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Foreword

These lecture notes built upon the PhD thesis [17] and the research articles [13,
12, 11]. In these references the interested reader might find further references and
more general statements of the results presented in this lecture. To preserve the
introductory style we will often treat only simplified cases.
Since this is the first time this lecture has been held, there might be some typos in
the script. The author is happy if you report these to schlottbom@wwu.de .
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Chapter 1

The radiative transfer equation

The motion of particles is guided by different physical phenomena on different scales of interest.
There are basically three different types of scales [10].

1. Microscopic level: equations of motion: Newton’s law, Heisenberg equations.

2. Mesoscopic level: Liouville equation, Boltzmann equation, neutron transport equation,
Vlasov equation.

3. Macroscopic level: Conservation laws or transport equations, e.g., Navier-Stokes equa-
tions, Euler equations, neutron diffusion equations.

In this lecture, we are interested in quantities which can be observed on the macroscopic level
but which are substantially influenced by phenomena taking place on the mesoscopic level, i.e.,
we are interested in calculating the total photon flux leaving the medium of interest, but this flux
is strongly influenced by physical phenomena on the mesoscopic level. In order to account for
these phenomena on the mesoscopic level, we will investigate the radiative transfer equation. The
structure of the radiative transfer equation can be seen as a prototype for many other transport
(or kinetic) equations. Therefore, besides in radiative transfer through stellar atmospheres [7],
this type of equation has many practically relevant applications, e.g., neutron transport [9, 5], or
biomedical optics [18]; see also [10] for several other applications.

In the following, we will introduce the basic notation which is necessary to formulate a transport
equation for photon propagation.

1.1 Basic definitions in radiative transfer

Although the following considerations are valid for different types of particles (neutrons, photons,
etc.), we will define all quantities in terms of photons.

Before introducing the necessary notation, let us state some assumptions in order to clarify
the physical phenomena we take into account. These assumptions are standard in linear transport
theory [9, 5, 14].

(i) Photons are considered as points, i.e., the wave nature of photons is neglected.

(ii) Photons (particles) do not interact with each other.

(iii) Between interactions with the background medium photons travel along straight lines (with
constant energy which is proportional to their frequency).
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2 CHAPTER 1. THE RADIATIVE TRANSFER EQUATION

(iv) The material is isotropic, i.e., no distinguished direction exists, and time-independent, i.e.,
photons travel much faster than the background medium changes.

Let us begin with the basic quantity of interest.
Photon density: The function φ(r, s, t) describes the density of photons at a point r with

direction s, at time t.
Let dA denote a small area with unit normal n. Moreover, let dr denote a small spatial

volume element, ds a small angular volume/surface element and dt a small time interval. Then
the expected number of photons in dr about r with directions lying in ds about s at time t is
given by

φ(r, s, t) dr ds.

Photon flux: The number of photons with directions in ds about s crossing dA in time t to
t+ dt is given by

n · j(r, s, t) dsdtdA,

where j(r, s, t) := csφ(r, s, t) is called the photon flux and c is the speed of light in the medium.
Two physically relevant, i.e., measurable quantities are given next.

Total photon density: The function

Φ(r, t) :=

∫
S
φ(r, s, t) ds (1.1)

is called total photon density and Φ(r, t) dr describes the total number of photons located in dr

around r, at time t.
Total photon flux: The function

J(r, t) :=

∫
S
s φ(r, s, t) ds (1.2)

is called total photon flux. The effective number of photons crossing a small area dA in time t to
t+ dt is given by n · J(r, t) dAdt.

Sources: The density function f(r, s, t) describes the number density of photons with direction
s gained in r at t, i.e., f(r, s, t) dr dsdt is the number of photons with directions in ds about s
inserted into the medium at position dr about r between t and t+ dt.

Mean free path: Let us shortly describe the interaction phenomena of photons with the
background medium. We denote by l(r) the mean free path between interactions for a photon at
position r, which by isotropy of the material, is independent of s. Thus, on average a photon will
suffer c/l(r) interactions per second at a point r.

