
Numerical Optimization SS 2023
Lernskript

Version 6. Juli 2023, 13:37:37

Frank Wübbeling

6. Juli 2023

Contents

-1 Foreword 4

0 Introduction and Examples 5
0.1 The General Problem Formulation . 5
0.2 Some Examples . 6

0.2.1 Linear Programming: Maximizing profit with restricted re-
sources . 6

0.2.2 Data Fitting/Regression/Deep Learning 7
0.2.3 Overdetermined Linear Equations 8
0.2.4 Graphical Solution . 8
0.2.5 Treatment Planning . 9

1 Basics 11
1.1 Terminology . 11
1.2 Transformations . 12

2 Optimality Conditions 14
2.1 Unrestricted Problems . 14
2.2 Problems with Equality Constraints 16
2.3 Equality and Inequality Constraints 23

3 Duality 26

4 Convexity 31

5 Linear Programming 39
5.1 Problem formulation and characterization of minimal points 39
5.2 The simplex algorithm: Derivation of phase II 42
5.3 The simplex algorithm: Implementation and the simplex tableau . . . 44

6 Smooth optimization for problems without constraints 48

2

CONTENTS

6.1 Line search (descent) methods . 48
6.2 Step Size Control for line search . 52
6.3 Gradient type methods for linear equations 57
6.4 Newton’s method . 64

6.4.1 Newton’s optimization method 65
6.4.2 Quasi–Newton methods . 67
6.4.3 Trust Region Methods . 69

7 Numerical optimization with constraints 71
7.1 Penalty Methods . 71
7.2 Quadratic Programming . 80

7.2.1 Equality Constraints . 80
7.2.2 Active Set Strategy for inequality constraints 81

7.3 Gradient Projection Methods . 82
7.4 Sequential Quadratic Programming (SQP) 84
7.5 Interior point algorithms: The Barrier Method 85

8 Advanced Examples 89
8.1 Image and Signal Denoising . 89

A Errata 95
A.1 Chapter 1 . 95
A.2 Chapter 2 . 95
A.3 Chapter 3 . 95
A.4 Chapter 4 . 96
A.5 Chapter 5 . 96
A.6 Chapter 6 . 96
A.7 Chapter 7 . 96

3

Chapter -1

Foreword

These are the lecture notes for the lecture Numerical Optimization, held in the sum-
mer semester of 2023, by Frank Wübbeling. Note that the notes contain the major
definitions, lemmas, etc. of the lecture, but may lack proofs, or rather point at the
relevant literature.

I try to be as correct as possible, but errors are, unfortunately, unavoidable. Please
send me all the bugs you find.

4

Chapter 0

Introduction and Examples

0.1 The General Problem Formulation

In the lecture, we will deal with minimization problems of the general form

min f(x), x ∈ Rn, subject to cE(x) = 0, cI(x) ≤ 0. (∗)

The problem involves finding an argument x where that minimum is attained.

Note that here, we restrict ourselves to problems in Rn, we might extend that to
problems in infinite–dimensional Hilbert–spaces.

Throughout the lecture, we will use the following notation:

• x is the optimization variable.

• f : Rn 7→ R ∪ {∞} is the objective function, we set f =: f0.

• cI : Rn 7→ (R ∪ {∞})m is the inequality constraint, we set cI = (f1, . . . , fm).

• cE : Rn 7→ (R ∪ {∞})p is the equality constraint, we set cE = (h1, . . . , hp).

Note that we can replace the equality condition cE(x) = 0 with the inequality condi-
tions cI(x) ≤ 0 and −cI((x) ≤ 0 and thus arrive at a problem which has no equality
constraints.

We allow for the functions to have an infinite value. If f(x) = ∞, think of f as
undefined in x. Consequently, we define the domains

D = dom f := {x : f(x) <∞}, dom(∗) = (∩ dom fi) ∩ (∩ domhi).

Minimization problems are classified based upon the properties of their defining
functions. Some important classes we will treat are

5

0.2. SOME EXAMPLES

• Linear problems/linear programming: iff f , cE, cI are affine.

• Nonlinear problems: iff at least one of f , cE, cI is nonlinear (not affine).

• Convex problems: iff f and cI are convex and cE is affine.

Remember:

• f is affine if f(x)− f(0) is linear.

• f is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)∀x, y ∈ Rn, λ ∈ [0, 1].

• D ⊂ Rn is convex iff

λx+ (1− λ)y ∈ D ∀x, y ∈ Rn, λ ∈ [0, 1].

Note that convex problems have very special properties. In this case, D is convex,
and all local minima are also global minima (exercises).

Note that there are many more types of optimization problems which we will not
cover in this lecture. Among them are discrete optimization (where x ∈ Zn) and
optimization on Banach spaces (where x ∈ V and V is an infinite–dimensional
Banach space).

0.2 Some Examples

Note that these examples are a motivation. We will not cover the concrete practical
examples in this lecture.

0.2.1 Linear Programming: Maximizing profit with restricted re-
sources

The classical optimization problem which comes up in all MBA textbooks, usu-
ally together with the corresponding simplex method for its solution, is the follow-
ing:

A company can produce n products. For the production, m resources are needed.
For the production of one unit of product k one needs alk units of resource l. Assume
that resources are limited, and that there is a maximum of Rl units available for
resource l. Assume that Pk units of product k shall be produced, k = 1 . . . n. Then
this is within the resource limit iff

6

0.2. SOME EXAMPLES

∑
k

alkPk ≤ Rl or AP ≤ R

with the obvious definitions of A, P , R.

Assume that product k generates a profit of ck. Then we wish to select P such that
the profit is maximized, or

min−ctP where AP ≤ R.

This is a linear minimization problem.

0.2.2 Data Fitting/Regression/Deep Learning

We take the example of classification. Assume that the task is to recognize hand–
written digits. There is a large library of digital images Ik of digits (in Rn×n) avail-
able, and the images have been manually sorted into ten classes, Class 0 has all
images with a 0 on them, Class 1 with a 1 and so on.

Further assume that there is a class P of functions, which are parameterized by a
vector c ∈ RN . N is typically extremely large. For simplicity, think of p ∈ P as
polynomials on Rn×n, which are parameterized by their coefficients (and the vector
of coefficients is in RN).

In Regression, we try to find a parameter c such that the corresponding function pc
sorts the images into the correct classes. In our example, we try to find coefficients
for a polynomial p such that

p(Ik) = lk if image Ik is in class lk.

You could think of this as multidimensional, nonlinear interpolation. The idea of
course is that if such a p is found, then p(I) ∼ l for an image I that contains the
digit l but is not part of the training set.

Usually, an exact p cannot be found, so one would instead try to find a solution to
the minimization problem

min
c

∑
k

|pc(Ik)− lk|

or: try to find coefficients such that the corresponding polynomial best fits the im-
ages to the data.

This is an unrestricted nonlinear problem.

7

0.2. SOME EXAMPLES

0.2.3 Overdetermined Linear Equations

A specialization of these problems arises particularly in inverse problems. Assume
that A ∈ Rm×n, m > n. Then the problem: Find x such that Ax = b has more
equations than unknowns and generally has no solution at all. In this situation, we
define least squares solutions x∗ as the solutions to

min
x

||Ax− b||22.

One can show that x∗ is a least squares solution of Ax = b iff AtAx = Atb.

Since x∗ is not necessarily uniquely defined, the minimum norm solution x+ is de-
fined as the smallest least squares solution, or

x+ is a least squares solution and ||x+|| ≤ ||y|| ∀ least squares solutions y.

One can show that x+ is uniquely defined (for all m and n) and satisfies the condi-
tions (exercises)

AtAx+ = Atb, x+ ∈ range(At).

0.2.4 Graphical Solution

When x ∈ R2, one can solve the optimization problem graphically. To this end,
one first draws the permissible set consisting of all x that satisfy the constraints.
Next, one draws the contours, that is the graphs of f(x) = c, for various values of
c and finds the smallest c such that the contours and the permissible set are not
disjoint.

−1−2−3 1 2 3

1

2

3

−1

−2

−3

Figure 1: Graphical Solution of Minimization Problems

In the example above, setA = I and b = (2, 1), but apply the conditions x21−x2 ≤ 0
and x1+x2 ≤ 2. Then the permissible set is the intersection of the parabola x2 ≥ x21
and the area under the line x2 = 2− x1. See figure 1.

8

0.2. SOME EXAMPLES

The contours of the objective function

f(x1, x2) = (x1 − 2)2 + (x2 − 1)2

are the circles of radius c around (2, 1). The smallest c such that one of these circles
hits the permissible set gives the optimal point. From the graphic, it is easily seen
that the optimal point is the intersection of the ellipse and the line at (1, 1).

0.2.5 Treatment Planning

Obviously, every inverse problem of the form Rf = g can be written as a minimiza-
tion problem of the form

min
f

||Rf − g||.

This is particularly useful if restrictions on f are known (which can be incorporated
into the minimization problem, but not into the equations).

These approaches have become more and more popular in recent years. How-
ever, there are (at least) two problems in medical imaging which have always been
treated this way.

In emission tomography, a radioactive substance is injected into a patient. The im-
age f of the distribution of the substance inside the body then reveals the location
of tumors.

To find f , external measurements g are made, which allow to compute f from the
equation Rf = g (where R is an operator, the Radon Transform).

However, it is very important to keep in mind that the distribution of the substance
is a nonnegative function, and so one solves the corresponding problem

min
f

||Rf − g|| where − f ≤ 0.

We will see that constrained problems of this kind can be solved using the KKT
conditions, which in the case of emission tomography immediately lead to the EM
(expectation maximization) algorithm.

The other problem is Treatment Planning. Suppose that a tumor cannot be directly
removed by surgery. Then, one may resort to radioactive treatment of the tumor.
Radioactive rays from various directions are directed onto the tumor, and if the ra-
dioactive load is high enough (larger than a threshold c) then the tumor will be
destroyed.

9

0.2. SOME EXAMPLES

Of course, one wishes to select the radioactive rays such that exposure of delicate
parts of the body to the rays is minimized. So we arrive at a minimization problem
of the kind

min
g

∫
x ̸∈T

Rg(x) dx where g ≥ 0, Rg(x) ≥ c ∀x ∈ T

where T is the tumor and (Rg)(x) is the radioactive exposure at point x for treat-
ment plan g (and yes, again it turns out that R is the Radon transform).

Both problems, with solutions, are extensively treated in the classical textbook Par-
allel Optimization by Censor and Zenios.

10

Chapter 1

Basics

We start by defining some basic terminology. Assume that a minimization problem
(∗) is given.

1.1 Terminology

Definition 1.1 (Feasibility)
x ∈ D is feasible iff all constraints (gI(x) ≤ 0, gE(x) = 0) are satisfied.

F = {x : x is feasible }

is the feasible set.
(∗) is feasible if there is a feasible x.
Otherwise (∗) is infeasible.

Definition 1.2 (Optimal values)

p∗ = inf{f0(x) : x ∈ D is feasible }

is the optimal value of (∗).
Note that this includes the case when (∗) is infeasible, then p∗ is ∞, the infimum of
the empty set.
If p∗ = −∞, then (∗) is unbounded from below.

Definition 1.3 (Optimal points)
x∗ is globally optimal point iff x∗ is feasible and f(x∗) = p∗.
x∗ is strictly globally optimal if additionally f(z) > p∗ for all feasible z with z ̸= x∗.

11

1.2. TRANSFORMATIONS

The optimal set Xopt is defined as

Xopt = {x ∈ D : x is optimal point}.

A feasible point x is locally optimal iff there is an open set B, x ∈ B, such that

f0(x) ≤ f0(z)∀z ∈ D ∩B.

It is called strictly locally optimal iff the inequality holds with < for x ̸= z.

Theorem 1.4 Let (∗) a convex optimization problem. Then x∗ is locally optimal iff x∗

globally optimal.

Proof: Exercises.
Question: Is the existence of a globally optimal point guaranteed for convex prob-
lems?
Answer: No, consider the unrestricted problem f0(x) = x.

1.2 Transformations

The formulation of an optimization problem is not unique. Using simple transfor-
mations, it can be reformulated to a form that is sometimes easier to solve. Here
are some examples.

• We already noted: hk(x) = 0 can be reformulated as hk(x) ≤ 0 and −hk(x) ≤
0, every equation can be formulated as two inequalities.

• fi(x) ≤ 0 can be reformulated as fi(x) + si = 0, −si ≤ 0. So complicated
inequality conditions can be formulated as simple inequality conditions (with
a complicated equality condition). si is called slack variable (Schlupfvariable,
in German). This is extensively used in linear programming.

• Let φ : Rn 7→ Rn invertible, and replace

f̃k = fk ◦ φ, h̃j = hj ◦ φ.

Then x is an optimal point of the old problem iff φ−1(x) is an optimal point of
the new system.

• Let Ψ monotonically increasing, and let f̃0 = Ψ ◦ f0. Then the optimal points
do not change.
Simple example: Sometimes it is easier to minimize the sum of two terms
rather than their product. In this case, minimize log(FG) = logF + logG.
This is used in statistics, where the likelihood–function l is introduced, but
the objective function always used is the log likelihood function.

12

1.2. TRANSFORMATIONS

• Let χ(x) ≤ 0 iff x ≤ 0. Then fj(x) ≤ 0 iff (χ ◦ fj)(x) ≤ 0.

• Let χ(x) = 0 iff x = 0. Then hk(x) = 0 iff (χ ◦ hk)(x) = 0.

• Assume that hk(x1, x2) = 0 can be solved for x2, thus x2 = h̃k(x1). Then x2
can be eliminated in (∗) completely.

• Every restricted problem can be reformulated as an unrestricted problem.
Simply use the objective function

f̃0(x) =

{
f0(x), x feasible

∞, else

Note that generally f̃0 will not be differentiable, even when f0 is, so this
seems pretty useless. Nevertheless, this leads to an interesting idea: Maybe
we can find a differentiable function χ(x), which is small for x feasible and
large otherwise, and consider the unrestricted problem with objective func-
tion f0(x)+χ(x) as an approximation to the restricted problem. This is called
a penalty or augmentation method.

• We can also get rid of (complicated) objective functions and move them to the
restrictions. Consider

min
t,x

t where f0(x)− t ≤ 0, x feasible .

13

Chapter 2

Optimality Conditions

In this section, we derive sufficient and necessary conditions for optimality. The
conditions for unconstrained problems should be very familiar from your analysis
lectures. In the following, if not explicitly defined, assume that the derivatives used
exist.

2.1 Unrestricted Problems

I remind you of the first and second derivative for functions on Rn:

Definition 2.1 (Gradient, Hessian and Jacobian)
Let f : Rn 7→ R, g : Rn 7→ Rm.

1. Let f ∈ C1. Then the gradient of f in x is defined as the vector in Rn

∇f(x) := (Df)(x)t := (
∂f

∂x1
, . . . ,

∂f

∂xn
)t(x).

2. Let f ∈ C2. Then the Hessian of f in x is defined as the n× n–matrix

Hessf(x) = D2f(x) = ∇2f(x) =

∂2f
∂x2

1
. . . ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂x2
n

 (x).

3. Let g ∈ C1, g = (g1, . . . , gm)
t. Then the Jacobian Dg(x) of g in x is defined as

the m× n–matrix

Dg(x) = (∇g1(x), . . . ,∇gm(x))t.

14

2.1. UNRESTRICTED PROBLEMS

In school, you learned: If x∗ is a minimum of the function f : R 7→ R, f ∈ C1, then
f ′(x∗) = 0 (necessary condition), and f ′′(x∗) ≥ 0. If f ′(x∗) = 0 and f ′′(x∗) > 0,
then x∗ is a minimum (sufficient condition).

For multidimensions, I remind you of the multidimensional Taylor expansion. Please
look this up in your analysis textbook, e.g. Forster, Analysis II, Theorem 7.2. We write
Corollaries 1 and 2 from this book (or any other source) in a special form:

Theorem 2.2 (Taylor’s Formula for linear and quadratic approximation)
Let f : Rn 7→ R, x, ξ ∈ Rn fixed, α > 0. Then

1. Let f ∈ C1. Then

f(x+αξ) = f(x)+
n∑

k=1

∂f

∂xk
(x)αξk+h(α) = f(x)+α(∇f(x), ξ) + h(α)︸ ︷︷ ︸

I1

, lim
α→0

h(α)

α
= 0.

2. Let f ∈ C2. Then

f(x+ αξ) = f(x) + α(∇f(x), ξ) + 1

2
α2ξt(D2f(x))ξ + h̃(α)︸ ︷︷ ︸

I2

, lim
α→0

h̃(α)

α2
= 0.

Some thoughts: Obviously, if x is a local minimum of f , then I1 must be nonnega-
tive for all x+ αξ in a neighborhood of x. However,

I1(α)

α
→α→0 (∇f(x), ξ),

so if (∇f(x), ξ) ̸= 0 the sign of I1 is the sign of (∇f(x), ξ) for α ≥ 0 small
enough.

Let us assume that ∇f(x) ̸= 0, and choose ξ such that ||ξ|| = ||∇f(x)||. Then

(∇f(x), ξ)

is maximal and positive = ||ξ||2, if ξ = ∇f(x)
vanishes, if ξ and ∇f(x) are orthogonal

is minimal and negative = −||ξ||2, if ξ = −∇f(x).

The scalar product is minimal/maximal due to Cauchy–Schwarz.

So ∇f(x) is the direction of steepest ascent, and −∇f(x) is the direction of steep-
est descent. If we wish to minimize f and have an approximation x, it seems like a
good idea to walk in direction −∇f(x).

Also, we immediately see that if ∇f(x) ̸= 0, then x cannot be a locally minimal
point. We sum this up in the following theorems.

15

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

Theorem 2.3 (Necessary (first and second order) conditions for unconstrained prob-
lems)
Let x∗ a local minimum of the unconstrained problem 0.1. Then

1. If f0 is in C1, then ∇f0(x∗) = 0.

2. If f0 is in C2, then D2f(x) is positive semidefinite.

Theorem 2.4 (Sufficient (first and second order) conditions for unconstrained prob-
lems)
Let 0.1 an unconstrained problem, f0 ∈ C2, and

1. ∇f0(x∗) = 0.

2. D2f0(x
∗) positive definite.

Then x∗ is a locally optimal point.

Proof:

1. 2.3, part 1: This is already in the remarks.

2. 2.3, part 2: From part 1, we know that the scalar product in I2 of 2.2 vanishes.
So as in the remarks, the sign of I2 depends on ξt(D2f0(x

∗))ξ. If this is neg-
ative for any ξ, then I2 is negative in a small neighborhood of x∗ and x∗ is
not an optimal point. So ξt(D2f0(x

∗))ξ must be nonnegative for all ξ, and
D2f0(x

∗) is positive semidefinite.

3. 2.4: If the Hessian is positive definite, then I2 is positive in a small neighbor-
hood of x∗, so x∗ is an optimal point.

□

Note that the sufficient conditions are not necessary. Consider the 1D example
f(x) = x4.

2.2 Problems with Equality Constraints

For constrained problems, things are slightly different. Assume that 0.1 is a con-
strained problem and x∗ is feasible. Then 2.2 holds for directions ξ where αξ is
feasible for small α. We immediately see: If x∗ is in the interior of the feasible set
F , nothing changes, and necessary and sufficient conditions are as in 2.3 and 2.4.
If x∗ is on the boundary of the feasible set, then we can only choose ξ if it points into
the feasible set (inequality conditions) or along the boundary (equality conditions),

16

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

where along the boundary means in the direction of the tangent for differentiable
curves.

Thus, in the derivation of the conditions, it might be ok for the scalar product of
the gradient and a direction ξ not to vanish at an optimal point, as long as ξ points
away from the feasible set.

