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Why do we see this unstable behavior?

Representation of images:

e Discrete: Pixel values stored in a matrix R?<mMx¢

o Representation for computer screen
¢ |Important for algorithms

Theory

Michael Moeller

Discrete
Continuous

Linear ill-posed
problems
Existence and uniqueness
Moore-Penrose inverse
Compact operators

Variational
regularization methods
Existence and uniqueness
Tikhonov regularization

Beyond Tikhonov

2/26



Why do we see this unstable behavior?
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e Discrete: Pixel values stored in a matrix R?<mMx¢

o Representation for computer screen
¢ |Important for algorithms
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What happened on a discrete level? Theery
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At each blurry pixel is formed as a weighted average over the
sharp pixels. The weights for the averaging are given in the
convolution kernel.
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What happened on a discrete level?

Sharp image: u € R"*™ (grayscale)

Blur kernel: b € R™', typically r << min{n, m}, for example

0.0030 0.0133 0.0219 0.0133
0.0133 0.0596 0.0983 0.0596
b= 0.0219 0.0983 0.1621 0.0983
0.0133 0.0596 0.0983 0.0596
0.0030 0.0133 0.0219 0.0133

Blurry image:

r r

fij= Z Z bn.r Uith— gt jri—rst

h=1 |=1

Linear equations! Can be written as

f=Bi

0.0030
0.0133
0.0219
0.0133
0.0030
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Understanding the continuous case Theery
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Continuous model for a blurred image:

Image Deconvolution

f(X) = /Qb(X, y)u(y) dy Discrete

Linear ill-posed
problems
with a kernel b € [2(Q x Q) (typically being a function of X — y). e serees mese
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Understanding the continuous case Theory

Michael Moeller

Continuous model for a blurred image:

Image Deconvolution

:/Qb(x,y)u(y) dy _

Linear ill-posed
problems

with a kernel b € [2(Q x Q) (typically being a function of X — y). e serees mese

Moore-Penrose inverse
Compact operators

. Variational
Linear map '

regularization methods
Existence and uniqueness
Tikhonov regularization

B LZ( )—) L2 ) Beyond Tikhonov

u»—>/b y) dy

seems to be difficult to "invert”.
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Well-posedness

Well-posedness
¢ A solution exists
e The solution is unique
e The solution depends continuously on the data
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Linear inverse problems

Consider a problem of recovering u from f = Au for a linear
operator A: X — Y.
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Linear inverse problems

Consider a problem of recovering u from f = Au for a linear
operator A: X — Y.

There could not be a solution!

Theory

Michael Moeller

Image Deconvolution
Discrete
Continuous

Linear ill-posed
problems

Moore-Penrose inverse
Compact operators
Variational
regularization methods
Existence and uniqueness
Tikhonov regularization
Beyond Tikhonov

7/26



Linear inverse problems
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Consider a problem of recovering u from f = Au for a linear
operator A: X — Y.

Image Deconvolution
There could not be a solution! Deedte
Definition

Linear ill-posed
problems
We call u a least-squares solution of Au = f if s
Compact operators
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The least-squares solution might not be unique.
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Linear inverse problems Theery

Michael Moeller

Consider a problem of recovering u from f = Au for a linear
operator A: X — Y.

Image Deconvolution
There could not be a solution!

Discrete
Continuous
T Li ill- d
Definition probleme
We call u a least-squares solution of Au = f if s
Compact operators
__ 7 Variational
HAU - f” - Inf{HAV - f|| | Ve X} r:grﬁg?i;:nonmelhods
Existence and uniqueness
Tikhonov regularization
Beyond Tikhonov

The least-squares solution might not be unique.
Definition

We call u a minimal-norm solution of Au = f if

[lull = inf{||v|| | v is least-squares solution of Au = f}
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Linear inverse problems
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How can we recover minimal-norm solutions?

Moore-Penrose inverse

One can define a linear operator Af, such that for any Image Beconvaltion
f € R(A) + R(A)*, the equation Ax = f has a unique Contous
minimal-norm solution given by

Linear ill-posed
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Existence and uniqueness
| Moore-Penrose inverse
xT:= ATf.
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Possible answers:
« Yes — in the sense that lims_,o Bf 5 = Bf7 (continuity).

¢ No - since B could be very ill-conditioned!

Observation in practice: Finer resolution — worse condition
of B. Does the continuous case reveal a problem?
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Theory

Understanding the continuous case

Michael Moeller

Definition: Compact linear operator Image Deconvolution
Discrete

A linear operator A : X — Y is said to be compact if for every Continuous

bounded sequence {x,} C X, {Ax,} has a convergent Pl

SU bseq U e nCe . Existence and uniqueness

Compact operators

Variational
regularization methods
Existence and uniqueness

Theorem: lll-posedness of compact linear operators e

Let the linear operator linear operator A: X — Y be compact,
and let the dimension of its range, R(A) C Y, be infinite.