Interaction rates: The inverse mean free path is called transport or attenuation coefficient,
and is denoted by

µt(r) :=
1

l(r)
.

The transport coefficient µt(r) models the probability of particle interactions per unit distance
traveled by a photon at position r. We will distinguish between two types of interactions, namely
absorption and elastic scattering

µt = µa + µs.

For instance, the scattering rate per unit distance for photons of velocity s at r is described by
µs(r). The average number of photons after an interaction event is described by the fraction µs/µt.
The behavior of the scattering events is specified next.

Scattering kernel: Since we have assumed an isotropic material, the probability for a photon
with direction s′ to be scattered into direction s only depends on s · s′, the cosine of the angle
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between s and s′, i.e., the collisions are rotationally invariant. Thus, the probability for a photon
at position r with direction s′ to be scattered into direction s can be described by a function
θ(r, s · s′).

1.2 Derivation of the radiative transfer equation

A derivation of the radiative transfer equation based on balance laws can be found for instance in
[5, 10, 14, 18]; for another derivation based on linearization of the Boltzmann equation see [6]. We
will closely follow the presentation of [5].

In the previous section we have introduced different quantities which can affect the photon
density φ(r, s, t). Either a photon is transported or it undergoes an interaction event. In order
establish a relation between these effects, let us fix some small volume V ⊂ Rd with surface ∂V .
The temporal change of the number of photons with a certain direction s within V in a small time
interval [t, t+ dt] is due to the number of photons which

(1.) leave or enter V through ∂V in dt,

(2.) are absorbed or scattered into a different direction s′ in dt,

(3.) are gained due to a scattering event from a direction s′ to s in dt,

(4.) are emitted by source terms f in V in dt.

Besides these balance considerations, also the relation

change of number of photons in V with direction s about ds in [t, t+ dt] = dsdt

∫
V

∂φ

∂t
dr

holds true. Let us discuss the specific items in detail.

Item (1.) accounts for photons which leave or enter V with no change in velocity. Mathemati-
cally, this can be described by the surface integral of the angular flux

(1.) = dsdt

∫
∂V

j(r, s, t) ·ndσ

where n is the unit outward normal to ∂V at r. By the divergence theorem and the definition of
j we obtain that

(1.) = dsdt

∫
V

c s · ∇φ(r, s, t) dr.

Item (2.) accounts for photons being absorbed or changing direction (without changing posi-
tion). Thus, by definition of the collision rate we have that

(2.) = dsdt

∫
V

c

l(r)
φ(r, s, t) dr.

Item (3.) accounts for photons scattered from directions s′ ∈ S into direction s ∈ S (without
changing position). Since this takes place with rate c µs, we obtain by definition of θ the following
relation

(3.) = dsdt

∫
V

c µs(r)

∫
S
θ(r, s · s′)φ(r, s′, t) ds′ dr.
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Item (4.) accounts for photons emitted in V with direction s at time t

(4.) = dsdt

∫
V

f(r, s, t) dr.

Since the control volume V was arbitrary, we conclude that the photon density φ must fulfill
the following equation

∂φ(r, s, t)

c ∂t
+ s · ∇φ(r, s, t) + µt(r)φ(r, s, t) = µs(r)

∫
S
θ(r, s · s′)φ(r, s′, t) ds′ +

1

c
f(r, s, t). (1.3)

This is the time-dependent one-speed (mono-chromatic) radiative transfer equation; sometimes this
equation is called linear Boltzmann equation or linear transport equation.

Remark 1.1. The one-speed (mono-chromatic) transport equation is also of interest if one can
define clearly separated energy levels. If for example the energies lie in the interval [E1, E2], the
domain of integration on the right-hand side of (1.3) would have been [E1, E2]×S instead of only
S. Using Fubini’s theorem in order to split the integral

∫
[E1,E2]×S d(s, E) =

∫
[E1,E2]

∫
S ds dE

and using an integration rule for the outer integral leads to an equation like (1.3), where the
scattering kernel also acts between the different energy groups. This multi-group approximation
arises for instances in neutron transport theory where the material properties for fast neutrons
differ substantially from those for thermal neutrons [9].