For a curve in 2D, the tangent ofF in x∗ is x′(t) for any differentiable parametrization
x(t) of the boundary with x(t) = x∗. Following this idea, we define in Rn

Definition 2.5 (Curves and Tangential Plane)
Let H a hypersurface in Rn. A curve x on H is a continuous mapping [a, b] 7→ H.
x∗ ∈ H lies on the curve if ∃ t∗ : x(t∗) = x∗.
We denote (for x ∈ C1, x ∈ C2, resp.)

ẋ(t) =
dx

dt
(t), ẍ(t) =

d2x

dt2
(t).

θ ∈ Rn is a tangential vector to H in x∗ iff there is a curve x(t) ∈ C1 on H such that

x(t∗) = x∗, θ = ẋ(t∗).

The set of all tangential vectors in x∗ is the tangential plane Tx∗H of H in x∗.

Note that we define the tangential plane for a hypersurface, but in fact it makes
sense for any set H ⊂ Rn. Some examples:

Example 2.6 Let H ⊂ Rn.

• Let x∗ in the interior
◦
H of H. Then Tx∗H = Rn.

Proof: Let y ∈ Rn. Let

c : [−ϵ, ϵ] 7→ Rn, c(t) := x∗ + t y.

Since x∗ is in the interior of H, there is a small neighborhood of x∗ that lies in
H. So if ϵ > 0 is small enough, the range of c is in H, and c is a curve on H.
Since

c(0) = x∗ , ċ(0) = y

we have y ∈ Tx∗H.

• Let x∗ an isolated point in H. Then Tx∗H = {0}.
Proof: Let c a differentiable curve on H that contains x∗. Since x∗ is iso-
lated, we have c(t) = x∗ (otherwise c would not even be continuous) and thus
∇c(t) = 0.

17

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

• Let f0 : Rn−1 7→ R ∈ C1 and

H = graph f0 = {(x, f0(x)) ∈ Rn : x ∈ Rn−1}.

Let x∗ ∈ Rn−1 a local minimum of f0. Then

T(x∗,f0(x∗))H = {(x, 0) ∈ Rn : x ∈ Rn−1}.

Proof: Since x∗ is a local minimum of f0, we have ∇f0(x∗) = 0. A curve c on H
has the form c(t) = (x(t), f0(x(t)), thus

ċ(t) = (ẋ(t), ẋ(t) · ∇f0(x(t)).

Thus for x(t∗) = x∗

ċ(t∗) = (ẋ(t∗), 0).

For the opposite direction set x(t) = x∗+ t y for any y ∈ Rn−1 as in example 1.
Note that this gives a necessary condition for the constrained minimization
problem

min
x∈Rn

xn where f0(x1, . . . , xn−1)− xn = 0.

We now return to our minimization problem 0.1, with equality, but no inequality
constraints (p > 0, m = 0). If not defined otherwise, we assume D = Rn.

We define S as the hypersurface that satisfies the equality conditions, thus

S = {x ∈ Rn : cE(x) = 0}.

We will characterize the tangential field Tx∗S for x∗ ∈ S using the Jacobian
DcE(x

∗) ∈ Rp×n.

Definition 2.7 (regular points)
x∗ ∈ S is a regular point iff ∇h1(x∗), . . . ,∇hp(x∗) are linear independent.

Note that this is equivalent to rank(DcE(x
∗)) = p, and recall from linear algebra

that this implies

rank(DcE(x
∗))(DcE(x

∗)t) = p⇒ (DcE(x
∗))(DcE(x

∗))t ∈ Rp×p invertible.

Next, remember the implicit function theorem (Forster Analysis 2, 8.2). We use it in
the following form:

Theorem 2.8 (Implicit Function Theorem)
Let

F : R× Rp 7→ Rp, F ∈ C1, F (0, 0) = 0, DuF (0, 0) invertible

where DuF is the Jacobian of F wrt the second variable. Then

∃ϵ > 0, u : [−ϵ, ϵ] 7→ Rp : u ∈ C1, u(0) = 0, F (t, u(t)) = 0 ∀ t ∈ [−ϵ, ϵ].

18

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

Now we can prove

Theorem 2.9 (Characterization of Tangential Plane)
Let x∗ ∈ S.

1. Tx∗S ⊂ kerDcE(x
∗).

2. If x∗ is regular, then Tx∗S = kerDcE(x
∗).

Proof: Let x∗ ∈ S.

1. Let y ∈ Tx∗S. By definition of the tangential plane, there exists a curve x ∈ C1

on S with x(t∗) = x∗, ẋ(t∗) = y.
By definition of S we have cE(x(t)) = 0 which implies

0 =
d

dt
[cE(x(t))]

∣∣∣∣
t=t∗

= DcE(x(t
∗)) ẋ(t∗)︸︷︷︸

=y

⇒ y ∈ kerDcE(x
∗).

2. Let y ∈ kerDcE(x
∗) and

F : R× Rp 7→ Rp, F (t, u) := cE(x
∗ + ty +DcE(x

∗)tu).

Then
F (0, 0) = 0, DuF (0, 0) = DcE(x

∗)DcE(x
∗)t invertible.

According to 2.8, there is a differentiable curve u(t) such that

u(0) = 0, F (t, u(t)) = 0 ⇒ cE(x(t)) = 0, x(t) = x∗ + ty +DcE(x
∗)tu(t)

which implies that x(t) is a curve on S. As in (1), we differentiate the equality
constraints wrt t

0 =
d

dt
[cE(x(t))]

∣∣∣∣
t=0

= DcE(x
∗)y︸ ︷︷ ︸

=0

+DcE(x
∗)DcE(x

∗)t︸ ︷︷ ︸
invertible

u̇(0)

which implies u̇(0) = 0, and thus

ẋ(0) = y +DcE(x
∗)tu̇(0) = y.

□

Lemma 2.10 (1st order necessary condition for equality constraints)
Let x∗ a local minimum of 0.1 and regular wrt cE. Then ∇f0(x∗) is orthogonal to the
tangent plane of S in x∗, that is

∇f0(x∗) · y = 0∀ y ∈ Rn : DcE(x
∗) y = 0.

19

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

Proof: Let x∗ a local optimum and regular point, y ∈ ker(DcE(x
∗)). By 2.9 there is a

differentiable curve x(t) on S with x(0) = x∗, ẋ(0) = y. Since x∗ is a local minimum
of f0 on S, t = 0 is a local optimum of f0(x(t)), and thus

0 =
d

dt
[f0(x(t))]

∣∣∣∣
t=0

= ∇f0(x∗) · y.

□

Note that this result is reminiscent of the remarks after 2.3. If the problem is unre-
stricted or x∗ is in the interior of the feasible set, then the scalar product of ∇f0(x∗)
with any y must vanish. If we have restrictions, only the scalar products with vectors
y that do not lead away from S (are tangential to S) must vanish.

Theorem 2.11 (Lagrange Multiplier)
Let x∗ a local optimum of 0.1 and regular wrt cE. Then ∇f0(x∗) is a linear combina-
tion of ∇h1(x∗), . . . ,∇hp(x∗) or

∃λ ∈ Rp : ∇f0(x∗) +DcE(x
∗)tλ = 0 ⇐⇒ Df(x∗) + λtDcE(x

∗) = 0.

λ is called Lagrange Multiplier.

Proof: Recall from linear algebra that for any matrix A ∈ Rp×n

Rn = ker(A)⊕ range(At) ⇒ ker(A)⊥ = range(At).

According to 2.10 we have

∇f(x∗) ∈ ker(DcE(x
∗))⊥ = range(DcE(x

∗)t)

and thus for some λ ∈ Rp

∇f(x∗) +DcE(x
∗)tλ = 0 ⇐⇒ Df(x∗) + λtDcE(x

∗) = 0.

□

Definition 2.12 (+Corollary, Lagrange Function)
Let

L : Rn × Rp 7→ R, L(x, λ) := f0(x) + λtcE(x).

Then
∇xL(x, λ) = ∇f0(x) +DcE(x)

tλ, ∇λL(x, λ) = cE(x).

20

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

If x∗ ∈ S is a local optimum and regular point, λ the corresponding Lagrange multi-
plier, then

∇L(x∗, λ) =
(
∇xL(x

∗, λ)
∇λL(x

∗, λ)

)
= 0.

Further

Dx,xL(x, λ) = D2f0(x) +

p∑
k=1

λkD
2hk(x

∗).

Theorem 2.13 (2nd order necessary conditions for equality constraints)
Let f0, hk ∈ C2. Let x∗ a local optimum of 0.1 and regular wrt cE. Let λ the corre-
sponding Lagrange multiplier. Then

D2f0(x
∗) +

p∑
k=1

λkD
2hk(x

∗) = Dx,xL(x
∗, λ)

is positive semidefinite on Tx∗S.

Proof: Since everything is twice differentiable, the curve x constructed in 2.9 can
safely be assumed to be twice differentiable (the implicit function theorem guaran-
tees the existence of k times differentiable functions if F is k times differentiable).
So let y ∈ Tx∗S, x a curve on S with

x ∈ C2, x(0) = x∗, ẋ(0) = y.

As in the proof of 2.10, we use that since x∗ is an optimal point, f0(x(t)) has a
minimum at t = 0 and thus (2nd order necessary condition)

0 ≤ d2

dt2
f0(x(t))|t=0 = ẋ(0)tD2f0(x

∗)ẋ(0) +Df0(x
∗)ẍ(0).

Since cE(x(t)) = 0, we have

0 =
d2

dt2
λtcE(x(t)|t=0 =

p∑
k=1

λkẋ(0)
tD2hk(x

∗)ẋ(0) + λtDcE(x
∗)ẍ(0).

Since λtDcE(x∗) = −Df0(x∗), we get

0 ≤ yt

[
D2f0(x

∗) +

p∑
k=1

λkD
2hk(x

∗)

]
y.

□
We suspect that an equivalent sufficient condition exists.

21

2.2. PROBLEMS WITH EQUALITY CONSTRAINTS

Theorem 2.14 (2nd order sufficient condition for equality constraints)
Let

x∗ ∈ Rn, λ ∈ Rp, cE(x
∗) = 0, Df0(x

∗) + λtDcE(x
∗) = 0, x∗ regular point .

Further, let

D2f0(x
∗) +

p∑
k=1

λkD
2hk(x

∗) = Dx,xL(x
∗, λ)

positive definite on Tx∗S. Then x∗ is a strict local optimum of 0.1.

One might suspect that the proof runs along the lines of the proof of the necessary
conditions for the unrestricted problem. However, that technique will only work if S
is convex, which for surfaces it will not be unless the surface is a plane. So we need
a slightly more complicated approach.

Proof: Assume that x∗ is not a strict local optimum of 0.1. Then for every ϵk > 0,
ϵk → 0, we find a yk ∈ S with ||x∗ − yk|| ≤ ϵk, x∗ ̸= yk, f0(yk) ≤ f0(x

∗). We write yk
as

cE(yk) = 0, f0(yk) ≤ f0(x
∗), yk = x∗ + δksk, δk > 0, ||sk|| = 1, δk → 0.

Due to Bolzano–Weierstraß, sk has a convergent subsequence. Wlog assume sk →
s∗. Then we have

0 =
cE(x

∗ + δksk)− cE(x
∗)

δk

=
cE(x

∗ + δksk)− cE(x
∗ + δks

∗)

δk
+
cE(x

∗ + δks
∗)− cE(x

∗)

δk
→ DcE(x

∗)s∗

which implies that s∗ is in Tx∗S.
Now fix k. Using Taylor, we have

0 ≥ f0(yk)− f0(x
∗) = δkDf0(x

∗)sk +
δ2k
2
stkD

2f0(η0,k)sk (E0)

0 = hi(yk)− hi(x
∗) = δkDhi(x

∗)sk +
δ2k
2
stkD

2hi(ηi,k)sk (Ei)

Using the defining property of the Lagrange Multiplicator λ, we get for

E0 +

p∑
i=1

λiEi ⇒ 0 ≥ δ2k
2︸︷︷︸
>0

stk

[
D2f0(η0,k) +

p∑
i=1

λiD
2hi(ηi,k)

]
sk.

22

2.3. EQUALITY AND INEQUALITY CONSTRAINTS

Now let k 7→ ∞, then in the limit

0 ≥ (s∗)t

[
D2f0(x

∗) +

p∑
i=1

λiD
2hi(x

∗)

]
s∗

which is a since that matrix was assumed to be positive definite on Tx∗S. □

2.3 Equality and Inequality Constraints

Finally, we permit that in 0.1 p ≥ 0 and m ≥ 0, so we might have both equality
and inequality constraints. Note that in this section, we extend some definitions
(Lagrange function, active set) to include inequality constraints.

Again, we wish to derive necessary and sufficient conditions. We begin by noting
that if x∗ is feasible and fj(x∗) < 0, j > 0, there is a small neighborhood U of x∗

such that fj(x) < 0∀x ∈ U .

So for a local minimum, the restriction fj(x) < 0 can be completely ignored since it
does not affect the set of feasible points in U . We define

Definition 2.15 (Active restrictions and regular points for inequality restrictions)
Let x∗ feasible. Let

A(x∗) = {j > 0 : fj(x
∗) = 0}.

j ∈ A(x∗) are called active indices, the corresponding fj are called active restric-
tions.
If 0 < j ≤ m, j ̸∈ A(x∗), fj is called inactive restriction.
x∗ is a regular point iff

∇h1(x∗), . . . ,∇hp(x∗),∇fj(x∗) : j ∈ A(x∗) are linearly independent.

Inactive restrictions can be ignored for local minima.

Theorem 2.16 (Karush–Kuhn–Tucker (KKT) conditions)
Let x∗ a locally optimal point of 0.1, x∗ regular. Then

∃λ ∈ Rp, µ ∈ Rm, µ ≥ 0 : µ cI(x
∗) = 0︸ ︷︷ ︸

cp–wise

, Df0(x
∗) + λtDcE(x

∗) + µtDcI(x
∗) = 0.

λ, µ are the Lagrange multipliers wrt 0.1.

23

2.3. EQUALITY AND INEQUALITY CONSTRAINTS

Note the very common shortcut µ cI(x∗) = 0: This simply states that µi = 0 if fi is
not active (i ̸∈ A(x∗)) (complementarity condition).

Proof: Let x∗ locally optimal. Then it is also an optimal point for the problem

min f0(x), x ∈ Rn, cE(x) = 0, fi(x) = 0, i ∈ A(x∗)

which has only equality constraints. So 2.11 states

∃λ ∈ Rp, µ ∈ Rm : 0 = Df0(x
∗) + λtDcE(x

∗) + µtDcI(x
∗)

where µi = 0 for i ̸∈ A(x∗).
Assume now that µk < 0. Remove restriction fk and let

S = {x ∈ Rn : cE(x) = 0, fj(x) = 0 ∀j ∈ A(x∗) \ {k}}.

Since x∗ was a regular point wrt the original problem, x∗ is also a regular point wrt
S. Assume that yt ∇fk(x∗) = 0 for all y ∈ Tx∗S. Then, observing 2.9,

∇fk ∈ ker(Dc̃E(x
∗))⊥ = range(Dc̃E(x

∗)t)

where c̃E is the function that contains the restrictions for S. Thus ∇fk is a linear
combination of the gradients of cE and fj, j ∈ A(x∗) \ {k}. This is a contradiction,
since we assumed that x∗ is a regular point. So wlog

∃y ∈ Tx∗S : Dfk(x
∗) y < 0.

Now let x a curve on S and x(0) = x∗, ẋ(0) = y. Since x(t) is in S, it satisfies all
conditions except fk(x(t)) ≤ 0.
Since Dfk(x∗) ẋ(0) < 0, we have fk(x(t)) < 0 for t > 0 sufficiently small, and x(t)
is feasible.
Inserting the Lagrange Multiplier gives, since y ∈ ker(Dc̃E(x

∗)),

d

dt
f0(x(t))|t=0 = Df0(x

∗)y = −(λtDcE(x
∗) + µtDcI(x

∗))y = −µkDfk(x
∗) y < 0 .

□
For the second order conditions, we can simply refer to the case with equality con-
straints.

Theorem 2.17 (2nd order necessary conditions)
Let x∗ a locally optimal point of 0.1 and regular. Let λ ∈ Rp, µ ∈ Rm the correspond-
ing Lagrange multipliers from 2.16. Then

D2f0(x
∗) +

p∑
k=1

λkD
2hk(x

∗) +
m∑
k=1

µkD
2fk(x

∗)

is positive semi–definite on the tangent space of the equality and active inequality
constraints.

24

2.3. EQUALITY AND INEQUALITY CONSTRAINTS

Proof: Again, since x∗ is locally optimal, it is also optimal for the problem

min f0(x), x ∈ Rn, cE(x) = 0, fi(x) = 0, i ∈ A(x∗).

2.13 finishes the proof. □

Theorem 2.18 (2nd order sufficient conditions)
Let x∗ a feasible point of 0.1 and regular. Let λ ∈ Rp, µ ∈ Rm, µ ≥ 0, such that

µ cI(x
∗) = 0︸ ︷︷ ︸

cp–wise

, Df0(x
∗) + λtDcE(x

∗) + µtDcI(x
∗) = 0

and

D2f0(x
∗) +

p∑
k=1

λkD
2hk(x

∗) +
m∑
k=1

µkD
2fk(x

∗)

is positive semi–definite on the tangent space of the equality and active inequality
constraints. Then x∗ is a strictly locally optimal point.

Proof: We follow the lines of the proof of 2.14. Again, let

yk = x∗ + δksk, δk > 0, ||sk|| = 1, yk → x∗ : f0(xk) ≤ f0(x
∗)

and wlog let sk → s∗. As in 2.14, we want to show that x∗ is orthogonal to the
gradients of hk and the active fk. We have DcE(x∗)s∗ = 0 from the proof of 2.14.
Let fj active constraint. Then, again as in 2.14

fj(yk)− fj(x
∗) = fj(yk) ≤ 0 ⇒ Dfj(x

∗)s∗ ≤ 0.

Use the Lagrange multiplier to obtain

0 ≥ Df0(x
∗)s∗ = −λtDcE(x∗)s∗ − µtDcI(x

∗)s∗ = −
m∑
j=1

µj︸︷︷︸
≥0

Dfj(x
∗) s∗︸ ︷︷ ︸

≤0

≥ 0.

Thus, either µj = 0 or Dfj(x∗)s∗ = 0, in both cases we can continue as in 2.14. □

25

Chapter 3

Duality

To motivate this chapter, let us go back to the Kuhn–Tucker–conditions (2.16) and
assume that we wish to establish a numerical algorithm for 0.1. This will typically be
iterative, we will try to find a sequence xk that converges to a minimizer. To check
if we already have a minimum, we would have to check the existence of some pair
λ, µ as in 2.16, which would require the solution of a possibly large linear system in
every step.

It might be more feasible to state an augmented problem and include the La-
grangians into the problem definition, like: Find a triple (x∗, µ, λ) that satisfies 2.16,
resulting in an iterative algorithm for (x(k), µ(k), λ(k)). In every iteration, we would
have to update these values. It is clear how to do that for x(k), e.g. using steepest
descent (page 15).

In this section, we will reformulate the original (primal) problem as a minimization
(dual) problem in the parameters (µ, λ) that exchanges the roles of x and (µ, λ).
First, we might be lucky that the dual problem is easier to solve than the primal
problem.

Second, we might envision a two–step algorithm for each iteration of the very loose
form

• Fix µ(k), λ(k) and update x(k) to x(k+1) using the primal problem.

• Fix x(k+1) and update µ(k), λ(k) to µ(k+1), λ(k+1) using the dual problem.