Beyond Tikhonov

Then A is not continuous.
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Theory

Compact linear operators
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What kind of operators are compact?

Image Deconvolution
Discrete
Continuous

Theorem: Operators with Hilbert-Schmidt kernel are compact o it oosed
inear ill-pose
Let problems

Existence and uniqueness

AU(X) = /Q k(X, y) U(y) dy Moore-Penrose inverse

Variational
regularization methods

with kernel k € L2(Q x Q). Then A € L(L3(Q), L2(Q)) is R e———
CO m paCt . Tikhonov regularization

Beyond Tikhonov

A kernel k € L2(Q x Q) is called a Hilbert-Schmidt kernel from
QxQ—R
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Differentiation: Finding u

(x) for given [, u(y)dy

metersper second
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Differentiation: Finding u(x) for given fox u(y)dy

metersper second

lll-posed inverse problems!
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Variational methods
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Let f° be such that ||f° — f||3 < 4, f = Al for some (compact)
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Variational methods

Let f° be such that ||f° — f||3 < 4, f = Al for some (compact)
linear operator A, (and & being a minimal norm solution).

We know A, 7% and §. Task: Find a good approximation of !

Variational regularization methods
Determine

u(a) = argmin %||Au — P13 + ad(uv)

for a suitable regularization functional J and a regularization
parameter o based on ¢ and 0.
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Existence and uniqueness of solutions Theery
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Before we can tackle the question if

. 1 | Deconvolution
u(a) =arg min —|Au— 0|2 + ad(u Seme
(@) = arg Uel?(Q) 2 | 2+ a(u) S

Linear ill-posed

is a good approximation of & with f = Al, we have to consider: E "

Existence and uniqueness

. Moore-Penrose inverse
@ Does u(«a) even exist? Compactoperators
9 If yeS, is U(Oé) Unique? :/eagrﬁgﬂ;::ion methods

Tikhonov regularization
Beyond Tikhonov
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Existence and uniqueness of solutions Theory

Michael Moeller

Before we can tackle the question if

. 1 | Deconvolution
u(a) =arg min —|Au— 0|2 + ad(u Seme
(@) = arg Uel?(Q) 2 | 2+ a(u) S

Linear ill-posed

is a good approximation of & with f = Al, we have to consider: E "

Existence and uniqueness

. Moore-Penrose inverse
@ Does u(«a) even exist? Compactoperators
9 If yeS, is U(Oé) Unique? :/eagr:ﬁtai?i;::ionmelhods

Tikhonov regularization
Beyond Tikhonov

General setting we will consider:
u(ar) € argmin E, (u)
ueX

for a Banach space X.
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Image Deconvolution
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Existence of solutions
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Fundamental theorem of optimization

Let E: (X,7) — R U {cc} be a functional on a topological
space X with topology 7 such that the following two conditions

Image Deconvolution

are met: Discrete
- - - . . Continuous
o Lower semi-continuity: For uy — u in the topology 7 it Linearposed
hO|dS that péob(lems )
. . xistence and uniqueness
E(u) < liminf E(uk)
k Compact operators

Variational

¢ Precompactness of the sub-level-sets: There exists an regularization methods
| estonce and uriaueness
ﬁ € R such that Tikhonov regularization

Beyond Tikhonov

Sp:={ue X |E(u) <}

is not empty and precompact (Si; compact) in 7.
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Existence of solutions U]

Michael Moeller

Fundamental theorem of optimization

Let E: (X,7) — R U {cc} be a functional on a topological
space X with topology 7 such that the following two conditions

Image Deconvolution
are met: Discrte
- - - . . Continuous
o Lower semi-continuity: For uy — u in the topology 7 it Linearposed
hO|dS that péob(lems )
. . xistence and uniqueness
E(u) < liminf E(uk)
k Compact operators
. Variational
¢ Precompactness of the sub-level-sets: There exists an regularization methods

8 € R such that

Tikhonov regularization
Beyond Tikhonov

Sp:={ue X |E(u) <}

is not empty and precompact (Si; compact) in 7.
Then there exists a minimizer & € X, i.e.

