Chapter 0 Organization and Introduction

Variational Image Processing Summer School on Inverse Problems 2015

> Michael Moeller Computer Vision Department of Computer Science TU München

Organization and Introduction

Motivation Organization

Objectives of the lecture


Inverse problems and imaging?

III-Posed Problems

ill-posed

Organization and Introduction

Michael Moeller

Motivation

Stereotypical linear inverse problems

Inverse Problem

$$f = Au$$

Measure data f, linear operator A, desired solution u

Organization and Introduction

Michael Moeller

Motivation

Stereotypical linear inverse problems

Inverse Problem

f = Au

Measure data f, linear operator A, desired solution u

Well-posedness

- A solution exists
- The solution is unique
- The solution depends continuously on the data

The majority of practically relevant problems is ill-posed!

Organization and Introduction

Michael Moeller

Motivation

Data from: *Microsoft Research GeoLife GPS Trajectories*

Time	'12:44:12'	'12:44:13'	'12:44:15'
Latitude	39.974408918	39.974397078	39.973982524
Longitude	116.30352210	116.30352693	116.30362184

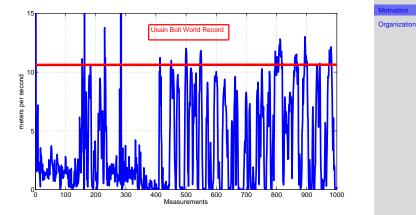
How fast did this person go?

Organization and Introduction

Michael Moeller

Motivation

$$\mathbf{v}(t_i) = \frac{\mathbf{x}(t_i) - \mathbf{x}(t_{i-1})}{t_i - t_{i-1}} \approx \partial_t \mathbf{x}(t_i)$$


Organization and Introduction

Michael Moeller

Motivation

$$\mathbf{v}(t_i) = \frac{\mathbf{x}(t_i) - \mathbf{x}(t_{i-1})}{t_i - t_{i-1}} \approx \partial_t \mathbf{x}(t_i)$$

New world record? Top speed of 161.78 km/h?

Organization and Introduction

Michael Moeller

5/13

Organization and Introduction

Michael Moeller

Motivation

Organization

Great! Safari!

Michael Moeller

Bad! Nervous focal setting! f = A * u

Organization and Introduction

Michael Moeller

Blurry image $f = A * u \Rightarrow \mathcal{F}(f) = \mathcal{F}(A) \cdot \mathcal{F}(u)$

Reconstructed image $u = \mathcal{F}^{-1}(\mathcal{F}(f)/\mathcal{F}(A))$?

Organization and Introduction

Michael Moeller

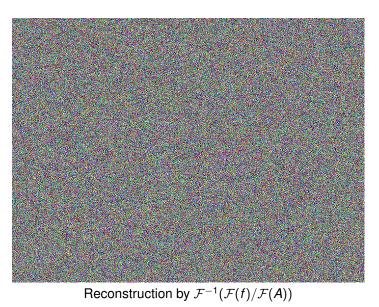
Motivation

Organization and Introduction

Michael Moeller

Organization

Blurry image $f = A * u \Rightarrow \mathcal{F}(f) = \mathcal{F}(A) \cdot \mathcal{F}(u)$



Michael Moeller

Blurry noisy image f = A * u + n, $\Rightarrow \mathcal{F}(f) \approx \mathcal{F}(A) \cdot \mathcal{F}(u)$

Organization and Introduction

Michael Moeller

Motivation

The three summer school lectures

1 Theory - Why do we need variational methods?

2 Applications - What can we use them for?

3 Optimization - How can you implement them yourself?

Michael Moeller

Motivation