Algorithms which follow this structure are called primal–dual (and are very popular
in many fields).

We begin by extending the Lagrange function from 2.12 to the full problem 0.1 with
inequalities in a straightforward way.

26

Definition 3.1 (Lagrange function for equality and inequality constraints)
In the terminology of 0.1, let

L : Rn × Rm × Rp 7→ R, L(x, µ, λ) = f0(x) + µtcI(x) + λtcE(x).

Note that it is common to defineL on all of Rn in the first variable by setting its value
to ∞.

If x is feasible and µ ≥ 0, we have

L(x, µ, λ) = f0(x) + µt︸︷︷︸
≥0

cI(x)︸ ︷︷ ︸
≤0

+λt cE(x)︸ ︷︷ ︸
=0

≤ f0(x)

which implies that for
p(x) := sup

µ∈Rm
+ ,λ∈Rp

L(x, µ, λ)

we have

p(x) =

{
f0(x) x ∈ F
∞ else.

Proof: Assume that e.g. f1(x) > 0. Then choose µ1 arbitrarily large.

Thus, 0.1 is equivalent to the unconstrained problem with minimization function
p(x). This gives rise to

Definition 3.2 (primal–dual problem)

p(x) := sup
µ∈Rm

+ , λ∈Rp

L(x, µ, λ)

is the primal objective function.

d(µ, λ) := inf
x∈D

L(x, µ, λ)

is the dual objective function. The primal problem then is

min
x∈D

p(x),

its dual problem (DP) is given by

max
µ∈Rm

+ , λ∈Rp
d(µ, λ).

The primal problem is equivalent to 0.1.

27

Corollary 3.3 (Weak Duality, Duality Gap, Strong Duality)
Let p∗ the optimal value of 0.1, d∗ the optimal value of the dual problem. Then

d(µ, λ) ≤ p(x)∀µ ∈ Rm
+ , λ ∈ Rp, x ∈ F

and
d∗ ≤ p∗.

This is called weak duality. p∗ − d∗ is the duality gap. If p∗ = d∗, we say that strong
duality holds.

Proof: See preliminary remarks. □
Note that for strong duality, the primal and dual problems are equivalent.

Corollary 3.4 (concavity of the dual objective function)
In 3.2, d is concave (and thus −d is convex).

Proof: For x ∈ D, µk ∈ Rm, λ ∈ Rp, we have

L(x, αµ1 + (1− α)µ2, αλ1 + (1− α)λ2)

= α(f0(x) + µt
1cI(x) + λt1cE(x)) + (1− α)(f0(x) + µt

2cI(x) + λt2cE(x))

= αL(x, µ1, λ1) + (1− α)L(x, µ2, λ2).

Take the inf over all x ∈ D, then

d(αµ1 + (1− α)µ2, αλ1 + (1− α)λ2) ≥ αd(µ1, λ1) + (1− α)d(µ2, λ2).

□
So even if the objective function for 0.1 is not convex, the objective function for the
dual problem (minimization of −d) is.

Definition 3.5 (saddle point)
Let f : A×B 7→ R. (a, b) is a saddle point of f iff

f(a, b) ≤ f(a, b) ≤ f(a, b)∀a ∈ A, b ∈ B.

So (a, b) is a maximal point wrt b and minimal wrt a (looks like a saddle), or equiva-
lently

f(a, b) = inf
a∈A

f(a, b) = sup
b∈B

f(a, b).

Lemma 3.6 (and proof, InfSup–Principle)
Let f as in 3.5. Then

sup
b∈B

inf
a∈A

f(a, b) ≤ sup
b∈B

inf
a∈A

inf
b̃∈B

f(a, b̃)

= inf
a∈A

sup
b̃∈B

f(a, b̃)

28

Theorem 3.7 (Strong Duality and the Saddle Point)
0.1 satisfies strong duality iff L has a saddle point (x∗, (µ∗, λ∗)). x∗ is a solution to
the primal problem, (µ∗, λ∗) are a solution to the dual problem.

Proof: Let (x∗, (µ∗, λ∗)) a saddle point of L. We have

L(x∗, µ∗, λ∗) = inf
x
L(x, µ∗, λ∗)

≤ sup
µ,λ

inf
x
L(x, µ, λ)

≤ inf
x
sup
µ,λ

L(x, µ, λ)

≤ sup
λ,µ

L(x∗, µ, λ)

= L(x∗, µ∗, λ∗).

So equality must hold, and we have

L(x∗, µ∗, λ∗) = inf
x
L(x, µ∗, λ∗) = d(µ∗, λ∗)

and
L(x∗, µ∗, λ∗) = sup

µ,λ
L(x∗, µ, λ) = p(x∗)

and strong duality holds. Since ∞ > L(x∗, µ∗, λ∗) = p(x∗), we have x∗ ∈ F . Since
d(λ, µ) ≤ p(x), optimality follows.
On the other hand, let x∗ ∈ F a minimizer of 0.1, µ∗, λ∗ solutions to the dual
problem.

f0(x
∗) = p∗ = d∗ = d(µ∗, λ∗)

= inf
x
L(x, µ∗, λ∗)

≤ L(x∗, µ∗, λ∗)

≤ sup
µ,λ

L(x∗, µ, λ)

= p(x∗) = f0(x
∗)

Again we have equality which implies

inf
x
L(x, µ∗, λ∗) = L(x∗, µ∗, λ∗)

and
sup
µ,λ

L(x∗, µ, λ) = L(x∗, µ∗, λ∗).

29

That is the saddle point property. □
From this proof, we can draw another interesting conclusion: We have that

f0(x
∗) + (µ∗)tcI(x

∗) + (λ∗)tcE(x
∗) = L(x∗, µ∗, λ∗) = f0(x

∗).

This implies that (µ∗)cI(x
∗) = 0 componentwise, which is very much reminiscent of

the Kuhn Tucker–conditions. In fact, we have

Theorem 3.8 (KKT from strong duality)
Assume that 0.1 has the strong duality property. Let fk, hk ∈ C1. Let x∗ a solution
to the primal problem. Let (µ∗, λ∗) a solution to the dual problem. Then µ∗, λ∗ are
the corresponding Lagrange multipliers of x∗ wrt 0.1, and (µ∗)tcI(x

∗) = 0.

Proof: x∗ is a local mimimizer of L (saddle–point property). ThusDxL(x
∗, µ∗, λ∗) =

0, that gives the Lagrange property. Add preliminary remarks. □

Theorem 3.9 (Duality from KKT for convex problems)
Let 0.1 convex, and KKT satisfied for (x∗, µ∗, λ∗). Then x∗ is primal optimal, (µ∗, λ∗)
is dual optimal.

Proof: Since KKT is satisfied, we have DxL(x
∗, µ∗, λ∗) = 0. Since L(x, µ∗, λ∗) is

convex, x∗ is a local minimizer wrt x (see next chapter). Since cE(x
∗) = 0 and

(µ∗)tcI(x
∗) = 0 we have

d(µ∗, λ∗) = L(x∗, µ∗, λ∗) = f0(x
∗) ≥ f0(x

∗) + µtcI(x
∗) + λtcE(x

∗) ≥ L(x∗, µ, λ)

and µ∗, λ∗ is a local maximizer. □

Note that strong duality is very useful in computation. Assume that we have an
approximation (x, ν, λ) to the optimal primal/dual solutions. Then for strong dual-
ity

f0(x)− p∗ = f0(x)− d∗ ≤ f0(x)− d(µ, λ).

The right hand side can be computed and gives us an upper bound on the mini-
mization error of x (stopping criterion!).

30

Chapter 4

Convexity

We begin by remembering some definitions and theorems from analysis I+II.

Definition 4.1 (convex sets and functions)
Let C ⊂ Rn, f : C 7→ R.

1. Let

xk ∈ C, λk ∈ [0, 1], k = 1 . . .m,
m∑
k=1

λk = 1, x =
m∑
k=1

λkxk.

x is called convex combination of xk.

2. C is convex iff
λx+ (1− λ)y ∈ C ∀x, y ∈ C, λ ∈ [0, 1].

3. Let C convex. f is convex iff

f(λx+ (1− λy)) ≤ λf(x) + (1− λ)f(y)∀x, y ∈ C, λ ∈ [0, 1].

4. Let C convex. f is strictly convex iff

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)∀x, y ∈ C, x ̸= y, λ ∈ (0, 1).

Definition 4.2 (convex hull)
Let C ⊂ Rn. The convex hull convC contains all convex combinations of the ele-
ments of C. convC is the smallest subset of Rn that contains C.

Theorem 4.3 (Caratheodory)
Let C ⊂ Rn, x ∈ convC. Then x is a convex combination of at most n + 1 elements
of C.

31

Proof: Exercises. □

Lemma 4.4 (convexity for differentiable functions)
Let C ⊂ Rn convex, f : C 7→ R differentiable.

1. f is convex iff the graph of f lies above each tangential plane, that is

f(y) ≥ f(x) +∇f(x)t(y − x)∀x, y ∈ C.

2. f is strictly convex iff

f(y) > f(x) +∇f(x)t(y − x)∀x, y ∈ C, x ̸= y.

Proof: Let

g(λ) = f(x+ λ(y − x)) ⇒ g′(λ) = ∇f(x+ λ(y − x))t(y − x).

Let f convex, then

g(λ) ≤ λg(1) + (1− λ)g(0) ⇒ g(λ)− g(0)

λ
≤ g(1)− g(0)

which implies the inequality for λ→ 0.
Now assume that the inequality holds for all points between x and y, then

g(0) ≥ g(λ)− g′(λ)λ (I)

g(1) ≥ g(λ) + g′(λ) (1− λ) (II)

and thus
(1− λ)(I) + λ(II) ⇒ (1− λ)g(0) + λg(1) ≥ g(λ)

which implies convexity of f . □

Lemma 4.5 (convexity for twice differentiable functions)
Let C ⊂ Rn convex, f : C 7→ R twice differentiable.

1. f is convex iff
D2f(x) positive semidefinite ∀x ∈ C.

2. f is strictly convex if

D2f(x) positive definite ∀x ∈ C.

32

Proof: Exercises, reduce to the one–dimensional problem as above and then use
the proof from e.g. Forster, Analysis I, Paragraph 16, Theorem 5. □

Theorem 4.6 (Existence and Uniqueness of Global Solutions for convex problems)
Let C ⊂ Rn convex, f : C 7→ R convex. We examine the problem

min
x∈C

f(x).

1. All local minima are global.

2. The set of global minima is convex.

3. If f is strictly convex, then there is at most one global solution.

4. Let f differentiable. If ∇f(x) = 0, then x is a local minimum (sufficient and
necessary condition).

Proof:

1. Let f(x) > f(y). Then for ϵ ∈ (0, 1]

f(x+ ϵ(y − x)) = f((1− ϵ)x+ ϵy)

≤ (1− ϵ)f(x) + ϵf(y)

= f(x) + ϵ f(y)− f(x)︸ ︷︷ ︸
<0

< f(x)

so x is not a local minimum.

2. Let x1, x2 two global minima, so f(x1) = f(x2) and for x = λx1 + (1− λ)x2

f(x1) ≤ f(x) ≤ λf(x1) + (1− λ)f(x2) = f(x1)∀λ ∈ [0, 1]

and x is also a minimum.

3. Let x,y, x ̸= y, global minima. From 2., we have that 1
2
(x+ y) is also a global

minimum, but since f is strictly convex

f(
1

2
(x+ y)) <

1

2
(f(x) + f(y)) = f(x)

and x is not a global minimum, so we must have x = y.

4. (4.4).

33

□

Finally, we will show that convex minimization problems (almost) always possess
the strong duality property. This justifies our intense treatment of dual problems in
the last chapter.

Definition 4.7 (projection onto convex set)
Let C ∈ Rn closed and convex. Then

PC : Rn 7→ C, PCx := argmin
y∈C

||y − x||22

is properly defined and the orthogonal projection onto C.

Theorem 4.8 (Characterization of orthogonal projection)
Let C closed and convex, x ∈ C. x+ = PCx iff

(x− x+, y − x+) ≤ 0∀y ∈ C.

So PC has exactly the same property as the orthogonal projection onto a halfspace.

Proof: Let x+ = PCx, y ∈ C, λ ∈ (0, 1]. Then

||x−x+||2 ≤ ||x−(x+ + λ(y − x+)︸ ︷︷ ︸
∈C

)||2 = ||x−x+||2−2λ(x−x+, y−x+)+λ2||y−x+||2

which can only hold for (x− x+, y − x+) ≤ 0 (divide by λ, let λ→ 0).
Now assume that the inequality holds for an x+ ∈ C and for all y ∈ C. Then with
Cauchy–Schwarz

0 ≥ (x−x+) · (y−x+) = (x−x+) · (x−x++y−x) ≥ ||x−x+||2−||x−x+|| ||y−x||

and thus
||x− x+||(||y − x|| − ||x− x+||) ≥ 0.

If x = x+, we have x ∈ C and thus PCx = x = x+. Otherwise we have
||x− x+|| ≤ ||x− y|| for all y ∈ C, and PCx = x+. □

Theorem 4.9 (Separation of convex sets by hyperplanes)

1. Let C ⊂ Rn convex and closed, x ̸∈ C. Then

∃ s ∈ Rn : s · x > sup
y∈C

s · y.

34

2. Let C1, C2 convex, closed, disjoint and nonempty. If C2 is bounded (i.e. com-
pact), then

∃s ∈ Rn : sup
y1∈C1

s · y1 < min
y2∈C2

s · y2.

The hyperplane

s · z = α =
1

2
(min
y∈C2

s · y + sup
y1∈C1

s · y)

separates C1 and C2, meaning

s · y1 < α < s · y2∀y1 ∈ C1, y2 ∈ C2.

3. Let C1, C2 convex, nonempty and disjoint, but not necessarily closed or
bounded. Then < becomes ≤ in 2., i.e.

∃s ∈ Rn, s ̸= 0 : sup
y1∈C1

s · y1 ≤ inf
y2∈C2

s · y2.

Proof: (for 1. and 2., see exercises for 3)

1. Let s = x− PCx, y ∈ C. Then by the previous theorem

0 ≥ (x− PCx) · (y − PCx) = s · (y − x+ s) = (s · y − s · x) + ||s||2.

2. C = C1 − C2 is convex and closed (C2 is compact). Then in 1. choose x = 0
to wit

0 = s · 0 > sup
y∈C

s · y = sup
y1∈C1

s · y1 − min
y2∈C2

s · y2.

□

Theorem 4.10 (Slater’s condition)
Let 0.1 a convex problem, and cE(x) = Ax− b, A ∈ Rp×n has rank p. Assume that a
feasible point x̃ in the interior of D exists with cI(x̃) < 0. Then strong duality holds.

Note that the condition must hold for one arbitrary feasible point, not necessarily
for x∗.

Proof: Since there is a feasible point, we have p∗ < ∞. Wlog p∗ > −∞. We also
assume that x̃ is in the interior of D.
Let

M ⊂ Rm × Rp × R, M := {(u, v, t)|∃x ∈ D : cI(x) ≤ u, cE(x) = v, f0(x) ≤ t.}

35

and
N ⊂ Rm × Rp × R, N := {(0, 0, s)|s < p∗}.

For all x ∈ D (cI(x), cE(x), f0(x)) ∈M .
x is feasible iff (0, 0, f0(x)) ∈M .
Let (0, 0, s) ∈ N . There is no feasible x such that f0(x) ≤ s < p∗, so N and M are
disjoint.
From 4.9, we have the existence of (µ, λ, ν), α ∈ R, such that

µtu+ λtv + νt ≥ α ∀ (u, v, t) ∈M

and
α ≥ νt∀ (0, 0, t) ∈ N ⇒ α ≥ νp∗.

Since (cI(x), cE(x), f0(x)) ∈M

µtcI(x) + λtcE(x) + νf0(x) ≥ νp∗ ∀x ∈ D.

If ν > 0, we have

p∗ ≤ f0(x) + (µ/ν)tcI(x) + (λ/ν)tcE(x) = L(x, µ/ν, λ/ν)∀x ∈ D

which implies

p∗ ≤ inf
x∈D

L(x, µ/ν, λ) = d(µ/ν, λ/ν) ≤ max
µ′≥0,λ′

d(µ′, λ′) = d∗

and thus p∗ = d∗ and we have strong duality.
Assume ν < 0. Since (cI(x̃), cE(x̃), t) ∈ M ∀t > f0(x̃), in the first inequality the
left hand side would be unbounded to below. So ν ≥ 0 and µ ≥ 0 with the same
argument.
Assume ν = 0. Then since x̃ ∈ D, x̃ feasible and cI(x̃) < 0

µt︸︷︷︸
≥0

cI(x̃)︸ ︷︷ ︸
<0

+λt cE(x̃)︸ ︷︷ ︸
=0

≥ 0 ⇒ µ = 0.

Thus
λtcE(x) ≥ 0 ∀x ∈ D.

Since x̃ is in the interior of D,

x̃− ϵAtλ ∈ D for ϵ sufficiently small.

Thus

0 ≤ λt(A(x̃− ϵAtλ)− b) = −ϵλt(AAtλ) = −ϵ||Atλ||2 =⇒ Atλ = 0.

36

Since A has full rank, λ = 0, and thus µ = 0, λ = 0, ν = 0 . □
4.9 has more useful consequence: For all points x on the boundary of a convex
set C, there exists a variant of a tangent, a hyperplane H with x ∈ H and C is
on one side of the hyperplane. Note that this is even true for non–differentiable
boundaries.

Theorem 4.11 (+ Definition, supporting hyperplane)
Let C ⊂ Rn convex, x ∈ ∂C. Then

∃s ∈ Rn, s ̸= 0 : s · (x− y) ≥ 0 ∀y ∈ C.

The hyperplane
H = {z : s · z = s · x}

is called supporting hyperplane.

Proof:
x ∈ ∂C ⇒ ∃(xk) : xk → x, xk ̸∈ C.

Since xk ̸∈ C, due to 4.9

∃sk ∈ Rn : sk · (xk − y) > 0 ∀y ∈ C.

Wlog assume ||sk|| = 1 (else let sk := sk/||sk||). sk lies in the (compact) unit ball,
so it has a convergent subsequence. Wlog sk → s ∈ Rn. Then

sk · (xk − y) > 0 ⇒ s · (x− y) ≥ 0.

□
H is not necessarily unique (e.g. vertex of a polyhedron), nor does > necessarily
hold for x ̸= y in the inequality (boundary might be a line segment).

Definition 4.12 (Extreme points)
Let C ⊂ Rn convex. x ∈ C is an extreme point of C iff x is not the strict convex
combination of two points in C, that is

x ̸= λx1 + (1− λ)x2 ∀x1, x2 ∈ C, x1 ̸= x2, λ ∈ (0, 1).

Note that if x is not an extreme point, then there are x1, x2 ∈ C such that x =
1
2
(x1 + x2). For C a convex polyhedron, the extreme points are its vertices. Clearly,

all extreme points are on the boundary of C.

Theorem 4.13 (Minkowski)
Let C compact and convex. Then C is the convex hull of its extreme points.

37

Proof: Since C is convex, the convex hull of its extreme points is in C.
For the other direction, we use geometric intuition in R2.
Assume first that x ∈ ∂C. Then there is a supporting hyperplane H in x, which
is a line in R2. If x is not an extreme point, then there are x1, x2 ∈ C with
x = 1

2
(x1 + x2), and x1, x2 ∈ H. So a segment of the line through (x1, x, x2) is on

the boundary. Since C is bounded, that segment must have a starting point xS and
an endpoint xE. Since C is closed, these must be in C. Also, they are not the strict
linear combination of two points on H. So either x is an extreme point, or it is the
linear combination of the extreme points xS and xE.
Now let x in the interior of C. Take any line L through x. It will hit the boundary
in exactly two points, which are a convex combination of extreme points, so x is a
convex combination of extreme points.
For Rn, use induction over n. □

38

Chapter 5

Linear Programming

5.1 Problem formulation and characterization of minimal

points

We already introduced linear optimization as a profit maximization problem in econ-
omy in 0.2.1. The general in 0.1 had f0, cI and cE affine linear.

