$$\begin{split} \|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} &\leq \underbrace{\|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2}}_{\text{Approximation error}} + \underbrace{\|\boldsymbol{R}_{\alpha}(\boldsymbol{f}^{\delta} - \boldsymbol{f})\|_{2}}_{\text{Data error}} \\ &\leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \delta\|\boldsymbol{R}_{\alpha}\|_{2} \end{split}$$

What happens for  $\delta \rightarrow 0$ ? Do we get  $u(\alpha) \rightarrow \hat{u}$ ?

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

$$\begin{aligned} \|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} &\leq \underbrace{\|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2}}_{\text{Approximation error}} + \underbrace{\|\boldsymbol{R}_{\alpha}(\boldsymbol{f}^{\delta} - \boldsymbol{f})\|_{2}}_{\text{Data error}} \\ &\leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \delta \|\boldsymbol{R}_{\alpha}\|_{2} \end{aligned}$$

What happens for  $\delta \to 0$ ? Do we get  $u(\alpha) \to \hat{u}$ ?

We need to choose a rule α = α(δ).
 (Also called *a-priori parameter choice* rule)

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \underbrace{\|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2}}_{\text{Approximation error}} + \underbrace{\|\boldsymbol{R}_{\alpha}(\boldsymbol{f}^{\delta} - \boldsymbol{f})\|_{2}}_{\text{Data error}}$$

 $< \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \delta \|\boldsymbol{R}_{\alpha}\|_{2}$ 

What happens for  $\delta \to 0$ ? Do we get  $u(\alpha) \to \hat{u}$ ?

- We need to choose a rule α = α(δ).
   (Also called *a-priori parameter choice* rule)
- · For the approximation error to go to zero, we need

 $\alpha(\delta) \to \mathbf{0}$ 

 The data error increases as α(δ) → 0. Trade-off! How does ||*R*<sub>α(δ)</sub>||<sub>2</sub> increase?

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness

Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \underbrace{\|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2}}_{\text{Approximation error}} + \underbrace{\|\boldsymbol{R}_{\alpha}(\boldsymbol{f}^{\delta} - \boldsymbol{f})\|_{2}}_{\text{Data error}}$$

 $< \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \delta \|\boldsymbol{R}_{\alpha}\|_{2}$ 

What happens for  $\delta \rightarrow 0$ ? Do we get  $u(\alpha) \rightarrow \hat{u}$ ?

- We need to choose a rule α = α(δ).
   (Also called *a-priori parameter choice* rule)
- · For the approximation error to go to zero, we need

 $\alpha(\delta) \to \mathbf{0}$ 

 The data error increases as α(δ) → 0. Trade-off! How does ||R<sub>α(δ)</sub>||<sub>2</sub> increase? Remember R<sub>α</sub> = (A\*A + αI)<sup>-1</sup>A\*

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

#### Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness

Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \underbrace{\|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2}}_{\text{Approximation error}} + \underbrace{\|\boldsymbol{R}_{\alpha}(\boldsymbol{f}^{\delta} - \boldsymbol{f})\|_{2}}_{\text{Data error}}$$

 $\leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \delta \|\boldsymbol{R}_{\alpha}\|_{2}$ 

What happens for  $\delta \rightarrow 0$ ? Do we get  $u(\alpha) \rightarrow \hat{u}$ ?

- We need to choose a rule α = α(δ).
   (Also called *a-priori parameter choice* rule)
- For the approximation error to go to zero, we need

 $\alpha(\delta) \to \mathbf{0}$ 

• The data error increases as  $\alpha(\delta) \to 0$ . Trade-off! How does  $||R_{\alpha(\delta)}||_2$  increase? Remember  $R_{\alpha} = (A^*A + \alpha I)^{-1}A^*$ For singular values  $\sigma$  we have to consider  $\frac{\sigma}{\sigma^2 + \alpha(\delta)}$ .

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

#### Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods

Existence and uniqueness

Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \underbrace{\|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2}}_{\text{Approximation error}} + \underbrace{\|\boldsymbol{R}_{\alpha}(\boldsymbol{f}^{\delta} - \boldsymbol{f})\|_{2}}_{\text{Data error}}$$

 $\leq \|\boldsymbol{R}_{lpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \delta \|\boldsymbol{R}_{lpha}\|_{2}$ 

What happens for  $\delta \rightarrow 0$ ? Do we get  $u(\alpha) \rightarrow \hat{u}$ ?