E(@) = inf E(u).

uex

15/26



Theory

Uniqueness of solutions

Michael Moeller

Convex and strictly convex functions

Let E: M — R, M C X being a convex subset of a Banach
Space_ In[:iz:g:'eDeconvolunon

e E is called convex if Continuous

Linear ill-posed

problems
E(Bx +(1 = Be) < BEGq) + (1 = B)E(e) rerm
Compact operators
holds for all x1,x € M and j € [0, 1]. Variational

regularization methods

e E is called strictly convex if the strict inequality holds for all e —.
X1,X2 € M; X1 7é X2 and 5 E]O, 1 [ Beyond Tikhonov
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Uniqueness of solutions

Convex and strictly convex functions

Let E: M — R, M C X being a convex subset of a Banach
space.

e E is called convex if
E(Bx1 + (1 —B)x2) < BE(x1) + (1 — B)E(x2)

holds for all x1, x> € M and 3 € [0, 1].

e E is called strictly convex if the strict inequality holds for all
X1, Xo € M, x4 75 Xo and I5) 610,1[

Uniqueness of minimizers

¢ Any local minimum of a convex function E is a global
minimum.

e If E is strictly convex, the minimum is unique.
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Variational methods

Back to our original question:
« Noisy data f° (given)
e Clean data f (unknown)
« Noise level § = ||f — ?||2 (known)

« Data generation model: & = A'f; linear op. A known.
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Theory

Variational methods

Michael Moeller

Back to our original question:
« Noisy data f° (given)

Image Deconvolution

o Clean data f (unknown) pa—
Continuous
« Noise level § = ||f — || (known) Linear - posed
. A . problems
e Data genel’atlon model: U = AJr f, linear op. A known. Existence and uniqueness

Moore-Penrose inverse
Compact operators

Variational
regularization methods

Continuous dependence on the data? i
Beyond Tikhonov

Does ’
u(er) = argmin || Au — 2113 + ad(u)

for a suitable regularization functional J and a regularization
parameter o based on § and f° converge to @ for § — 0?
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Tikhonov regularization

Tikhonov regularization
_ ] 52 4 X002
u(a) = argmin 5 [Au — £°l2 + 3 [lull2
Optimality condition

0 = A*(Au(a) — ) 4 au(a)
= u(a) = (A*A+al) 1A
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Tikhonov regularization

Tikhonov regularization
_ ] 52 4 X002
u(a) = argmin 5 [Au — £°l2 + 3 [lull2
Optimality condition

0 = A*(Au(a) — ) 4 au(a)
= u(a) = (A*A+al) 1A

Denote R, = (A*A+ al)~'A*. Then
Ju(ar) = @]z = | Raf® — ATf||2
= ||[Raf — ATF + Ry (° — F)]|2
< ||Raf — AMfllz +||Ra(f* — f)|l2

Approximation error Data error
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Tikhonov regularization

lu(a) = Ullo < |Raf = ATfll2 + | Ra(f* = )]
Approximation error Data error

< ||Raf — ATf|l2 + 8| Ru2

What happens for § — 0? Do we get u(a) — 0?
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Tikhonov regularization

Theory
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lu(@) = Bll2 < ||Raf — ATfll2 + || Ra(f* — F)l2

Approximation error

Data error
< |Raf = Atfll2 + 8| Rall2 e
Continuous
What happens for § — 0? Do we get u(a) — 0? Linear ilposed
problems
e We need to choose a rule a = a(9). ST
(Also called a-priori parameter choice rule)

Compact operators
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Existence and uniqueness
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Approximation error Data error

< ||Raf — ATf|l2 + 8| Ru2

What happens for § — 0? Do we get u(a) — 0?

e We need to choose a rule a = a(9).
(Also called a-priori parameter choice rule)

e For the approximation error to go to zero, we need
a(d) =0

e The data error increases as «(d) — 0. Trade-off!
How does || R, (s)l|2 increase?
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What happens for § — 0? Do we get u(a) — 0?
e We need to choose a rule a = a(9).
(Also called a-priori parameter choice rule)
e For the approximation error to go to zero, we need

a(d) =0

e The data error increases as «(d) — 0. Trade-off!
How does || R, (s)l|2 increase?
Remember R, = (A*A+ al) ' A*

For singular values o we have to consider —%—.
o2+a(f)
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(N
Worst case: o = \/a(6). Therefore
1

Rusllz < —
I (s)l\zfz ~0)
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Tikhonov regularization

Theory

Michael Moeller

5
u(a) — Ullz < ||R.f— Alfllo + ———
u(a) = TUll2 < l|2 2 /al0)

Image Deconvolution
Convergence of Tikhonov regularization

Discrete

Continuous
For Tikhonov regularization to converge we need

Linear ill-posed
problems

Existence and uniqueness
) Moore-Penrose inverse
a(6)’2°0  and —— 30
a(9)

Compact operators

Variational
regularization methods
Existence and uniqueness

Beyond Tikhonov
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Tikhonov regularization

u(a) — Ullz < ||R.f— Alfllo + ———
u(a) = TUll2 < l|2 2 /al0)

Convergence of Tikhonov regularization
For Tikhonov regularization to converge we need