We reformulate this using the slack variables from 1.2 to turn inequalities into equal-
ities, and setting xk = x+k − x−k , x+k , x

−
k ≥ 0, for unbounded variables.

Definition 5.1 (linear program)
A linear program in standard form is given by

min
x∈Rn

cx where Ax = b, x ≥ 0 (LP)

and c ∈ R1×n, c ̸= 0, A ∈ Rp×n, b ∈ Rp, p ≤ n, rankA = p. Thus, we minimize cx
over the feasible set given by the convex polyhedron

K = {x ≥ 0 : Ax = b}.

Theorem 5.2 (extreme points and optimal point)
Assume that the set X of solutions to 5.1 is nonempty. Then X contains at least one
extreme point.

Proof: Assume thatK is compact. SinceK is a polyhedron, the set extK of extreme
points is finite (also see next theorem), and

∃z ∈ extK : cz ≤ cy ∀ y ∈ extK.

39

5.1. PROBLEM FORMULATION AND CHARACTERIZATION OF MINIMAL POINTS

Now let x ∈ K. Due to 4.13

∃λi ∈ [0, 1], xi ∈ extK, i = 1 . . . r :
r∑

i=1

λi = 1, x =
r∑

i=1

λixi.

Then

cx = c(
r∑

i=1

λixi) ≥ cz

and z ∈ X. □
Alternate proof: Let x a solution of 5.1. Then

H = {z : cz = cx}

is a supporting hyperplane, and H ̸⊂ K since K is a subset of the upper right
quadrant. From the geometric intuition in 4.13: H contains at least one extreme
point.

The theorem says that in order to solve 5.1, we must only consider the extreme
points. So let us characterize them.

Definition 5.3 (basic feasible point)
In 5.1, let I ⊂ {1, . . . , n} an index set. Let ai the columns of A. x ∈ Rn is a basic
point wrt to the basis I iff

{ai : i ∈ I} linearly independent, xi = 0∀ i ̸∈ I, Ax = b.

Note that this means BxI = b for B = (ai)i∈I
Since B has full rank, x is unique for fixed I.
x is a basic feasible point iff x is a basic point and x ≥ 0.

Theorem 5.4 (extreme and basic feasible points)
x ∈ Rn is an extreme point of 5.1 iff it is a basic feasible point.

Note that this gives us a very simple algorithm for computing a minimal point: Just
take all index sets of {1 . . . n}, compute the corresponding basic feasible points xI
(if they exist), and take their minimal value wrt cx. The number of feasible points is
smaller or equal to the number of subsets of {1 . . . n}with at most p elements.

Of course, this will only work as long as there is a solution to the problem. In the
real algorithm, we will have to deal with that.

Proof: First, let x an extreme point of K, and wlog x1, . . . , xr > 0, xr+1, . . . xn = 0.
Then

x1a1 + . . . xrar = Ax = b.

40

5.1. PROBLEM FORMULATION AND CHARACTERIZATION OF MINIMAL POINTS

Assume that the ak are linearly dependent, so with at least one yk ̸= 0

y1a1 + . . .+ yrar = 0 ⇒ Ay = 0, y = (y1, . . . , yr, 0, . . . , 0).

Then for ϵ > 0 sufficiently small,

x± ϵy ≥ 0 and A(x± ϵy) = Ax = b⇒ x± ϵy ∈ K

and y ̸= 0. Since

x =
1

2
((x+ ϵy) + (x− ϵy)),

x is not an extreme point of K , so the ai must be linearly independent.
Assume now that x is a basic feasible point. Wlog assume I = {1, . . . , r}, so x =
(x1, . . . , xr, 0, . . . , 0).
Assume x = 1

2
(y + z) with y, z ∈ K. Since y, z ≥ 0, this implies

yr+1 = . . . = yn = zr+1 = . . . = zn = 0.

and since Ay = b = Az

y1a1 + . . . yrar = b = z1a1 + . . . zrar.

Thus y = z since a1, . . . , ar are linearly independent, which implies that x is an
extreme point. □

Examples:

•
min /maxx1 + 2x2 : x1 + x2 = 1, xk ≥ 0.

•
min /maxx1 + 2x2 + 3x3 : x1 + x2 + x3 = 1, xk ≥ 0.

•
min /maxx1 + x2, xk ≥ 0.

•
min /max 10x1 + x2 : x1 ≤ 3/4, x2 ≤ 3/4, x1 + x2 ≤ 1, xk ≥ 0.

Note that this one is not in normal form! Follow the graphical solution in R2

and notice that this corresponds to updating the active set in the standard
formulation with slack variables in R5.

41

5.2. THE SIMPLEX ALGORITHM: DERIVATION OF PHASE II

5.2 The simplex algorithm: Derivation of phase II

We introduce the idea of the simplex algorithm. We solve the model problem where
we assume that the equalities are given in the form of

(I A)

(
zB
zN

)
= b (5.1)

with b > 0, where I ∈ Rp×p is the unit matrix andA ∈ Rp×n−p. B = {1 . . . p} are the
basis indices, N = {p+ 1 . . . n} are the non–basis indices.

The form of the matrix can always be achieved by row transforms as in Gaussian
elimination, since the rank of the p × n matrix in 5.1 was p, n ≥ p, possibly by
exchanging the order of variables.

Note that this form is optimized for the Simplex tableau (to be introduced below).
In the literature, often, the more general form

(CA)

(
zB
zN

)
= b

for an invertible p× p–matrix C is assumed. Multiplying the equation from the left
with C−1, however, gives 5.1:

(
I (C−1A)

)(zB
zN

)
= C−1b.

Since we assumed b > 0, choosing xB = b, xN = 0 is a feasible solution. It is a
basic feasible point of 5.1 choosing the index set I = {1 . . . p}, since the columns
of (IA)i for i ∈ I are the (linearly independent) unit vectors.

Our idea is to take k ∈ N and l ∈ B, and find a new basic feasible point y that
exchanges the roles of k and l, i.e.

1. (IA)y = b.

2. y ≥ 0.

3. yl = 0.

4. yk ̸= 0 (possibly).

5. yi = 0, i ∈ N , i ̸= k.

6. cy < cx.

42

5.2. THE SIMPLEX ALGORITHM: DERIVATION OF PHASE II

In essence, this says: Move to a neighbouring basic feasible point, that improves
the value of f0 by exchanging the indices k and l, moving l out of the basis and k
into the basis.

First we have

(IA)

(
zB
zN

)
= b⇔ zm +

∑
i∈N

Am,izi = bm ∀m ∈ B (5.2)

where
A = (Am,i), m = 1 . . . p, i = p+ 1 . . . n.

Note the (nonstandard) indexing on A which starts at p+ 1 for the columns.

Since l ∈ B and y is feasible, we can set z = y,m = l in 5.2 and using the properties
of y

bl = yl︸︷︷︸
=0

+
∑
i∈N

Al,i yi︸︷︷︸
=0,i ̸=k

= Al,kyk ⇒ yk =
bl
Al,k

.

Note that this assumes that Alk is not zero. We will later formulate the algorithm
such that Al,k > 0.

For Ay = b to hold, 5.2 must be satisfied also for all m ∈ B, m ̸= l, so

bm = ym +
∑
i∈N

Am,i yi︸︷︷︸
=0,i ̸=k

= ym + Am,kyk ⇒ ym = bm − Am,kyk.

Since yk has already been determined, this determines y. Note that y satisfiesAy =
b, but is not necessarily feasible (not necessarily nonnegative).

Remember that what we are essentially doing is move one index from the basis to
the non–basis and vice versa. If we want to keep up our initial ordering of vari-
ables, we must formally exchange the elements in our vector y and the correspond-
ing columns in the matrix (IA). This will destroy the nice form of the matrix, in fact
it then becomes

(e1 . . . el−1akel+1 . . . ep, ap+1 . . . ak−1elak+1 . . . an) (5.3)

where the ak are the columns of A.

However, the original form is easily restored using Gaussian Elimination–style row
transforms.

1. Divide the lth equation of Az = b by the diagonal element (al)k = Ak,l of the
new matrix (yields a 1 on the diagonal).

43

5.3. THE SIMPLEX ALGORITHM: IMPLEMENTATION AND THE SIMPLEX TABLEAU

2. Subtract a multiple of the lth equation from the other equations (yields zeros
above and below the diagonal).

This boils down to simple row operations on A and b.

The only question left is: How do we choose the indices such that the new point
satisfies y ≥ 0, and the value of f0 decreases.

First, we note that for any feasible z we have

zB + AzN = b⇒ c z = cB b︸︷︷︸
=f0(x)

+(cN − cBA)︸ ︷︷ ︸
=:r

zN . (5.4)

Note that r ∈ R1×n−p is a row vector.

Clearly, this means that the value of f0 will potentially decrease for a basis change
if rk < 0. If there is no such k, then there is no direction in which the value could
decrease, so x is an optimal point. Note that this argument is also true when the
problem is unbounded to below.

In view of 5.2, if bk = 0, the objective value will not decrease even if rk < 0. This is
called the degenerate case, see next section.

Assume now that rk < 0. For all l ∈ B, compute the corresponding y and check
whether they lead to a feasible solution. If no feasible solution exists, then the prob-
lem is unbounded to below (exercises, this is a direct consequence of 5.2).

If the exchange of variables leads to a feasible solution, do the exchange, update
all variables and iterate.

5.3 The simplex algorithm: Implementation and the simplex

tableau

For the simplex algorithm, we compute a series of basic feasible points, character-
ized by equivalent representations of our minimization problem.

In each step, we have a matrix A, a right hand side b (which also holds the nonzero
elements of our current vertex x), a cost vector r and the value f0(x). Also, since
we are exchanging elements in x, we must keep track of their order in the sequence
I ∈ {1..n}n, where the first p elements are the indices in B and p + 1 . . . n are the
indices in N with respect to the original order.

44

5.3. THE SIMPLEX ALGORITHM: IMPLEMENTATION AND THE SIMPLEX TABLEAU

So we get sequences for all these variables, we denote them A(m), b(m), r(m), x(m),
c(m) = f0(x

(m)), I(m). Note that we do not have to track x(m), it is constructed from
b(m) and I(m).

We start from the model problem 5.1, use 5.4 and set

A(0) := A, b(0) := b, I(0) = {1 . . . n}, r(0) = cN − cB A, c
(0) = f0(x

(0)).

In iterationm, we first decide which variable to move fromN toB (k in the outline).
This can be any index that satisfies r(m)

k < 0. If no such k exists, x(k) is optimal and
we have reached a solution.

Otherwise, k is chosen as the index where r(m)
k is minimal, although this choice is

not necessarily optimal (exercises). l ∈ B is then chosen such that y is feasible. If
no such l exists, the problem is unbounded (exercises).

After k and l are chosen, we need to update our sequences. Since we are ex-
changing indices k and l, I(m+1) is generated by exchanging the elements k and
l in I(m).

A(m+1) and b(m+1) are generated using 5.3.

Now for the update on the representation of f0: From 5.4 we have

f0(z) = c(m) +
∑
i∈N

r
(m)
i zi

where, as for A, we set r = (ri), i = p + 1 . . . n. Since we are exchanging the
roles of indices k and l, this representation must be updated by letting i go through
(N \ {k}) ∪ {l}.

Once more using 5.2, we have for any z that satisfies the equation constraint

zl +
∑
i∈N

A
(m)
l,i zi = b

(m)
l ⇒ A

(m)
l,k zk = b

(m)
l − zl −

∑
i∈N\{k}

A
(m)
l,i zi.

We already assumed that the pivot element A(m)
l,k does not vanish, so

r
(m)
k zk =

r
(m)
k

A
(m)
l,k

(b
(m)
l −

∑
i∈N\{k}

A
(m)
l,i zi − zl).

Inserting this representation in 5.4 and letting

c(m+1) = c(m) +
r
(m)
k b

(m)
l

A
(m)
l,k

, r
(m+1)
i =

− r

(m)
k

A
(m)
l,k

i = l

r
(m)
i − r

(m)
k A

(m)
l,i

A
(m)
l,k

i ∈ N \ {k}

45

5.3. THE SIMPLEX ALGORITHM: IMPLEMENTATION AND THE SIMPLEX TABLEAU

we have
f0(z) = c(m+1) +

∑
(N\{k})∪{l}

r
(m+1)
i zi.

Note that formally the indices k and l must still be exchanged.

Typically, the single iterates (except for I(k)) are kept in the matrix (simplex
tableau)

T (m) =

(
r(m) −c(m)

A(m) b(m)

)
∈ Rp+1×n−p+1.

The point of the tableau is that the updates on the variables can be formulated very
easily using the tableau (exercises).

Last question: Is this algorithm guaranteed to always return the optimal result if one
exists? Unfortunately, the answer is no. Remember that for degenerate solutions,
we get no improvement of the objective function, so we might be exchanging the
same pair of variables over and over again. This can be overcome, but we don’t
treat it here.

In the above derivation, we generally assumed that b ≥ 0, which guarantees that
(b, 0) is a basic feasible solution (which in turn guarantees that at least one feasi-
ble solution exists). This is generally called phase II of the simplex algorithm. In
phase I, we drop that requirement by solving a different minimization problem that
produces a basic feasible solution.

Consider
min

y∈Rp, x∈Rn
(1, . . . , 1)y where Ax+ y = b, y, x ≥ 0.

We can safely assume here that bk ≥ 0. Obviously, this problem satisfies the re-
quirements for phase II. So we can use the phase II program to find the minimum,
which is a basic feasible point of problem I if the minimum value is 0.

We summarize the results.

Theorem 5.5 (The Simplex algorithm)
We consider the simplex algorithm for 5.1.

1. The phase I problem is neither unbounded to below nor infeasible.

2. If phase I stops with a minimum value f0(x) > 0, then 5.1 is infeasible.

3. If phase I returns with f0(x) = 0, then x is a basic feasible point.

4. If phase II stops in step m because r(m) ≥ 0, then x(m) is a solution to 5.1.

46

5.3. THE SIMPLEX ALGORITHM: IMPLEMENTATION AND THE SIMPLEX TABLEAU

5. If phase II stops in step m because A(m)
i,k < 0 for all i ∈ B, then 5.1 is un-

bounded to below.

6. If the b(m) are non–degenerate for allm, then the simplex algorithm will termi-
nate.

47

Chapter 6

Smooth optimization for problems without
constraints

In the following, we consider the general optimization problem

min
x∈Rn

f(x), f : Rn 7→ R smooth (6.1)

where smooth means f ∈ C1 or even C2.

6.1 Line search (descent) methods

Definition 6.1 (descent direction)
Let f as in 6.1, x, d ∈ Rn. d is a descent direction of f in x iff

∃α0 : f(x+ αd) < f(x)∀0 < α < α0.

Lemma 6.2 (gradient descent)
Let f as in 6.1, x, d ∈ Rn. If ∇f(x) · d < 0 (scalar product) then d is a descent
direction of f in x. This condition is not necessary.

Proof: Let

g(t) := g(x+ t d), g : R 7→ R ⇒ g′(t) = ∇g(x+ td) · d.

Since ∇f is continuous,

∇f(x) · d < 0 ⇒ ∃α0 : ∇f(x+ t d) · d < 0∀ 0 < t < α0.

48

6.1. LINE SEARCH (DESCENT) METHODS

Then for 0 < α < α0

f(x+ αd)− f(x) = g(α)− g(0) =

∫ α

0

g′(t) dt =

∫ α

0

∇f(t) · d︸ ︷︷ ︸
<0

dt < 0.

For the remark, let f(x) = −x2 and x = 0. □

Definition 6.3 (line search algorithm)
The general structure of a line search algorithm is:

• Choose an initial starting point x(0) and let k = 0.

– Choose a descent direction d(k) of f in x(k).

– Choose a step length α(k) > 0 such that f(x(k) + α(k)d(k)) < f(x(k)).

– Let x(k+1) := x(k) + α(k)d(k).

– Let k := k + 1 and repeat until some convergence criterion is satisfied.

Example 6.4 (Gradient descent for linear equations)
Let A ∈ Rn×n positive definite, b ∈ Rn. Then the solution x of Ax = b is the solution
of the unconstrained problem

min
x∈Rn

f(x), f : Rn 7→ Rn, f(x) :=
1

2
(x,Ax)− (b, x).

Proof: We have
∇f(x) = Ax− b, ∇2f(x) = A

which implies that x is the unique minimum of f using 2.4 and 2.3.

We define the gradient descent algorithm for linear equations by setting

x(0) := 0, d(k) := r(k) := b− Ax(k)

which implies that
d(k)∇f(x(k)) = −||r(k)||22 < 0

unless x(k) is already a solution.

We select α(k) such that x(k+1) minimizes

g : R 7→ R, g(α) := f(x(k)+αd(k)) =
1

2
(A(x(k)+αd(k)), x(k)+αd(k))−(b, x(k)+αd(k)).

We then have

0 = g′(α(k)) = (Ax(k), d(k)) + α(k)(d(k), Ad(k))− (b, d(k))

49

6.1. LINE SEARCH (DESCENT) METHODS

or

α(k) =
(r(k), d(k))

(d(k), Ad(k))
.

Of course, not every descent method converges to a solution of 6.1. Simply
take

f(x) := x2, x(0) = 3, d(k) = −1, α(k) =
1

2k

which satisfies all conditions, but x(k) converges to 1.

We derive general convergence theorems for descent methods and start with some
definitions.

Definition 6.5 (stationary point, sublevel set)
Let f as in 6.1.

1. x ∈ Rn is a stationary point of f iff ∇f(x) = 0.

2. Let
N(f, y) = {x : f(x) ≤ y}.

N is called (sub) level set of f at level y.

Note that for 6.3, f (k) ∈ N(f, f(x(0))), so we can always restrict our considerations
to this subset of Rn.

Corollary 6.6 (existence of minimal solutions)
Let f as in 6.1 andN(f, y) compact for y = x(0) ∈ Rn. Then 6.1 has a solution. Every
solution is a stationary point of f .

Proof: Since f is continuous, f attains its minimum on N(f, y). □

In the following, we will always assume that this corollary holds, i.e. that a solution
to 6.1 exists.

Lemma 6.7 (convergence of values of linesearch methods)
Let f as in 6.6 and x(k) defined by 6.3. Then f(x(k)) converges towards its infimum.
In particular, f(x(k+1))− f(x(k)) → 0.

Proof: f(x(k)) is monotonous and bounded. □

We want to derive conditions such that ∇f(x(k)) → 0.

First, note that our derivation of the descent algorithm was based on

f(x(k) + α(k)d(k))− f(x(k)) ∼ α(k)∇f(x(k)) · d(k).

50

6.1. LINE SEARCH (DESCENT) METHODS

We want this to hold up to a constant c1 > 0, meaning

f(x(k) + α(k)d(k))− f(x(k)) ≤ c1α
(k)∇f(x(k)) · d(k) < 0. (6.2)

Since the left hand side converges to zero, we have

α(k)∇f(x(k)) · d(k) → 0.

If ∇f(x(k)) → 0, then
(∇f(x(k)) · d(k))2

||d(k)||2
→ 0. (6.3)

Therefore, we require for some constant c2 > 0

α(k) ≥ −c2
∇f(x(k)) · d(k)

||d(k)||2
. (6.4)

Altogether, with c = c1c2 we have

f(x(k+1)) ≤ f(x(k))− c
(∇f(x(k)) · d(k))2

||d(k)||2
. (6.5)

If 6.3 satisfies this condition, the choice of step length is called efficient.