- We need to choose a rule α = α(δ).
   (Also called *a-priori parameter choice* rule)
- For the approximation error to go to zero, we need

 $\alpha(\delta) \to \mathbf{0}$ 

• The data error increases as  $\alpha(\delta) \to 0$ . Trade-off! How does  $||R_{\alpha(\delta)}||_2$  increase? Remember  $R_{\alpha} = (A^*A + \alpha I)^{-1}A^*$ For singular values  $\sigma$  we have to consider  $\frac{\sigma}{\sigma^2 + \alpha(\delta)}$ . Worst case:  $\sigma = \sqrt{\alpha(\delta)}$ . Therefore  $||R_{\alpha(\delta)}||_2 \le \frac{1}{2\sqrt{\alpha(\delta)}}$ 

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

#### Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

```
Variational 
regularization methods
```

Existence and uniqueness

Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \frac{\delta}{2\sqrt{\alpha(\delta)}}$$

#### **Convergence of Tikhonov regularization**

For Tikhonov regularization to converge we need

$$\alpha(\delta) \stackrel{\delta \to 0}{\to} 0$$
 and  $\frac{\delta}{\sqrt{\alpha(\delta)}} \stackrel{\delta \to 0}{\to} 0$ 

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \frac{\delta}{2\sqrt{\alpha(\delta)}}$$

#### **Convergence of Tikhonov regularization**

For Tikhonov regularization to converge we need

$$\alpha(\delta) \stackrel{\delta \to 0}{\to} 0$$
 and  $\frac{\delta}{\sqrt{\alpha(\delta)}} \stackrel{\delta \to 0}{\to} 0$ 

### Some remarks about this convergence:

Without add. assumptions the rate can be arbitrarily slow.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \frac{\delta}{2\sqrt{\alpha(\delta)}}$$

#### **Convergence of Tikhonov regularization**

For Tikhonov regularization to converge we need

$$\alpha(\delta) \stackrel{\delta \to 0}{\to} 0$$
 and  $\frac{\delta}{\sqrt{\alpha(\delta)}} \stackrel{\delta \to 0}{\to} 0$ 

### Some remarks about this convergence:

- Without add. assumptions the rate can be arbitrarily slow.
- Source conditions allow to derive convergence rates.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness Tikhonov regularization

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \frac{\delta}{2\sqrt{\alpha(\delta)}}$$

#### **Convergence of Tikhonov regularization**

For Tikhonov regularization to converge we need

$$\alpha(\delta) \stackrel{\delta \to 0}{\to} 0$$
 and  $\frac{\delta}{\sqrt{\alpha(\delta)}} \stackrel{\delta \to 0}{\to} 0$ 

### Some remarks about this convergence:

- Without add. assumptions the rate can be arbitrarily slow.
- Source conditions allow to derive convergence rates.
- The rate of convergence is always strictly worse than O(δ)!

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

$$\|\boldsymbol{u}(\alpha) - \hat{\boldsymbol{u}}\|_{2} \leq \|\boldsymbol{R}_{\alpha}\boldsymbol{f} - \boldsymbol{A}^{\dagger}\boldsymbol{f}\|_{2} + \frac{\delta}{2\sqrt{\alpha(\delta)}}$$

#### **Convergence of Tikhonov regularization**

For Tikhonov regularization to converge we need

$$\alpha(\delta) \stackrel{\delta \to 0}{\to} 0$$
 and  $\frac{\delta}{\sqrt{\alpha(\delta)}} \stackrel{\delta \to 0}{\to} 0$ 

### Some remarks about this convergence:

- Without add. assumptions the rate can be arbitrarily slow.
- Source conditions allow to derive convergence rates.
- The rate of convergence is always strictly worse than O(δ)!
- Further readings:
  - H.W. Engl, M. Hanke, G. Neubauer. *Regularization of Inverse Problems.*
  - M. Burger, S. Osher. *Convergence Rates of Convex Variational Regularization.*
  - M. Benning, M. Burger. Error Estimates for General Fidelities.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

#### Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

### **Beyond Tikhonov regularization**

Seen: Tikhonov regularization

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{2}^{2}$$

stabilizes the reconstruction. For  $\delta \rightarrow 0$  and a suitable  $\alpha(\delta) \rightarrow 0$  one converges to the minimal norm solution.