0 -0

a(6)’2°0  and —— 30
a(6)

Some remarks about this convergence:

e Without add. assumptions the rate can be arbitrarily slow.
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Convergence of Tikhonov regularization
For Tikhonov regularization to converge we need

)
a(6)’2°0  and —— 30
a(5)
Some remarks about this convergence:

e Without add. assumptions the rate can be arbitrarily slow.
e Source conditions allow to derive convergence rates.
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a(6)

Some remarks about this convergence:
e Without add. assumptions the rate can be arbitrarily slow.
e Source conditions allow to derive convergence rates.
e The rate of convergence is always strictly worse than O(9)!
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Theory

Tikhonov regularization

Michael Moeller

N )
lu(a) = tllz < [|Raf — Afllz + ——=
2\/a(9)
Image Deconvolution
Convergence of Tikhonov regularization e
For Tikhonov regularization to converge we need Pl
Existence and uniqueness
50 5 50 Moore-Penrose inverse
a((s) :; 0 and :> O Compact operators
a(5) Variational
regularization methods
Existence and uniqueness
Some remarks about this convergence: Beyond Thonav

e Without add. assumptions the rate can be arbitrarily slow.
e Source conditions allow to derive convergence rates.
e The rate of convergence is always strictly worse than O(9)!
¢ Further readings:
e H.W. Engl, M. Hanke, G. Neubauer. Regularization of Inverse
Problems.
e M. Burger, S. Osher. Convergence Rates of Convex Variational

Regularization.
e M. Benning, M. Burger. Error Estimates for General Fidelities.
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Beyond Tikhonov regularization

Seen: Tikhonov regularization

1 «
() = argmin || Au — 3+ 5 ul3

stabilizes the reconstruction. For 6 — 0 and a suitable
a(d) — 0 one converges to the minimal norm solution

But is this always desired?
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Seen: Tikhonov regularization

. 52 | & 2

= argmin = — — Image Deconvoluti

u(e) = argmin || Au — |3 + 3 ul3
ontinuous

stabilizes the reconstruction. For 6 — 0 and a suitable

Linear ill-posed
. . problems
a(d) — 0 one converges to the minimal norm solution. Existence and uniqueness
Moore-Penrose inverse
. . . Compact operators
But is this always desired? Variational

regularization methods
Existence and uniqueness
Tikhonov regularization

Regularizations can be much more powerful!
1
u(a) = argmin || Au — 2115 + ad(u)

J allows to impose a-priori information on the solution!
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What is a good regularization for images?

Task:

Distinguish between signal and noise.

Good! J(u) small!

Noisy is highly oscillatory!

Regularization ||u||3 does not "see” the oscillations.
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What is a good regularization for images?
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Idea: Penalize the gradient of the reconstructed image.

1
J(u) = 5Ivul3
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What is a good regularization for images? Theery

Michael Moeller

Idea: Penalize the gradient of the reconstructed image.

1 2
J(u) = §||VU||2
Image Deconvolution
Problem: Discontinuous functions are not admissible! o

Continuous

Linear ill-posed
problems

Existence and uniqueness
Moore-Penrose inverse

Compact operators

Variational
regularization methods
Existence and uniqueness

Tikhonov regularization

J(u) = 170 J(u) =~ 1200
Discrete:

The finer the discretization the bigger is the
difference between sharp and blurry images.
Functions:  Discontinuous functions are not in W12
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What is a good regularization for images?

Derivatives should be allowed to be distributions.

TV(u) =

sup / u div(q) dx
Q

qeCs (Q,R?),
lg(x)I<1

Forue Wh': TV(u) :/ |Vu(x)| dx
Q

TV(u) ~ 945 TV(u) ~ 958

IVul? ~ 18 IVl ~ 916
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Regularization via Total Variation
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Example: TV-Image deblurring

u(a) = argmin %HAU — 02+ aTV(u)
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Regularization via Total Variation

Example: TV-Image deblurring

u(a) = argmin %HAU — |3+ aTV(u)

Analysis of TV-model (existence, continuous dependence, ...):
Important to choose the right topology! Further readings:

® Image recovery via total variation minimization and related problems.
Chambolle, Lions.

e A Guide to the TV Zoo. Burger, Osher.
e Mathematische Bildverarbeitung. Bredis, Lorenz. E.g. Satz 6.115.
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Generalizations and Extensions
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If changing J(u) can improve the results, we might as well
consider more general data terms, too!
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What are applications beyond image deblurring?
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Generalizations and Extensions

If changing J(u) can improve the results, we might as well
consider more general data terms, too!

What are applications beyond image deblurring?

General modeling of variational methods of the form

u(a) = arg mLin H(u, f) + ad(u)

To be continued...
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