Theorem 6.8 (existence of efficient step lengths)
Let f ′ Lipschitz–continuous on N(f, x(0))(or f twice differentiable), N(f, x(0)) com-
pact . Then an efficient step length choice exists in 6.3.

Proof: Exercises. □

Now for the selection of d(k). In order to derive convergence from 6.3, the gradient
and the descent direction should not become orthogonal, so for some constant
c3 > 0

−∇f(x(k)) · d(k) ≥ c3||∇f(x(k))|| ||d(k)||.
This choice is called gradient–based.

Theorem 6.9 (convergence of gradient–based, efficient line search algorithms)
Let f as in 6.6 and x(k) from a gradient–based, efficient line search algorithm. Then
every accumulation point of x(k) is a stationary point. If N(f, f(x(0))) is compact,
the sequence has at least one accumulation point.

Proof: Let x an accumulation point of x(k). Wlog assume x(k) → x. From the prelim-
inaries, we have that

0 ≥ −c23 c||∇f(x(k))||2 ≥ −c
(
∇f(x(k)) · d(k)

||d(k)||

)2

≥ f(x(k+1))− f(x(k)) → 0.

□

51

6.2. STEP SIZE CONTROL FOR LINE SEARCH

6.2 Step Size Control for line search

In example 6.4, we could choose α(k) such that it minimizes the function value in
the descent direction. However, this is more or less the only case where this explicit
choice is possible. For most cases, we resort to the idea in 6.2.

Definition 6.10 (Armijo Rule)
Let 0 < c1 ≤ 1 fixed. A parameter choice α(k) for 6.3 satisfies the Armijo rule iff

f(x(k+1)) ≤ f(x(k)) + c1α
(k)∇f(x(k)) · d(k).

In view of 6.4, one would like to chooseα(k) as large as possible. A possible strategy
is to try βk for k = 0, . . . and choose the first value that satisfies the condition.

Generally, the following update procedure is used.

Definition 6.11 (Armijo Goldstein Algorithm)
Let 0 < c1 < 1, γ > 0, 0 < β1 ≤ β2 < 1. Then choose α0 = 1 and let j = 0.

1. If
f(x(k) + αjd

(k)) ≤ f(x(k)) + c1αj∇f(x(k)) · d

let α(k) = αj and stop.

2. Choose αj+1 ∈ [β1αj, β2αj].

3. Let j := j + 1 and repeat.

We now examine the case where the descent direction is given by a linear transform
of the gradient.

Lemma 6.12 (linear transforms for Armijo)
Let f as in 6.6 and ∇f Lipschitz–continuous (or in C2) with Lipschitz constant L.
In 6.3, let x = x(k) and d = d(k) = −M∇f(x) for M ∈ Rn×n symmetric positive
definite. Further assume ∇f(x) ̸= 0.

Let λmax = ||M ||2 the largest eigenvalue of M and λmin = ||M−1||2 the smallest
eigenvalue. Then for the condition number κ2 we have

κ2(M) = κ2(M
−1) =

λmax

λmin

.

Then the Armijo condition is satisfied for α(k) = α if

0 < α ≤ 2(1− c1)

Lλmaxκ2(M)
.

52

6.2. STEP SIZE CONTROL FOR LINE SEARCH

Proof: The eigenvalue relations are easily proved using an orthonormal basis of
eigenvectors of M , which exists since M is s.p.d.
We have

f(x+ αd)− f(x) =

∫ 1

0

∇f(x+ ταd) · (αd) dτ.

Since ∇f is Lipschitz continuous

f(x+ αd) = f(x) + α∇f(x) · d+ α

∫ 1

0

(∇f(x+ ταd)−∇f(x))︸ ︷︷ ︸
||·||≤Lτ α ||d||

·d dτ

and thus with Cauchy–Schwarz

f(x+ αd) ≤ f(x) + α∇f(x) · d+ Lα2||d||21
2
.

We have
||Mz||2 ≤ ||M ||2||z||2 = λ2max||z||2

and

||z||2 = ||M−1/2M1/2z||2 ≤ ||M−1/2||2ztMz =
1

λmin

ztMz.

Plugging this into the definition of d, we have

||d||2 = ||M∇f(x)||2

≤ λ2max||∇f(x)||22

≤ λ2max

λmin

∇f(x) ·M∇f(x)︸ ︷︷ ︸
=−d

.

So all in all,

f(x+ αd) ≤ f(x) + α(1− 1

2
Lακ2(M)λmax)∇f(x) · d.

So the Armijo condition is satisfied if

(1− 1

2
Lακ2(M)λmax) ≤ c1

or

α ≤ 2(1− c1)

Lκ2(M)λmax

.

□

53

6.2. STEP SIZE CONTROL FOR LINE SEARCH

Corollary 6.13 Let everything as in 6.12, except

d(k) = −M (k)∇f(x(k))

for M (k) ∈ Rn×n positive definite, and assume that the common bounds

λmax ≥ λ(k)max ≥ λ
(k)
min ≥ λmin > 0

(with naming as in 6.12) hold. Then the computed step sizes in 6.11 satisfy

α(k) ≥ α := β1
2(1− c1)

Lκλmax

where κ = λmax

λmin
. The maximum number of steps taken in 6.11 is

logβ2
(
2(1− c1)

Lκλmax

).

Proof: Insert everything into 6.12 and use that, if α(k) = αj,

αj ≤ βj
2, αj ≥ β1αj−1 > α.

The last inequality holds since the algorithm takes the first αj that satisfies 6.10. □

Theorem 6.14 (convergence of Armijo–Goldstein)
Let everything as in 6.13, in particular let f bounded to below. Then any accumula-
tion point of x(k) is a stationary point of f .

Proof: Basically, this is 6.9. The choice of d is gradient–based since

(d(k),∇f(x(k)) = (−M∇f(x(k)),∇f(x(k))) ≤ −λmin||∇f(x(k))||2 ≤ −λmin

λmax

||∇f(x(k))|| ||d||.

Explicitly, we have

f(xk+1)− f(x(k)) ≤ −c1α(k)∇f(x(k)) ·M (k)∇f(x(k))
≤ −c1αλmin||∇f(x(k)||2

≤ −c12
β1(1− c1)

Lκ2
||∇f(x(k))||2 ≤ 0.

Now apply 6.7. □

54

6.2. STEP SIZE CONTROL FOR LINE SEARCH

Of course, the Armijo–rule by itself is not sufficient, since it does not exclude the
choice of very small steps (very small α). In fact, the Armijo–rule is always satisfied
for a step in an interval (0, α̃] with no lower bound. The reason that 6.11 works is
that we stop as soon as 6.10 is satisfied, and therefore we got a lower bound.

One might feel tempted to choose β1 and β2 very small to minimize the number
of iterations taken in 6.11. However, that would result in α(k) underestimating the
optimal value that would minimize f along direction d(k). The obvious idea is: Take
them small, but then raise the value until some condition is satisfied. This is the
idea of the Powell–Wolfe type algorithms.

We start by formulating the Powell–Wolfe condition. The optimal value for α would
satisfy ∇f(x+ αd) · d = 0, so we require that scalar product to be small.

Definition 6.15 (Powell–Wolfe condition)
Let everything as in 6.6. Let 0 < c1 < c2 < 1 and x, d ∈ Rn, ∇f(x) · d < 0. α > 0
satisfies the Powell–Wolfe condition iff

f(x+ αd) ≤ f(x) + c1 α∇f(x) · d (Armijo rule)

and
∇f(x+ αd) · d ≥ c2∇f(x) · d.

Again, remember that in the second inequality the right hand side is negative. Also
note that defining

g(t) := f(x+ td)

this amounts to requiring

g(α) ≤ g(0) + c1αg
′(0), g′(α) ≥ c2g

′(0).

Typically, the Powell–Wolfe condition will be satisfied for α in an interval
[β̃, α̃].

Lemma 6.16 (existence of Powell–Wolfe steplength)
In 6.15, let c1 < 1/2. Then ∃α > 0 that satisfies the Powell–Wolfe condition.

Proof: Define

Ψ(α) := f(x+ αd)− f(x)− c1α∇f(x) · d⇒ Ψ′(α) = (∇f(x+ αd)− c1∇f(x)) · d

so that Armijo is satisfied if Ψ(α) < 0. Since

Ψ′(0) = (1− c1)∇f(x) · d < 0, Ψ(0) = 0

55

6.2. STEP SIZE CONTROL FOR LINE SEARCH

Ψ is negative in an interval around zero. On the other hand, since f is bounded to
below, we have

lim
α→∞

Ψ(α) = +∞.

Since Ψ is continuous

∃α∗ : Ψ(t) < 0 ∀t ∈ (0, α∗), Ψ(α∗) = 0.

Since
Ψ′(α∗) = lim

t<0

1

t
(Ψ(α∗ + t)−Ψ(α∗)) ≥ 0

we finally get
∇f(x+ α∗d) · d ≥ c1∇f(x) · d > c2∇f(x) · d.

□
The corresponding algorithm now is obvious.

Definition 6.17 (Powell–Wolfe algorithm))
Let everything as in 6.16. Use 6.11 with β1 = β2 = 1

2
to find an α2 that does not

satisfy 6.10 and an α1 that does.

1. If α1 satisfies 6.15, set α(k) := α1 and stop.

2. Let α = 1
2
(α1 + α2).

3.

α =:

{
α1, if α satisfies 6.10

α2, otherwise.

Lemma 6.18 (Termination of Powell–Wolfe)
6.17 terminates in finitely many steps.

Proof: In each step of the algorithm, 6.10 is satisfied for α1, but not satisfied for α2,
implying

Ψ(α1) < 0,Ψ(α2) > 0

with Ψ from 6.16. Since the distance between the two is halved in each step, both
converge towards the same value α∗. Using exactly the same argument as in 6.16,
α∗ satisfies 6.15. But then it also satisfies it in a small neighborhood, which means
that the algorithm terminates for α∗ − α1 small enough . □

Theorem 6.19 (semi–convergence of Powell–Wolfe)
Let everything as in 6.6, particularly, assume thatN(f, f(x(0))) is compact. Assume
that d(k) is chosen according to 6.13. Then the same convergence result holds.

56

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

Proof: Powell–Wolfe is a variant of 6.11. □

Theorem 6.20 Let ∇f Lipschitz–continuous with Lipschitz–constant L on
N(f, f(x(0))). Then ∃ θ > 0, independent of d and x, such that

f(x+ αd) ≥ f(x)− θ

(
∇f(x) · d

||d||

)2

for all α that satisfy 6.15.

Proof: Since α satisfies 6.15, we have

(c2 − 1)∇f(x) · d ≤ (∇f(x+ αd)−∇f(x))︸ ︷︷ ︸
||·||≤Lα||d||

·d ≤ Lα||d||2.

Inserting into 6.10

f(x+ αd) ≤ f(x+ αc1∇f(x) · d)

≤ f(x) +
(c2 − 1)∇f(x) · d

L||d||2
c1∇f(x) · d = f(x)− θ

(
∇f(x) · d

||d||

)2

.

□

6.3 Gradient type methods for linear equations

We prove convergence and error estimates for 6.4 and the conjugate gradient
method. Note that for simplicity, we always set x(0) := 0.

Satz 6.21 (Convergence of 6.4)
Assume everything as in 6.4 and assume that x(k) is chosen accordingly. Particu-
larly,

x(0) := 0, d(k) := r(k) := b− Ax(k)

and

α(k) :=
(r(k), d(k))

(d(k), Ad(k))
.

Let
(x, y)A = (Ax, y), ||x||2A = (x,Ax), e(k) = x− x(k) ⇒ Ae(k) = r(k).

Then we have:

57

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

1. x(k) converges to the solution of Ax = b.

2. Let κ = k(A) = ||A||2 · ||A−1||2. Then

||ek||A ≤
(
κ− 1

κ+ 1

)k

||e0||A ⇒ ||e(k)|| ≤
√
κ

(
κ− 1

κ+ 1

)k

||e0||.

Proof: Let

G(α) := ||x(k)+αr(k)−x||2A = ||−e(k)+αr(k)||2A = ||e(k)||2A−2α(Ae(k)︸ ︷︷ ︸
=r(k)

, rk)+α2 ||r(k)||2A︸ ︷︷ ︸
=(r(k),Ar(k))

.

Clearly, α(k) is a minimizer of G. For all α > 0, we have

G(α) = || − e(k) + αr(k)||2A = ||(I − αA)e(k)||2A ≤ ||(I − αA)||2A ||e(k)||2A

A is positive definite, so there is a unitary matrix U ∈ Rn×n and a diagonal matrix
Σ with the eigenvalues on the diagonal such that A = U tΣ2U. Plugging this in we
get

||(I − αA)||2A = sup
((I − αA)x,Ax)

(x,Ax)

= sup
(ΣUx− αΣ3Ux,ΣUx)

(ΣUx,ΣUx)

= sup
((I − αΣ2)y, y)

(y, y)
, y = ΣUx

= ||I − αΣ2||22
= max

j
|1− αλj|2, λj Eigenvalue of A.

Therefore, ∀α > 0

||e(k+1)||2A ≤ G(α)

= ||(I − αA)e(k)||2A
≤ ||(I − αA)||2A||e(k)||2A
≤ max

j
|1− αλj|2 · ||e(k)||2A.

Let λmax, λmin the largest and smallest eigenvalue of A, resp. Then

κ = ||A||2 · ||A−1||2 =
λmax

λmin

.

58

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

Let
α =

2

λmax + λmin

to wit

1− αλmax =
λmax + λmin − 2λmax

λmax + λmin

=
λmin − λmax

λmax + λmin

= −κ− 1

κ+ 1

and

1− αλmin =
λmax + λmin − 2λmin

λmax + λmin

=
λmax − λmin

λmax + λmin

=
κ− 1

κ+ 1
.

All in all, |1− αλj| is always in the interval [−κ−1
κ+1

, κ−1
κ+1

] and we have

||e(k+1)||A ≤ κ− 1

κ+ 1
||e(k)||A.

□

We realize that the condition number is crucial to the convergence speed, over
which we have no direct control. However, we are free to rewrite our original equa-
tion and try to modify it in such a way that the new matrix has a lower condition
number.

Specifically: Assume thatH−1 is a symmetric positive definite matrix with the prop-
erty that

H−1A ∼ I.

Then H is called a preconditioner for A. Many techniques for constructing it are
available, the simplest one setting H−1 := D−1 where A is the main diagonal of
A.

Then setting y = H1/2x, we have

Ax = b⇐⇒ H−1/2AH−1/2y = H−1/2b. (6.6)

Since H−1/2AH−1/2 is positive definite and

H−1/2AH−1/2 = H1/2H−1AH−1/2 ∼ I ⇒ κ2(H
−1/2AH−1/2) ∼ 1

we can use 6.4 to solve 6.6, and expect a favorable convergence speed. For an
extensive overview over preconditioning algorithms see (Saad).

It might be not completely obvious why one would opt to chose a descent direction
d(k) other than −∇f(x(k)), since this choice guarantees maximal decay of the min-
imization function at x(k). However, this view is based on one single evaluation of
∇f . Assume that k ≥ 1, then f(x(l)) and ∇f(x(l)) are available for l ≤ k. Then the

59

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

question arises: Can we use these evaluations to come up with a better choice of
the descent direction?

The most popular of these algorithms is the conjugate gradient (CG) algorithm. We
give an outline of the algorithm.

Definition 6.22 (conjugate vectors)
Let A ∈ Rn×n positive definite. For x, y ∈ Rn, let

(x, y)A := (x,Ay).

x, y are (A–) conjugate if they are orthogonal in the A–scalar product,

0 = (x, y)A = (x,Ay).

Theorem 6.23 (gradient descent for conjugate vectors)
Assume that in 6.4 the descent directions are A–conjugate:

(d(k), d(l))A = 0∀k ̸= l, d(k) ̸= 0.

Everything else is chosen as in 6.4,

x(0) := 0, r(k) := b− Ax(k), α(k) :=
(r(k), d(k))

(d(k), Ad(k))
.

Define
Kk := span{d(0), . . . , d(k−1)}.

Let x the solution of Ax = b. Then

1. x(k) is the solution of
min
z∈Kk

||x− z||A.

2. x(n) = x.

3. x(k) is the solution of
min
z∈Kk

f(z).

Proof: Note that u(k) = d(k)/||d(k)|| is an ONB wrt (,)A, and x(j) ∈ Kj.

1. The solution is the orthogonal projection of x on Kk, given by
k−1∑
j=0

(x, u(j))Au
(j) =

k−1∑
j=0

(Ax︸︷︷︸
=b

−Ax(j), u(j))u(j) x(j) ⊥A uj

=
k−1∑
j=0

(r(j), d(j))

||d(j)||2A
d(j)

= x(k).

60

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

2. From 1. since d(0) . . . d(n−1) is a basis of Rn.

3. Since x(k) is the orthogonal projection of x onto Kk, we have

x = x(k) + u, u ⊥A Kk.

Let v ∈ Kk. Then

f(x(k) + v) =
1

2
(x(k) + v,A(x(k) + v))− (b, x(k) + v)

= f(x(k)) +
1

2
(v,Av) + (v, Ax(k) − b︸︷︷︸

=Ax=A(x(k)+u)

)

= f(x(k)) +
1

2
(v,Av) ≥ f(x(k)).

□
Note that this implies that any gradient descent method for 6.1 with A–conjugate
directions is guaranteed to terminate after n iterations with the correct solution,
implying that it is not really an iterative, but a deterministic algorithm.

However, for a typical large system of equations, it is unrealistic to perform n itera-
tions, the actual number is much smaller.

In the conjugate gradient algorithm, the d(k) are chosen as r(k) as in 6.4, but orthog-
onalized using Gram–Schmidt.

Definition 6.24 (Conjugate Gradient algorithm, first form)
Let everything as in 6.4. Apply Gram–Schmidt orthogonalization in the A–scalar
product to

{r(0), r(1), . . . , } → {d(0), d(1), . . . , }
and perform 6.4.

This procedure will guarantee that the descent directions are conjugate, as long as
r(k) ̸= 0, but then Ax = b anyway. Also note that

d(k) ∈ span{r(0), . . . , r(k)} = Kk+1.

However, applying Gram–Schmidt becomes computationally expensive, when k is
large. We simplify this procedure. We start with

Lemma 6.25 Let everything as in 6.24.

1. Kk is the Krylov–subspace

Kk = {p(A) r(0) : p ∈ Pk−1}.

61

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

2. r(k) ⊥ Kk.

3. r(k) ⊥A Kk−1.

Proof:

1. By induction. We have

r(k+1) = b−Ax(k+1) = b−Ax(k)−α(k)Ad(k) = r(k)−α(k)Ad(k) = p(A) r(0)−q(A)r(0)

where p ∈ Pk−1 and q ∈ Pk.

2. Since x(k) minimizes ||z − x||A for z ∈ Kk, we have

(r(k), z) = (Ax− Ax(k), z) = (x− x(k), z)A = 0∀z ∈ Kk.

3. Let y ∈ Kk−1. Then
(r(k), y)A = (r(k), Ay) = 0.

□
For Gram–Schmidt, since d(i) ∈ Ki+1, this gives

d(k+1) = r(k+1) −
k∑

i=0

(d(i), r(k+1))A
||d(i)||2A

d(i)

= r(k+1) − (d(k), r(k+1))A
||d(k)||2A

d(k)

= r(k+1) − (Ad(k), r(k+1))

(d(k), Ad(k))
d(k).