But is this always desired?



Michael Moeller

Theory

Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

### **Beyond Tikhonov regularization**

Seen: Tikhonov regularization

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{2}^{2}$$

stabilizes the reconstruction. For  $\delta \rightarrow 0$  and a suitable  $\alpha(\delta) \rightarrow 0$  one converges to the minimal norm solution.

But is this always desired?

#### Regularizations can be much more powerful!

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha J(u)$$

J allows to impose a-priori information on the solution!



Michael Moeller

Theory

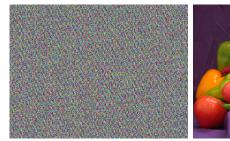
Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

```
Variational
regularization methods
Existence and uniqueness
Tikhonov regularization
```

Task: Distinguish between signal and noise.



Bad! J(u) large!

Good! J(u) small!

Theory

Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness Tikhonov regularization Beyond Tikhonov

Noisy is highly oscillatory!

Regularization  $||u||_2^2$  does not "see" the oscillations.

Idea: Penalize the gradient of the reconstructed image.

$$J(u) = \frac{1}{2} \|\nabla u\|_2^2$$



Michael Moeller



Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

Idea: Penalize the gradient of the reconstructed image.

$$J(u) = \frac{1}{2} \|\nabla u\|_2^2$$

Problem: Discontinuous functions are not admissible!



 $J(u) \approx 170$ 

 $J(u) \approx 1200$ 

Discrete: The finer the discretization the bigger is the difference between sharp and blurry images. Functions: Discontinuous functions are not in  $W^{1,2}$ 



Michael Moeller



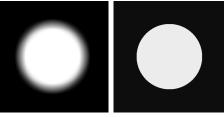
Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Derivatives should be allowed to be distributions.

$$TV(u) = \sup_{\substack{q \in C_0^{\infty}(\Omega, \mathbb{R}^2), \\ |q(x)| \le 1}} \int_{\Omega} u \operatorname{div}(q) dx$$
  
For  $u \in W^{1,1}$ :  $TV(u) = \int_{\Omega} |\nabla u(x)| dx$ 



TV(u) pprox 945 $\|
abla u\|^2 pprox 18$   $TV(u) \approx 958$  $\|\nabla u\|^2 \approx 916$ 

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

Example: TV-Image deblurring

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha TV(u)$$

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

Example: TV-Image deblurring

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha TV(u)$$



#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

## Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Example: TV-Image deblurring

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha TV(u)$$



#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Example: TV-Image deblurring

$$u(\alpha) = \arg\min_{u} \frac{1}{2} \|Au - f^{\delta}\|_{2}^{2} + \alpha TV(u)$$



Analysis of TV-model (existence, continuous dependence, ...): Important to choose the right topology! Further readings:

- Image recovery via total variation minimization and related problems. Chambolle, Lions.
- A Guide to the TV Zoo. Burger, Osher.
- Mathematische Bildverarbeitung. Bredis, Lorenz. E.g. Satz 6.115.

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

### **Generalizations and Extensions**

If changing J(u) can improve the results, we might as well consider more general data terms, too!

What are applications beyond image deblurring?



Michael Moeller

Theory

Image Deconvolution Discrete Continuous

Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization

### **Generalizations and Extensions**

If changing J(u) can improve the results, we might as well consider more general data terms, too!

What are applications beyond image deblurring?

General modeling of variational methods of the form

 $u(\alpha) = \arg\min_{u} H(u, f) + \alpha J(u)$ 

#### To be continued...

#### Theory

#### Michael Moeller



Image Deconvolution Discrete Continuous

# Linear ill-posed problems

Existence and uniqueness Moore-Penrose inverse Compact operators

Variational regularization methods Existence and uniqueness

Tikhonov regularization Bevond Tikhonov