We end up with the second form of the CG algorithm. Note that this is the full defi-
nition, in the context of the lecture we set x(0) = 0 for simplicity.

Definition 6.26 (Conjugate Gradient algorithm, second form)
Let A ∈ Rn×n positiv definite, b, x(0) ∈ Rn. Then the conjugate gradient algorithm
is defined by

r(0) = b− Ax(0), d(0) = r(0)

α(k) =
(d(k), r(k))

(d(k), Ad(k))

x(k+1) = x(k) + α(k)d(k)

r(k+1) = b− Ax(k+1) = r(k) − α(k)Ad(k)

β(k+1) =
(d(k), r(k+1))A
(d(k), d(k))A

=
(d(k), Ar(k+1))

(d(k), Ad(k))

d(k+1) = r(k+1) − β(k+1)d(k).

62

6.3. GRADIENT TYPE METHODS FOR LINEAR EQUATIONS

The algorithm terminates when r(k) = d(k) = 0 with x = x(k) the solution of Ax = b.

While it is nice that the algorithm is terminating with the correct solution (provided
no rounding errors occur), this feature is never used. Rather, the iteration is stopped
with k << n. In this case, we again need an error estimate.

Lemma 6.27 Let everything as in 6.26. Let λ1 ≥ . . . ≥ λn > 0 the Eigenvalues of A
with the corresponding ONB of eigenvectors {vi}. Further, let p ∈ Pk with

p(0) = 1 and |p(λj)| ≤ r ∀ j.

Then the iterates x(k) of the cg algorithm satisfy

||e(k)A || ≤ r||e(0)||A.

Proof: We have
p(z)− 1 = zq(z), q ∈ Pk−1.

Let z = q(A)r(0) ∈ Kk. We have

x− z = A−1b− q(A)AA−1r(0)

= (I + Aq(A))e(0)

= p(A)e(0).

Then

||x− x(k)||2A ≤ ||x− z||2A
= ||p(A)e(0)||2A

= ||
n∑

i=1

αip(λi)vi||2A

=

(
n∑

i=1

αip(λi)vi,
n∑

i=1

αip(λi)λivi

)

=
n∑

i=1

λi(p(λi)αi)
2

≤
n∑

i=1

λir
2α2

i

= r2

(
n∑

i=1

αivi, A
n∑

i=1

αivi

)
= r2||x− x0||2A = r2||e0||2A.

63

6.4. NEWTON’S METHOD

□
This Lemma implies that bounds for the approximation error of xk in Pk−1 yield error
bounds for the cg algorithm.

Theorem 6.28 (error estimate for the cg algorithm)
For the conjugate gradient algorithm 6.26 we have

||e(k)||A ≤ 2

(√
κ− 1√
κ+ 1

)k

||e(0)||A, ||e(k)||2 ≤ 2
√
κ

(√
κ− 1√
κ+ 1

)k

||e(0)||2.

Proof: In 6.27, use the Tschebyscheff polynomials Tk(x) = cos(k arccosx) (exer-
cises). □

6.4 Newton’s method

In this chapter, we will use Newton’s method, a well–known algorithm for the solu-
tion of nonlinear equations, for minimization. We start by recalling the definition of
convergence speed (order of convergence).

Definition 6.29 (order of convergence)
Let x(k) a sequence in Rn, x(k) → x, and let the convergence be monotonous in the
sense that

||x(k+1) − x|| ≤ ||x(k+1)−x||, x(k) ̸= x.

1. The convergence speed is linear iff ∃γ ∈ (0, 1), K > 0:

||x(k+1) − x|| ≤ γ||x(k) − x||∀k > K.

2. The convergence speed is superlinear iff

||x(k+1) − x||
||x(k) − x||

→ 0.

3. The convergence speed is of the order q (quadratic for q = 2), iff ∃C > 0:

||x(k+1) − x|| ≤ C||x(k) − x||.

4. Let y(k) a sequence that also converges to x, and

||y(k) − x|| ≤ ||x(k) − x||.

If the convergence of x(k) is linear/superlinear/of the order q, then y(k) con-
verges r-linear/r-superlinear/r-of the order q.

64

6.4. NEWTON’S METHOD

Remark 6.30 (order of convergence)

1. Part 4 looks strange in the definition. However, it is needed. Think of the
geometric sequence

x = (1, q, q2, q3, q4 . . .)

The convergence to 0 is obviously linear. Now take the sequence

y = (1, 0, q2, 0, q4, 0 . . .).

According to the definition, this is not linear, but intuitively, it should have the
same convergence speed as x. In the literature, very often, there is no exact
distinction between the definitions of linear and r-linear etc.

2. The gradient descent and the conjugate gradient descent method converge
linearly.

6.4.1 Newton’s optimization method

For Newton’s optimization method, we look for the solution of the unconstrained
problem

min
x∈Rn

f(x), f ∈ C2.

Definition 6.31 (Newton model problem) In the following, we assume that x is a
minimizer that satisfies the sufficient conditions

∇f(x) = 0, ∇2f(x) positive definite

and that ∇2f(x) is Lipschitz continuous in a neighborhood U of x, i.e.

∃ γ > 0 : ||∇2f(x)−∇2f(y)|| ≤ γ||x− y|| ∀x, y ∈ U.

The classical Newton method for the solution of nonlinear equations is defined as
follows.

Theorem 6.32 (Newton’s method for finding the zero of nonlinear equations)
Let F : Rn 7→ Rn differentiable. Let F (x) = 0, F ′(x) invertible. Let x(k) a sequence
where x(0) ∈ Rn, L(k)(x(k+1)) = 0 where L(k) is the linearization of F at x(k) i.e.

L(k)(x) = F (x(k)) + F ′(x(k))(x− xk).

If F ′ is Lipschitz continuous in a neighborhood of x, then there exists an ϵ > 0 such
that Newton’s method for nonlinear equations is well (and uniquely) defined and
converges to x of the order 2 if

||x(0) − x|| ≤ ϵ.

65

6.4. NEWTON’S METHOD

In particular, we have

x(k+1) = x(k) − F ′(x(k))−1F (x(k)).

Proof: Numerical Analysis. □

This can be interpreted in the following way: In Newton’s method for nonlinear
equations, the function F is replaced by a linear model L, and we take each next
iteration as the zero of that linear model.

Note that Newton’s method converges fast, but requires x(0) to be (very) close to x,
which is unknown. Also note that formally, we are writing down the inverse here,
but of course the update is determined by solving an appropriate linear system of
equations.

Starting from here, we can easily derive Newton’s method for unconstrained non-
linear minimization.

Theorem 6.33 (Newton’s method for unconstrained minimization)
Let everything as in 6.31.
Let F (x) = ∇f(x). Then

F : Rn 7→ Rn, F (x) = 0, F ′(x) positive definite, in particular invertible.

From 6.32 we have: ∃ ϵ > 0, such that Newton’s method for finding a zero ofF is well
defined and converges quadratically to the minimizer x of f provided ||x(0)−x|| ≤ ϵ.
In particular, we have

x(k+1) = x(k) −∇2f(x(k))−1∇f(x(k)).

There is a second way of motivating this equation. Let m(k)(x) the local truncated
(quadratic) Taylor series of f at x(k), then

m(k)(x) = f(x(k)) +∇f(x(k)) · (x− x(k)) +
1

2
(x− x(k))t∇2f(x(k))(x− x(k)).

In each step, rather than minimizing f , we minimize the quadratic model, and use
the minimizer as the next step. Using 6.4, the minimum is given by

x(k+1) = x(k) −∇2f(x(k))−1∇f(x(k))

and we again get Newton’s method.

66

6.4. NEWTON’S METHOD

Note that setting M (k) = ∇2f(x(k))−1 this is a descent method in the sense of 6.13
with steplength 1, the only thing we still need to prove are common bounds on the
Hessian.

However, again, this is only true in a small neighborhood of x where the Hessian is
guaranteed not to deviate too much from the Hessian at xwhich is positive definite.
So this statement is only locally true.

However, we have 6.9. If we ensure that in each step for the update direction
d(k)

−∇f(x(k)) · d(k) ≥ λ||∇f(x(k))|| ||d(k)|| (∗)

is satisfied, and the steplength is chosen by the Armijo rule, then the algorithm will
converge.

Theorem 6.34 (Globally convergent Newton algorithm)
In 6.33 let

y(k) = −∇2f(x(k))−1∇f(x(k)).

If y(k) satisfies (∗), then use d(k) = y(k) as the descent direction, otherwise use
d(k) = −∇f(x(k)). Determine the steplength t(k) using the Armijo algorithm, and let

x(k+1) = x(k) + t(k)d(k).

Then every accumulation point of x(k) is a minimizer (independent of x(0)).

Proof: 6.9. □

Note that in this form, the proof is pretty useless. After all, it does not really improve
on 6.9, because it could be that the algorithm never chooses Newton directions or
steplengths and converges only linearly. However, it can be shown that if x(k) is
close enough to x for some k, the algorithm will converge quadratically.

6.4.2 Quasi–Newton methods

The major disadvantage of Newton’s method is that it is computationally very ex-
pensive. To just compute the Hessian H(k) ∼ ∇2f(x(k)) from finite differences, f
has to be evaluated n2 times compared to n times for the gradient. Additionally,
even if the Hessian is available, an n × n linear system of equations has to be
solved. So there is much interest in simplifying the Newton step.

To overcome the first problem, only a very coarse approximation of the Hessian is
used. It turns out that Newton’s method is convergent as long as ||H(k)|| ≤ C for

67

6.4. NEWTON’S METHOD

some C > 0. Even choosing H(k) fixed will do! (Exercises) However, typically one
loses the quadratic convergence speed for these simple ideas.

For the second problem, we could take into account that the update direction d(k) is
not exactly pointing to x anyway. So we might have the idea that the linear equation
does not have to be solved exactly, but an iterative algorithm with few (fixed number
of) steps will do.

Note that the second case can be rephrased as a special case of the first case.

To formalize the idea, assume that using some variant of Newton’s method we have
already computed x(k+1). To continue, we define the approximation H(k+1) of the
Hessian at x(k+1) using what we have to compute anyway, that is the approximation
H(k) for the Hessian at x(k), ∇f(x(k+1)), and f(x(k). Formally, for some function φ,
we have

H(k+1) = φ(H(k), x(k+1), x(k),∇f(x(k+1)),∇f(x(k))).

1. H(k) should be symmetric, possibly s.p.d.

2. φ should be computationally cheap.

3. Again, from the fundamental theorem of calculus, we have

∇f(x(k+1))−∇f(x(k)) =
∫ 1

0

∇2f(x(k) + t(x(k+1) − x(k))) dt︸ ︷︷ ︸
∼H(k+1) if x(k) ∼ x(k+1)

(x(k+1) − x(k)).

This motivates the quasi–Newton condition

H(k+1)(x(k+1) − x(k)) = ∇f(x(k+1))−∇f(x(k)).

Obviously, this is an equation in Rn, but the Hessian is in Rn×n, so φ is far
from uniquely defined.

4. Choose ||H(k+1) −H(k)|| → 0. This is motivated as follows:

||(H(k) −∇2f(x(k))) d(k)|| ≤ ||(H(k) −H(k+1))d(k)||+ ||H(k+1)d(k) −∇2f(x(k))||.

Using the quasi–Newton condition, the second term reads

||∇f(x(k+1) −∇f(x(k))−∇2f(x(k))d(k)|| = o(||d(k)||)

with Taylor expansion on ∇f . Thus, if ||H(k) − H(k+1)|| → 0, both terms are
o(||d(k)||).

68

6.4. NEWTON’S METHOD

Since φ is not uniquely defined, there is a plethora of options for the update. The
simplest one is the rank 1–update. Here, we choose φ such that H(k+1) −H(k) has
rank 1 or

H(k+1) = H(k) + v(k)v(k)
t
.

For the quasi–Newton condition, we get

H(k+1)d(k) = ∇f(x(k+1))−∇f(x(k))︸ ︷︷ ︸
=:y(k)

.

Plugging in the definition of H(k+1) we get

y(k) = H(k)d(k) + v(k)v(k)
t
d(k) = H(k)d(k) + (v(k)

t
d(k))v(k) (∗)

or
v(k) =

1

v(k)
t
d(k)︸ ︷︷ ︸

=:λ

(y(k) −H(k)d(k))

where λ is a scalar unknown. Inserting into (∗) determines λ up to its sign, and this
defines φ.

More sophisticated rules consider a rank 2 update of the form

H(k+1) = H(k) + u(k)u(k)
t
+ v(k)v(k)

t
.

Since now we have two degrees of freedom, the update is not uniquely defined,
and there are many possible choices. One of the more popular is BFGS (Broyden–
Fletcher–Goldfarb–Shanno), which chooses

H(k+1) = H(k) +
y(k)y(k)

t

y(k)
t
d(k)

− H(k)d(k)(H(k)d(k))t

(y(k)
t
d(k))2

y(k)y(k)
t
.

It can be shown that BFGS is quadratically convergent in a small neighborhood of
x.

6.4.3 Trust Region Methods

Another problem of Newton is its local convergence. To overcome this, trust region
methods have been developed, which are covered in the exercises. We give a very
short outline of the idea.

69

6.4. NEWTON’S METHOD

1. In our methods, we replace f(x) by a model function (approximation). For
Newton, we choose

f(x(k) + s) = m(k)(s) = f(x(k)) + g(k)
t · s+ 1

2
stH(k)s

where g(k) is the gradient and H(k) is the Hessian at x(k).

2. Typically, the model / the approximation will only be reliable in a neighbor-
hood of x(k), so if

||s|| ≤ δ(k).

3. When we choose the normal Newton update d(k), and ||d(k)|| > δ(k), this
makes no sense (since we are using the model where it is not reliable).

4. Rather than taking the global minimum of m(k), we compute

d(k) = min
||s||≤δ(k)

m(k)(s).

For the quadratic model, this can be computed explicitly (exercises).

5. In each step, δ(k) is updated. To this end, we compare the predicted reduction
in the model

pred(s) := m(k)(0)−m(k)(s)

and the actual reduction

ared(s) := f(x(k))− f(x(k+1)).

If

ρ :=
ared(s)

pred(s)
∼ 1

then the model is reliable and the current step is accepted. Also, we fig-
ure that the reliability radius might be enlarged and choose δ(k+1) = 2δ(k),
x(k+1) = x(k) + d(k).
If this is not the case, then we throw away the current step, setting x(k+1) =
x(k), and reducing the reliability radius by setting δ(k+1) = δ(k)/2.

70

Chapter 7

Numerical optimization with constraints

We wish to derive numerical methods for the general problem 0.1 including con-
straints, i.e.

min f(x) : cI(x) ≤ 0, cE(x) = 0

with definitions as in 0.1.

7.1 Penalty Methods

The idea here is to reuse the methods for unconstrained optimization, but add a
penalty term Ψ(x) to the minimization function f that is zero for x feasible and
large otherwise, i.e.

F (x, γ) = f(x) + γΨ(x), Ψ(x) =

{
0 x feasible

> 0 x infeasible
, γ > 0.

The penalty method then solves for fixed γ the unconstrained minimization prob-
lem

minF (x, γ)

and accepts the solution as an approximation for a minimal point x.

A typical choice is the quadratic penalty function

Ψ2(x) =
1

2
(||cE(x)||2 + ||cI(x)+||2) where z+ = max(z, 0).

Note that if cI and cE are differentiable, then also Ψ2 is and

∇Ψ2 = c′E(x)
t cE(x) + c′I(x)

tcI(x)
+

71

7.1. PENALTY METHODS

where ′ denotes the Jacobian (remember the definition of the Jacobian in 2.1). Ob-
viously, for x feasible we have

F (x, γ) = f(x), ∇F (x, γ) = ∇f(x).

Formally, for γ → ∞, we regain our original problem. However, when γ is large, also
the derivative of F is large, leading to numerical instabilities. We ignore this for the
moment and prove that penalty methods have some expected properties.

Theorem 7.1 (properties of the penalty method)
Let f , cI , cE continuous. Let γ(k) a strictly increasing sequence with limit∞, γ(0) > 0.
Assume that the unconstrained minimization problem for F has a solution x(k) for
all γ(k), and that the constrained problem has a global solution. Then

1. F (x(k), γ(k)) is increasing.

2. Ψ(x(k)) is decreasing.

3. f(x(k)) is increasing.

4. Ψ(x(k)) → 0.

5. Each accumulation point of x(k) is a global solution of the unconstrained prob-
lem.

Note that we need the additional requirement that the global solution for the un-
constrained problems exists, even if the constrained problem has a global solution.
Simply assume that the feasible set is compact, and that f(x) is exponentially de-
creasing, then a solution for the constrained problem exists, but none of the penalty
problems is solvable (using quadratic penalty terms). To ensure solvability, one
might cut off the function f(x) for ||x|| > x0 or apply a damping strictly increasing
function to f , e.g. min log f(x) instead of min f(x).

For the proofs, we simply insert the defining minimization property of x(k).

Proof:

1.
F (x(k), γ(k)) ≤ F (x(k+1), γ(k)) ≤ F (x(k+1), γ(k+1)).

2. From the optimality condition for x(k), we have

F (x(k), γ(k)) ≤ F (x(k+1), γ(k))

F (x(k+1), γ(k+1)) ≤ F (x(k), γ(k+1)).

72

7.1. PENALTY METHODS

Adding these we get

(γ(k) − γ(k+1))︸ ︷︷ ︸
<0

Ψ(x(k)) ≤ (γ(k) − γ(k+1))Ψ(x(k+1))

which implies
Ψ(x(k+1)) ≤ Ψ(x(k)).

3. We have

0 ≤ F (x(k+1), γ(k))− F (x(k), γ(k))

= f(x(k+1))− f(x(k)) + γ(k) (Ψ(x(k+1))−Ψ(x(k)))︸ ︷︷ ︸
≤0 (2.)

≤ f(x(k+1))− f(x(k)).

4. Let x̂ a (feasible) solution to the constrained problem. Then

F (x(k), γ(k)) ≤ F (x̂, γ(k)) = f(x̂)

implying

f(x̂) ≥ f(x(k)) + γ(k)Ψ(x(k)) ≥ f(x(0)) + γ(k)Ψ(x(k)).

That means that γ(k)Ψ(x(k)) is bounded, so Ψ(x(k)) → 0.

5. WLOG Let x(k) → x. From (4.) and continuity of cI , cE we have that x is feasi-
ble.
Let x ∈ Rn feasible. Then

f(x(k)) ≤ F (x(k), γ(k))

≤ F (x, γ(k))

= f(x).

Take the limit of this inequality, then since f is continuous

f(x) ≤ f(x).

□

We already noted that for Ψ2 the minimization function F is differentiable, provided
f , cI , cE are differentiable. For the following remark, we recall the definitions of the
Lagrange function. For the full problem 0.1 the Lagrange function is defined as

L(x, µ, λ) := f(x) + µtcI(x) + λtcE(x), µ ∈ Rm, λ ∈ Rp, µ ≥ 0.

73

7.1. PENALTY METHODS

Then for Ψ2

0 = ∇F (x(k), γ(k))
= ∇f(x(k)) + γ(k)c′E(x

(k))t cE(x
(k)) + γ(k)c′I(x

(k))tcI(x
(k))+

= ∇f(x(k)) + c′E(x
(k))t (γ(k) cE(x

(k)))︸ ︷︷ ︸
=:λ(k)

+c′I(x
(k))t (γ(k)cI(x

(k))+)︸ ︷︷ ︸
=:µ(k)

= ∇xL(x
(k), µ(k), λ(k))

which is one part of the saddle point definition (and which is reminiscent of La-
grange multipliers).

In fact, we have

Theorem 7.2 (Penalty Methods and the KKT conditions)
Let everything as in 7.1 and Ψ = Ψ2.

1. If (x, λ, µ) is an accumulation point of (x(k), λ(k), µ(k)), then (x, µ, λ) satisfies
the Kuhn–Tucker–conditions (2.16)

∇xL(x, µ, λ) = 0, x feasible, µ cI(x) = 0.

2. If x is an accumulation point of x(k) and x is regular (i.e. the gradients of
the active restrictions are linear independent), then there are µ, λ such that
(x, µ, λ) is an accumulation point of (x(k), µ(k), λ(k)).

Proof:

1. WLOG let x(k) → x, µ(k) → µ, λ(k) → λ. From 7.1 we have that x is a solution,
and from the remark we have

0 = ∇xL(x
(k), µ(k), λ(k)) → ∇xL(x, µ, λ).

Also
0 ≤ γ(k)cI(x

(k))+ = µ(k) → µ.

Since x is feasible, cI(x) ≤ 0. Assume cI(x)j < 0.
Then for k larger than some indexK, cI(x(k))j < 0, so cI(x(k))+j = 0 for k > K,
so µj = 0. So either cI(x)j = 0, or µj = 0.

2. The only difference to part 1 is that here we do not have the convergence of
the corresponding subsequence.
WLOG assume that all inequality restrictions are inactive (otherwise move
them to equality restrictions). Then for k > K as before, cI(x(k)) < 0 and
µ(k) → 0 =: µ. Let

A = c′E(x)
t = (∇cE(x)), A(k) = c′E(x

(k))t.

74

7.1. PENALTY METHODS

Since x is regular, A has full rank, thus A
t
A is invertible. Also, starting at

some index, the determinant of AktA(k) does not vanish (A(k) → A and the
determinant is a continuous function), so for k > K AktA(k) is invertible.
Therefore

0 = A(k)t∇xL̃(x
(k), λ(k)) = A(k)t∇f(x(k)) + A(k)tA(k)λ(k)

where L̃(x, λ) = L(x, 0, λ). SinceA(k)tA(k) is invertible, this can be solved for
λ(k), and

λ(k) → −(A
t
A)−1A

t∇f(x).

□
In a way, these last two theorems are a great result. Although the idea of penalty
methods is so simple, yet they have more or less all properties you could wish for:
Convergence to the minimum, and even convergence of the dual parameters. Nev-
ertheless, the initial statement holds: For γ(k) → ∞ the problems are badly scaled
and numerically unstable for γ(k) large.

So we would like to circumvent this. It comes as a big surprise that large γ(k) is not
always needed. In fact, some penalty functions Ψ are exact, meaning they produce
the correct result x for finite γ(k).

Definition 7.3 (exact penalty methods)
A penalty function Ψ is called exact for a minimization problem, if a (local) minimizer
of the restricted problem is a (local) minimizer of the penalized function F for some
γ > 0.

An example for an exact penalty function for problems with strong duality is the
L1–penalty term

Ψ1(x) = ||cI(x)+||1 + ||cE(x)||1.

We prove the exactness for convex problems only.

Theorem 7.4 (Ψ1 is exact)
Let f , cI convex, cE linear, and (x, µ, λ) satisfy the KKT conditions. Then x is a solu-
tion of (the restricted problem) 0.1, and it is a global minimum of

F (x, γ) := f(x) + γΨ1(x)

for γ ≥ max(|λk|, µi).

Proof: x is a (feasible) solution to the global problem due to 3.9.

75

7.1. PENALTY METHODS

Further, we have for any x ∈ Rn

F (x, γ) = f(x)

= f(x) + µtcI(x) + λ
t
cE(x) complementarity

= L(x, µ, λ)

≤ L(x, µ, λ) saddle point property

≤ f(x) + µt cI(x)
+ + |λ|t |cE(x)| | · | componentwise

≤ f(x) + γΨ1(x)

= F (x, γ).

□
Now this is really great. However, it comes with a caveat: F will not be differen-
tiable, since || · ||1 is not differentiable.

Remark 7.5
Let Ψ exact für γ0. Then Ψ is exact for γ ≥ γ0.

Proof: Let x a minimizer of the restricted problem, thus x feasible. From this and
the exactness for γ0, we have for all x ∈ Rn

f(x) = F (x, γ0) ≤ F (x, γ0)

and thus
F (x, γ) = f(x) ≤ F (x, γ0) ≤ F (x, γ).

□

Corollary 7.6 (exact penalty functions are not differentiable)
Let Ψ differentiable and exact for γ0 and a (local) minimum x. Then ∇f(x) = 0.

This corollary says: If a penalty function is exact, then it is either not differentiable,
or the constraints do not play a role, x is a local minimizer of f even without the
constraints.

Proof: From the remark, we have that Ψ is exact for γ > γ0. Thus

∇xF (x, γ) = 0 = ∇xF (x, γ0) ⇒ (γ − γ0)∇Ψ(x) = 0 ⇒ ∇Ψ(x) = 0

and again since
0 = ∇xF (x, γ)

we have ∇f(x) = 0. □

76

7.1. PENALTY METHODS

However, differentiability is definitely a desirable property. In the following, we
will slightly change the definition of the penalty functions. We first consider only
equality constraints, that is m = 0 in 0.1.

Remark 7.7 (non-exactness of Ψ2)
Let Ψ = Ψ2, x a solution for 0.1 with equality constraints only, λ the corresponding
Lagrange multiplier, and λk ̸= 0. Then feasibility of x can only be achieved by letting
γ(k) → ∞.

Proof: From the proof of 7.2, we have that in this case

λ(k) = γ(k)cE(x
(k)) → λ.

□

So we need a new idea. We start by defining a slightly modified Lagrange function.
Remember that for equality–only constraints, we have

L(x, λ) = f(x) + λtcE(x).

We define LA, the augmented Lagrangian, as the Lagrange function for the penal-
ized objective function F (x, γ). Remember that since Ψ(x) = 0 for x feasible, the
penalized problem with restrictions is equivalent to the original problem with re-
strictions.

Definition 7.8 (Augmented Lagrangian)
Consider 0.1 with equality–only constraints. Then the augmented Lagrangian is de-
fined as

LA(x, λ, γ) = f(x) + γ
1

2
||cE(x)||2 + λtcE(x) = L(x, λ) + γΨ2(x).

Remember cE(x) = (h1(x), . . . , hp(x))
t, and set Ψ = Ψ2.

Lemma 7.9 (Gradient of Augmented Lagrangian)
We have

∇xLA(x, λ, γ) = ∇f(x)+DcE(x)t(λ+γcE(x)) = ∇f(x)+
m∑
i=1

(λi+γhi(x))∇hi(x).

Idea of the method: In the algorithm, we determine the primal solution x∗ and its
Lagrange multiplier λ∗. So

77

7.1. PENALTY METHODS

1. Input: Approximation x(0) for the minimal point, approximation λ(0) for the
Lagrange multiplier, γ(0) as starting point for the penalty term, reliability pa-
rameter τ0.

2. Compute an approximation x(k+1) to the unrestricted minimization problem
for LA(·, λ(k), γ(k)) such that

||∇xLA(x
(k+1), λ(k), γ(k))|| ≤ τk.

See 2.12.

3. Update λ(k+1) based on λ(k).

4. Choose
γ(k+1) ≥ γ(k), τ (k+1) ≤ τ (k).

5. Repeat from 2.

Idea for the update of λ(k):

From the minimization property, we have

0 = ∇xLA(x
(k+1), λ(k), γ) = ∇f(x(k+1)) +

m∑
i=1

(µi + γhi(x))∇hi(x(k+1)).

For the true minimizer and its Lagrange multiplicator, we have

0 = ∇xL(x
∗, µ∗) = ∇f(x∗) +

∑
j

µ∗
i∇hi(x∗).

Assume that x(k+1) ∼ x∗, µ(k+1) ∼ µ∗, then

λ(k+1) = λ(k) + γcE(x
(k+1))

is a decent choice.

Theorem 7.10 (almost exact property of the augmented Lagrangian)
Let x∗ a (local) solution of 0.1 with equality constraints and regular. Assume that
the second order sufficient conditions of 2.14 are satisfied, and that λ∗ is the corre-
sponding Lagrange multiplier. Then there is a γ∗ > 0 such that for γ ≥ γ∗ x is a
strict (local) minimizer of LA(x, λ

∗, γ).

Note that this is close to exactness, but not quite, since we require knowledge of
the true Lagrange multiplier.

78

7.1. PENALTY METHODS

Reminder: The second order sufficient conditions require that

cE(x
∗) = 0, ∇f(x∗) + λt∇cE(x∗) = 0

and that
Hessx L(x

∗, λ) = Hess f(x) +
∑
k

λk Hesshk(x
∗)

is positive definite on the Kernel of DcE(x∗)t.

Proof: We show that the second order sufficient conditions 2.14 are satisfied. We
have

∇xLA(x
∗, λ∗, γ) = ∇f(x∗) +

∑
j

(λ∗j + γhj(x
∗))∇hj(x∗)

= ∇f(x∗) + λtcE(x
∗) x∗ is feasible

= L(x∗, λ) = 0 2.11.

Now we prove positive definiteness of the Hessian. From the formula for the gradi-
ent, taking one more derivative, we see that

HessLA(x, λ, γ) = HessL(x, λ) + γ
∑
j

(hj(x)Hesshj(x) +∇hj(x)∇hj(x)t).

Let A := DcE(x
∗) = (∇h1(x∗), . . . ,∇hp(x∗))t. Then A has full rank p ≤ n since x∗

is regular, and since again x∗ is feasible

Hessx LA(x
∗, λ∗, γ) = HessL(x∗, λ∗) + γAtA.

Assume that HessLA(x
∗, λ∗, γ) is not positive definite for all γ > γ0. Then for all k

there exists a w(k) ∈ Rn, ||w(k)|| = 1, such that

0 ≥ w(k)t Hessx LA(x
∗, λ∗, γ)w(k)

= w(k)t Hessx L(x
∗, λ∗)w(k) + k||Aw(k)||2.

The unit ball is compact, so w(k) has a convergent subseries. WLOG let w(k) → w,
||w|| = 1. Further, we have

||Aw(k)||2 ≤ −1

k
w(k)t Hessx L(x

∗, λ∗)w(k) → 0

so ||Aw|| = 0 or w is in the kernel of DcE(x∗)t.
Finally,

0 ≥ −k||Aw(k)||≥ w(k)t Hessx L(x
∗, λ∗)w(k) → wtHessx L(x

∗, λ∗)w

79

7.2. QUADRATIC PROGRAMMING

which is a contradiction to the assumption that Hessx L(x∗, λ∗) is positive definite
on the kernel of DcE(x∗)

t (and w ̸= 0). □

Idea for inequality constraints: Convert the full problem 0.1 to equality–only by in-
troducing the slack variables si, writing gi(x) ≤ 0 as gi(x) + s2i = 0. This is a
reformulation of the original problem in the new variables (x, s) with equality con-
straints only.

The corresponding augmented Lagrangian is

LA(x, s, µ, λ, γ) = f(x)+λth(x)+
1

2
γ||h(x)||2+

∑
i

µi(gi(x)+s
2
i)+γ

1

2
(gi(x)+s

2
i)

2.

Our algorithm is exactly the same, except now we must update not only x and λ, but
also s and µ. With respect to the update on s: LA is a quadratic function in s2i , and
the minimum can be computed explicitly. It turns out that the minimizer is given
by

s∗i = (max(0,−µi

γ
+ gi(x)))

1
2 .

7.2 Quadratic Programming

In this section, let f quadratic and cE, cI linear, i.e. 0.1 reads

min
x
f(x) :=

1

2
xtQx+ ctx with cE(x) := Bx = β, cI(x) := Ax ≤ α

where Q ∈ Rn×n, c ∈ Rn, B ∈ Rp×n, β ∈ Rp, B ∈ Rm×n, α ∈ Rm.

Let x∗ a (feasible) solution. The Karush–Kuhn–Tucker conditions 2.16 guarantee the
existence of λ∗ ∈ Rp, µ∗ ∈ Rm such that

Qx∗ + c+Btλ∗ + Atµ∗ = 0, µ∗ ≥ 0, µ∗ (Ax∗ − α) = 0, Ax∗ ≤ α, Ax∗ = β.

7.2.1 Equality Constraints

We start by considering equality restrictions only (m = 0). Then the KKT condtions
reduce to

(
Q Bt

B 0

)(
x∗

λ∗

)
=

(
−c
β

)
.

80

7.2. QUADRATIC PROGRAMMING

Assuming that Q is positive definite and x is regular (which implies that the rows
of B are linearly independent) this system of equations has a unique solution (the
minimal point x and its corresponding Lagrange multiplier).

7.2.2 Active Set Strategy for inequality constraints

Now we allow both equality and inequality constraints. To motivate the algorithm,
assume that x∗ is known. Let I the index set

I := {i : (Ax∗)i = αi}.

Let
AI := (Ai,k : i ∈ I), αI := (αi), µ

∗
I = (µ∗

i) : i ∈ I.

Then
Bx∗ = β, AIx

∗ = αI .

Since µ∗
k = 0 for k ̸∈ I, we haveQ At

I Bt

AI

B

x∗µ∗
I

λ∗

 =

−c
αI

β

 (7.1)

Again, assuming that Q is positive definite and that x∗ is regular, we have that this
system of equations has a unique solution.

Note that given any solution of 7.1 and defining µ∗
k = 0 for k ̸∈ I, 2.16 is satisfied iff

µ∗
i ≥ 0 for all i ∈ I.

This motivates the following strategy:

1. Cycle through all index subsets I of (1, . . . ,m).

2. Compute the corresponding solution of 7.1.

3. Check if µ∗
I ≥ 0. If yes, x∗ is a potential (local) minimum.

This is inefficient, so we follow a strategy in the spirit of the simplex algorithm.

1. Input: a feasible (!) x(0), an index set I = I(0) s.t. AIx
∗ = αI .

2. Compute x∗, µ∗ via 7.1 for the index set I(k).

3. Check if x∗ is feasible. Since AIx
∗ = αI , Bx∗ = β, this is only possible if

(Ax∗)k > αk for some l ̸∈ I(k).

4. If x∗ is feasible, continue at 6.

81

7.3. GRADIENT PROJECTION METHODS

5. Add one of the indices that blocks x from feasibility to I(k), i.e. set

t∗ := max{t : x(k)+t(x∗−x(k)) is feasible} = min{ αl − (Ax(k))l
(A(x∗ − x(k))) l

: l ̸∈ I(k)}, x(k+1) := x(k)+t∗(x∗−x(k)).

Then ∃l ̸∈ I(k) : x
(k+1)
l = 0. Set

I(k+1) := I(k) ∪ {l}

and continue at 2.

6. Check if µ ≥ 0. If yes, then a KKT point has been found.

7. If not, remove one of the blocking indices from I(k), i.e.

l = argmin
l
µ∗
l , I

(k+1) := I(k) \ {l}, x(k+1) := x(k).

This algorithm is not guaranteed to terminate or converge. However, at least it is
guaranteed that x∗ − x(k) is a descent direction if Q is s.p.d.

7.3 Gradient Projection Methods

Assume that x(k) with a descent direction d(k) is given for a restricted minimization
problem. Since

x(k+1) := x(k) + td(k)

might lead away from the feasible set, the simple idea is to project this update onto
the feasible set.

In the following, we always assume that the feasible set F is convex. Then the
projection onto the feasible set is given by 4.7:

PF : Rn 7→ F , PFx := argmin
y∈F

||y − x||22.

Lemma 7.11 Assume that F is convex.

1. Let x∗ a local minimum of 0.1. Then

∇f(x∗) · (x− x∗) ≥ 0∀x ∈ F .

2. Let f convex and
∇f(x∗) · (x− x∗) ≥ 0 ∀x ∈ F .

Then x∗ is a global minimum.

82

7.3. GRADIENT PROJECTION METHODS

Proof:

1. Assume
∃x ∈ F : ∇f(x∗) · (x− x∗) < 0.

Then d := x − x∗ is a descent direction, thus f(x∗ + td) < f(x∗) for t small
enough. Since F is convex, we have x∗ + td ∈ F for all t ∈ [0, 1], so x∗ is not
a local minimum .

2. From 4.4, we have for all x ∈ F

f(x) ≥ f(x∗) +∇f(x∗) · (x− x∗) ≥ f(x∗).

□
According to our idea, given an approximation x(k) ∈ F , we set

x(k+1) := PF(x
(k) − t∇f(x(k))) = x(k) + d(t), d(t) := PF(x

(k) − t∇f(x(k)))− x(k).

We show that d(t) is a descent direction.

Theorem 7.12 Let x ∈ F , t > 0, F convex. Then

t d(t) · ∇f(x(k)) ≤ −||d(t)||2.

Proof: Let z ∈ Rn. Then PF(z) is the solution of the constrained problem

min
x∈F

g(z) :=
1

2
||x− z||2.

From the lemma, we have for all y ∈ F

(PF(z)− z) · (y − PF(z)) = (∇g)(PF(z)) · (y − PF(z)) ≥ 0.

Now let y = x(k), z = x(k) − t∇f(x(k)). Thus

(PF(x
(k) − t∇f(x(k)))− (x(k) − t∇f(x(k))) · (x(k) − PF(x

(k) − t∇f(x))) ≥ 0.

which implies
−||d(t)||2 − t∇f(x(k)) · d(t) ≥ 0.

□
Note that projection methods are typically used in situations where the projection
onto the feasible set can be computed very easily, like nonnegativity constraints or
box constraints

F = {x : a ≤ x ≤ b}.
A very common example is emission tomography, where the resulting distributions
of radioactive tracers are nonnegative. The resulting algorithm is POCS (Projection
On Convex Sets).

83

7.4. SEQUENTIAL QUADRATIC PROGRAMMING (SQP)

7.4 Sequential Quadratic Programming (SQP)

Again, we motivate the algorithm by considering only equality–constrained prob-
lems (m = 0). Then the Lagrange function is given by

L(x, λ) = f(x) + cE(x)
t λ

and the Karush–Kuhn–Tucker conditons read

∇xL(x, λ) = ∇f(x) +DcE(x)
tλ = 0

cE(x) = 0.

In the quadratic problem, we could solve this equation analytically. If this is not the
case, we can view it as a nonlinear problem and solve it using the classical Newton
update

z(k+1) = z(k) −F ′(z(k))−1F (z(k))︸ ︷︷ ︸
=:d(k)

where F ′ denotes the Jacobian of F . Then d(k) satisfies

F ′(z(k)) d(k) = −F (z(k)).

Let

F (x, λ) =

(
∇xL(x, λ)
cE(x)

)
, F ′(x, λ) =

(
HessxL(x, λ) DcE(x)

t

DcE(x) 0

)
where DcE is as in 2.1. Letting d(k) = (dx(k), dλ(k))t and H(k) = HessxL(x(k), λ(k))
we arrive at the update formula

H(k)dx(k) +DcE(x
(k))tdλ = −∇xL(x

(k), λ(k))

DcE(x
(k))dx(k) = −cE(x(k)).

Now let λ∗ := λ(k) + dλ. Then

H(k)dx(k) +DcE(x
(k))tλ∗ = −∇f(x(k))

DcE(x
(k))dx(k) = −cE(x(k)).

But these are simply the KKT–conditions for the minimization problem

min
dx(k)

∇f(x(k)) · dx(k) + 1

2
dx(k)

t
H(k)dx(k)

with the equality constraint

cE(x
(k)) +DcE(x

(k)) dx(k) = 0.

84

7.5. INTERIOR POINT ALGORITHMS: THE BARRIER METHOD

This gives rise to the idea of approximating 0.1 using a sequence of quadratic prob-
lems

min
dx(k)

∇f(x(k)) · dx(k) + 1

2
dx(k)

t
H(k)dx(k)

such that

cE(x
(k)) +DcE(x) dx

(k) = 0, cI(x
(k)) +DcI(x

(k)) dx(k) ≤ 0

and setting x(k+1) := x(k) + dx(k). This is the basic SQP method.

7.5 Interior point algorithms: The Barrier Method

When solving a constrained minimization problem with active equalities using a
penalty method, the solutions of the intermediate minimization problems are typ-
ically infeasible. Algorithms that rewrite the original minimization problem as a
sequence of minimization problem in such a way that the solution of each inter-
mediate problem is feasible, are called interior point methods. In this section, we
consider a very restrictive class of problems only. Our minimization problem 0.1 is
convex, and we have strong duality. We remind of some properties.

Throughout this section, we investigate the following problem:

min
x
f(x) : f1(x) . . . fm(x) ≤ 0

where
Ax = b, f, fk ∈ C2(D) convex , A ∈ Rp×n, rankA = p < n.

Then this is a convex problem in the sense of 0.1. We assume that Slater’s condition
4.10 is satisfied, i.e. there is a feasible point x such that cI(x) < 0 (strictly feasible).
Then strong duality holds. Also, we assume that an optimal point x∗ exists for the
minimization problem and all the problems in the intermediate problems.

So let (x∗, µ∗, λ∗) a primal–dual triple. Then

Ax∗ = b, fi(x
∗) ≤ 0, µ∗

i ≥ 0, µ∗
i fi(x

∗) = 0

and the Lagrange multiplier property

0 = ∇f(x∗) +
m∑
i=1

µ∗
i∇fi(x∗) + Atλ∗ = ∇xL(x

∗, µ∗, λ∗)

85

7.5. INTERIOR POINT ALGORITHMS: THE BARRIER METHOD

where

L(x, µ, λ) = f(x) +
m∑
i=1

µifi(x) + (Ax− b)tλ

holds. Remember our definitions of the primal and dual functions

p(x) := sup
µ≥0,λ

L(x, µ, λ), d(µ, λ) := inf
x∈D

L(x, µ, λ).

The primal/dual problems are given by

min
x∈D

p(x), max
µ≥0,λ

d(µ, λ)

respectively, with optimal values p∗ and d∗. Generally, we have p∗ ≥ d∗, and p∗ = d∗

here due to strong duality.

Our idea ist to again rewrite our minimization problem without the inequalities,
so that only equality constraints are left. For barrier methods, we apply penalty
functions “the other way round”. Instead of penalizing that an inequality constraint
is violated, we penalize that an element gets too close to the border, with the value
on the border and the infeasible set set to infinity.

Formally, let

χ−(u) =

{
0 u ≤ 0

∞ else.

Then the minimiziation problem can be rewritten as

min
x
f(x) +

m∑
i=1

χ−(fi(x)) : Ax = b.

For the implementation, we use approximations of χ−(u) which are finite for u < 0
and infinite for u ≥ 0. Specifically, we use the log function

I(u) := − log(−u), dom I = {u : u < 0}

and formally set I(u) = ∞ for u ≥ 0.

Lemma 7.13
I is continuous, differentiable, strictly increasing, and convex on D.

Proof:
I ′(u) = −1

u
, I ′′(u) =

1

u2
> 0.

□

86

7.5. INTERIOR POINT ALGORITHMS: THE BARRIER METHOD

Let

Ψ(x) =
m∑
i=1

I(fi(x)) = −
m∑
i=1

log(−fi(x)).

Ψ is the log barrier function.

Lemma 7.14 Ψ is convex.

Proof: We have

∇Ψ(x) = −
m∑
i=1

1

fi(x)
∇fi(x)

and

Hessψ(x) =
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)t −

1

fi(x)
Hess fi(x)

which is positive semidefinite for x ∈ S. □
Then the log barrier problem is given by

min
x
f(x) +

1

t
Ψ(x) where Ax = b (Pt).

Note that this problem is convex. Also note that this reformulation can never be ex-
act if there are active inequalities (since the boundary is not feasible for (Pt)).

In the following, let x∗(t) an optimal point of Pt. Then for every t there is a Lagrange
multiplier λ∗(t) ∈ Rp such that

∇f(x∗(t)) + 1

t
∇Ψ(x∗(t)) + Atλ∗(t) = 0.

Theorem 7.15 (error estimate for the log barrier problem)
For a fixed t > 0, let (x∗, λ∗) an optimal primal/dual pair for Pt. Let

µ∗ ∈ Rm, µ∗
i := − 1

tfi(x∗)
> 0.

Then
f(x∗)− d(µ∗, λ∗) =

m

t

and
f(x∗)− p∗ ≤ m

t
.

87

7.5. INTERIOR POINT ALGORITHMS: THE BARRIER METHOD

Proof: We have

0 = ∇f(x∗) + 1

t
∇Ψ(x∗) + Atλ∗

= ∇f(x∗) +
m∑
i=1

µ∗
i∇fi(x∗) + Atλ∗

= ∇xL(x
∗, µ∗, λ∗).

Therefore, since L is convex,

L(x∗, µ∗, λ∗) = min
x
L(x, µ∗, λ∗).

Now

p∗ ≥ d(µ∗, λ∗) = inf
x∈D

L(x, µ∗, λ∗)

= L(x∗, µ∗, λ∗)

= f(x∗)− 1

t

m∑
i=1

fi(x
∗)

fi(x∗)

= f(x∗)− m

t
□

This inspires the following algorithm.

1. Input: x∗ strictly feasible point, β > 1, ϵ > 0.

2. Solve (Pt) via Newton, using x∗ as initial guess.

3. Let x∗ = x∗(t), let t = βt

4. Until m
t
< ϵ.

Note that if we use Armijo for stepsize control, since x∗ is strictly feasible all iterates
of the newton method will be strictly feasible.

To start, we need an initial strictly feasible point x∗. We compute it using a phase
I–problem reminiscent of the simplex algorithm. Consider the problem

min
x,s

s : f1(x) . . . fm(x) ≤ s, Ax = b.

For this problem, any (x, s) with Ax = b, s = max fi(x) + 1 is a strictly feasible
point. We can use the barrier method to compute a solution to this problem with
minimal value s∗.

If s∗ < 0, then the corresponding x∗ is a strictly feasible point.

If s∗ ≥ 0, then no strictly feasible point exists.

88

Chapter 8

Advanced Examples

In this section, we present two advanced examples without going into details. We
give references for all unproven remarks.

8.1 Image and Signal Denoising

Let us assume that a (2D) image or (1D) signal F is measured, the measurement
is g = F + n with some noise n. Also assume that F is smooth in some sense
(e.g. the function is almost monotonous). n will typically not be smooth, so g is not
smooth, and the image/signal will look ugly. How do we remove the non–smooth
part?

The solution could be a solution to the problem: Find a function f that is not too far
away from g, but is sufficiently smooth. So if Ψ is a penalty functional that is large
for functions which are not smooth, we need to solve the problem

min
f

||f − g||+ αΨ(f)

where α is a regularization parameter.

As a measure for smoothness, according to our idea of smoothness, we take the
p–norm of the gradient, for the data fidelity the 2–norm. The value of p has a big
impact on the result. This can be seen in the following way. Let

fa(x) =

{
x
a

x ∈ [0, a]

1 x ∈ [a, 1].
.

89

8.1. IMAGE AND SIGNAL DENOISING

Then (with piecewise differentiation)

||f ′
a||22 =

∫ a

0

1

a2
dx =

1

a
, ||f ′

a||1 =
∫ a

0

f ′
a(x) dx = 1

which implies that the 1–norm does not care how a function gets from 0 to 1 as long
as it is monotonous, while the 2–norm favors straight lines. This implies that edges,
sharp variations of the brightness between neighboring pixels, will be washed out
and the image or signal is blurred.

So it seems like a good idea to take the 1–norm of the gradient for Ψ. However,
since this is not differentiable, we expect to end up with similar problems as for
constrained minimization with penalty term in the 1–norm.

Since we can only deal with finite dimensional minimization, all of this will have to
be discretized, resulting for signal recovery in the problem

min
x∈Rn

1

2
||x− g||22︸ ︷︷ ︸
=:f(x)

+α||Ax||1︸ ︷︷ ︸
=:g(Ax)

. (8.1)

where the matrix A is a discretization of the first derivative (gradient). This was
introduced by Rudin, Osher and Fatemi in 1992.

To come up with an algorithm, we need the Fenchel conjugate (and leave out most
of the technical details).

Definition 8.1 (Fenchel conjugate function)
Let f : Rn 7→ R ∪ {∞}. Then

f ∗(s) : Rn 7→ R ∪ {∞}, f ∗(s) := sup
x∈Rn

s · x− f(x).

This definition has a simple interpretation. In 1D: This is the difference in R2 of
the line through the origin with gradient s. Then f(x) is the max of the difference
between the graph of the line and the function.

Example: Let

f(x) :=

{
x log x− x x ≥ 0

∞ else.

The sup is assumed where the derivative of the function is zero, so

0 = s− f ′(x) = s− log x⇒ x = es.

90

8.1. IMAGE AND SIGNAL DENOISING

Evaluation of the minimization function gives

f ∗(s) = es.

Let f(x) := ex. Then
f ∗(x) = sup

s
s · x− ex.

For s < 0, this is ∞ (let x → −∞). For s > 0, the minimum exists, the minimal
point is s = ex or x = log s, giving f ∗(s) = s log s− s.

So we see that in this case, f ∗∗(s) = f(s), which is in fact true for all differentiable
convex functions.

Let f(s) = α|s|. Then
f ∗(s) = sup

x
sx− α|x|.

Let x ≥ 0 and s ≤ α. Then

sx− α|x| = x(s− α) ≤ 0.

Let x ≤ 0 and s ≥ −α. Then

sx− α|x| = x(s+ α) ≤ 0.

So if |s| ≤ α, the term in the sup is bounded to above by zero. If this is not the case,
then the term is unbounded, and we have

f ∗(s) =

{
0 |s| ≤ α

∞ else
.

Let f : Rn → R, f(x) := α||x||1. Then

f ∗(s) =

{
0 ||s||∞ ≤ α

∞ else
.

Theorem 8.2 (convexity of the conjugate)
f ∗ is convex.

Proof: fx(y) defined as
fx(y) := y · x− f(x)

91

8.1. IMAGE AND SIGNAL DENOISING

is affine. So

f ∗(λy + (1− λz)) = sup
x
fx(λy + (1− λ)z)

= sup
x
(λfx(y) + (1− λfx(z)))

≤ λ sup
x
fx(y) + (1− λ) sup

x
f(x)

= λf ∗(y) + (1− λ)f ∗(z).

□
The main theorem is given by

Theorem 8.3 (reformulation of minimization problems using the conjugate func-
tion)
Let σ, τ > 0. x∗ ∈ Rn is a minimizer for 8.1 iff there is a p∗ ∈ Rm such that x∗ is a
solution of

min
y

1

2
||y − (x∗ − τAtp∗)||22 + τf(y)

and p∗ is a solution of

min
q

1

2
||q − (p∗ + σAx∗)||22 + σg∗(q).

(see e.g. Clason 2017, lecture notes, Rockafellar, pp 349–).

This inspires the following algorithm:

1. Input: x(0), p(0), τ , σ.

2. Let x(k+1) the solution of the problem

min
y

1

2
||y − (x(k) − τAtp(k))︸ ︷︷ ︸

=:x

||22 + τf(y).

3. Let p the solution of the problem

min
q

1

2
||q − (p(k) + σAx(k))︸ ︷︷ ︸

=:z

||22 + σg∗(q).

4. Let
p(k+1) = p+ θ(p− p(k)).

92

8.1. IMAGE AND SIGNAL DENOISING

At first glance, it looks like we did not win anything – we now even have two mini-
mization problems rather than one.

However, it turns out that the intermediate problems can be solved analytically. In
fact, inserting the definitions from 8.1, we have that the minimization function in
part 1 is given by

1

2
||y − x||22 +

1

2
τ ||y − g||22.

The minimum is taken when the gradient is zero, so

(yi − xi) + τ(yi − gi) = 0

or
y =

x+ τg

1 + τ
=: proxτf (x)

with the prox operator.

The minimization function in the second problem is given by

1

2
||q − z||22 + σg∗(q).

From the introductory remarks we have

g∗(q) =

{
0 ||q||∞ ≤ α

∞ else
.

Therefore, the second problem reduces to

min
q

1

2
||q − z||22 where ||q||∞ ≤ α

and the solution satisfies

pi =

{
zi |zi| ≤ α

sgn(zi)α else
= Proj[−α,α](zi).

Both minimization problems can be solved very easily.

Note that this is motivational only – for the convergence proof, see Cla-
son.

93

8.1. IMAGE AND SIGNAL DENOISING

� �
Denois ing a 1D s i g n a l
import numpy as np
import m a t p l o t l i b . p y p l o t as p l t
Generate o r i g i n a l and n o i s y s i g n a l
N=256
y=np . z e r o s (N)
y [N/ / 4 : 3 *N/ / 4] = 1
X=np . l i n s p a c e (=1 ,1 ,N)
noise =0.2* np . random . normal (0 , 1 , N)
yn=y+ noise
p l t . p l o t (X , y , X , yn)
p l t . t i t l e (’ Noisy S i g n a l ’)
p l t . legend ([’ o r i g i n a l ’ , ’ n o i s y ’]) ;
L2 d e n o i s i n g
alpha =0.2
Fyn=np . f f t . f f t (yn)
F f i l t =np . z e r o s (N , complex)
f o r i i n range (1 , N / / 2) :

F f i l t [i]= Fyn [i] / (1 + alpha * i * i)
F f i l t [N=i]= Fyn [N=i] / (1 + alpha * i * i)

F f i l t [0] = Fyn [0]
f i l t =np . f f t . i f f t (F f i l t)
p l t . p l o t (X , f i l t . r e a l , X , yn , X , y)
p l t . t i t l e (’ L2 d e n o i s i n g ’)
p l t . legend ([’ f i l t e r e d ’ , ’ n o i s y ’ , ’ o r i g i n a l ’])
Chambolle=Pock
T h i s i s a shame .
N=256
A=np . z e r o s ([N=1,N])
np . f i l l d i a g o n a l (A , 1)
np . f i l l d i a g o n a l (A [: , 1 :] , = 1)
alpha =10
tau =0.1
sigma =0.01
t h e t a =1
Poor man ’ s i t e r a t i o n .
x=np . z e r o s (N)
p=np . z e r o s (N=1)
f o r i i n range (0 , 1 0 0 0 0 0) :

z1=x=tau *A . T . dot (p)
z2=p+sigma *A . dot (x)
x =(z1 + tau * yn) / (1 + tau)
f o r i i n range (0 , N=1):

i f (z2 [i]>alpha) :
z2 [i]= alpha

i f (z2 [i]<=alpha) :
z2 [i]==alpha

p=z2+ t h e t a * (z2=p)
p l t . p l o t (X , x , X , yn , X , y)
p l t . legend ([’ f i l t e r e d ’ , ’ n o i s y ’ , ’ o r i g i n a l ’])
� �

Listing 8.1: L1 and L2 denoising (denoising.py)

94

Denoising a 1D signal
import numpy as np
import matplotlib.pyplot as plt
Generate original and noisy signal
N=256
y=np.zeros(N)
y[N//4:3*N//4]=1
X=np.linspace(-1,1,N)
noise=0.2*np.random.normal(0,1,N)
yn=y+noise
plt.plot(X,y,X,yn)
plt.title('Noisy Signal')
plt.legend(['original','noisy']);
L2 denoising
alpha=0.2
Fyn=np.fft.fft(yn)
Ffilt=np.zeros(N,complex)
for i in range(1,N//2):
 Ffilt[i]=Fyn[i]/(1+alpha*i*i)
 Ffilt[N-i]=Fyn[N-i]/(1+alpha*i*i)
Ffilt[0]=Fyn[0]
filt=np.fft.ifft(Ffilt)
plt.plot(X,filt.real,X,yn,X,y)
plt.title('L2 denoising')
plt.legend(['filtered','noisy','original'])
Chambolle-Pock
This is a shame.
N=256
A=np.zeros([N-1,N])
np.fill_diagonal(A,1)
np.fill_diagonal(A[:,1:],-1)
alpha=10
tau=0.1
sigma=0.01
theta=1
Poor man's iteration.
x=np.zeros(N)
p=np.zeros(N-1)
for i in range(0,100000):
 z1=x-tau*A.T.dot(p)
 z2=p+sigma*A.dot(x)
 x=(z1+tau*yn)/(1+tau)
 for i in range(0,N-1):
 if (z2[i]>alpha):
 z2[i]=alpha
 if (z2[i]<-alpha):
 z2[i]=-alpha
 p=z2+theta*(z2-p)
plt.plot(X,x,X,yn,X,y)
plt.legend(['filtered','noisy','original'])

Frank Wuebbeling
L1 and L2 denoising

Appendix A

Errata

This is a list of vital changes that were made after the lecture notes were first pub-
lished in the Learnweb.

A.1 Chapter 1

None yet.

A.2 Chapter 2

• Definition 2.1: There was a transpose missing in the definition of (Df) in part
1.

• Definition 2.1: The definition of the Jacobian was added.

• All of section 2.2: I had written hyperplane instead of hypersurface.

• In theorem 2.18, the second order condition was missing.

A.3 Chapter 3

• Duality moved to new chapter.

• In theorem 3.8, strong duality was used and in the name of the theorem, but
it was not in the condition.

95

A.4. CHAPTER 4

A.4 Chapter 4

• In 4.8, there was a catastrophic error in the formulation of the theorem (the
proof was correct).

• I unfortunately tend to write wolg instead of wlog. Always read wlog.

• In 4.9, part 3, there was min instead of inf. min does no longer make sense
because C2 is no longer compact.

• In 4.6, the proofs would only work for C open. I have rewritten the proofs and
dropped the condition of differentiability for 1-3.

A.5 Chapter 5

• In Definition 5.3, linearly independent refers only to the columns correspond-
ing to index elements of I.

A.6 Chapter 6

• Corrected algorithm 6.11, σ 7→ α, and clarified return value.

• in example 6.4, the definition of the minimization function was wrong (but the
correct definition was used).

A.7 Chapter 7

• Theorem 7.2, part 2: In the proof, inserted missing A(k)t.

• Theorem 7.4, statement: Absolute value of λk, not µk. Was correct in the proof.

96

	Foreword
	Introduction and Examples
	The General Problem Formulation
	Some Examples
	Linear Programming: Maximizing profit with restricted resources
	Data Fitting/Regression/Deep Learning
	Overdetermined Linear Equations
	Graphical Solution
	Treatment Planning

	Basics
	Terminology
	Transformations

	Optimality Conditions
	Unrestricted Problems
	Problems with Equality Constraints
	Equality and Inequality Constraints

	Duality
	Convexity
	Linear Programming
	Problem formulation and characterization of minimal points
	The simplex algorithm: Derivation of phase II
	The simplex algorithm: Implementation and the simplex tableau

	Smooth optimization for problems without constraints
	Line search (descent) methods
	Step Size Control for line search
	Gradient type methods for linear equations
	Newton's method
	Newton's optimization method
	Quasi–Newton methods
	Trust Region Methods

	Numerical optimization with constraints
	Penalty Methods
	Quadratic Programming
	Equality Constraints
	Active Set Strategy for inequality constraints

	Gradient Projection Methods
	Sequential Quadratic Programming (SQP)
	Interior point algorithms: The Barrier Method

	Advanced Examples
	Image and Signal Denoising

	Errata
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