Boundary and initial conditions: The photon density φ in a given domain R ⊂ Rd with
boundary ∂R is uniquely determined, if

i) the initial photon density φ0,

ii) the sources f within R, and

iii) the photon density g incident on ∂R

are given [5, Chapter 2]. We therefore impose the following initial and boundary conditions

φ(r, s, 0) = φ0(r, s) for all r ∈ R, s ∈ S,
φ(r, s, t) = g(r, s, t) for all t > 0, r ∈ ∂R, s ∈ S such that s ·n < 0.

Remark 1.2. One can think of other boundary conditions as well. For example one could consider
reflections at the boundary or periodic boundary conditions.

An integral formulation of the time-dependent radiative transfer equation: For later
reference let us shortly describe an integral formulation of the transport equation [4, 5, 9, 16, 8].
The basic idea is that the homogeneous transport equation (θ = 0, q = 0) decouples into a linear
transport equation for each direction s ∈ S:

∂φ(r, s, t)

c∂t
+ s · ∇φ(r, s, t) + µt(r, s)φ(r, s, t) = 0 for t ≥ 0, r ∈ R,

φ(r, s, 0) = φ0(r, s) for r ∈ R,
φ(r, s, t) = 0 for t > 0, r ∈ ∂R with s ·n < 0.

A solution to the homogeneous case is given by integration along the characteristics r − st, i.e.,
for r ∈ R, s ∈ S and t ≥ 0

φhom(r, s, t) = φ0(r − st, s) exp
(
−
∫ t

0

µt(r + (t′ − t)s) dt′
)
,
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where we extend all functions by zero on Rd \ R [8]. By the variation of constants formula a
solution φ of the transport equation thus satisfies [8]

φ(r, s, t) = φhom(r, s, t) + φpart(r, s, t), (1.4)

where the particular solution φpart is given by the formula

φpart(r, s, t) =

∫ t

0

exp
(
−
∫ t′

0

µt(r + (t′′ − t)s) dt′′
)
F (r − t′s, s, t− t′) dt′

with

F (r, s, t) := µs(r)

∫
S
θ(r, s · s′)φ(r, s′, t) ds′ +

1

c
f(r, s, t).

We will use the integral formulation (1.4) to prove existence of solutions to the stationary
radiative transfer equation via Banach’s fixed point theorem. The Picard iteration is closely
related to the “source iteration” which is one method to obtain unique solvability of the radiative
transfer equation.

Let us shortly discuss two simplifications of the time-dependent radiative transfer equation
which are of particular interest in optical tomography:

Stationary radiative transfer equation: In optical tomography the typical length scale of
an object of interest is 10 to 100 mm. Since the speed of light is approximately 0.3 mm/ps the
average residence time of a photon in the object is in the order of nanoseconds. Thus, if the source
terms are constant in time, a stationary state φ(r, s) will be reached immediately. The radiative
transfer equation (1.3) then reduces to the following equation

s · ∇φ(r, s) + µt(r, s)φ(r, s) = µs(r)

∫
S
θ(r, s · s′)φ(r, s′) ds′ +

1

c
f(r, s) (1.5)

for r ∈ R and s ∈ S. We will complement this equation by the following inflow boundary condition

φ(r, s) = g(r, s) for all r ∈ ∂R, s ∈ S such that s ·n < 0. (1.6)

Time-harmonic radiative transfer equation: Another important case arises in optical tomo-
graphy when time-harmonic (intensity modulated) source terms are utilized, i.e.,

f(r, s, t) = f(r, s) exp(iωt) and g(r, s, t) = g(r, s) exp(iωt)

with modulation frequency ω, which is usually given in hundreds of MHz. If we expect the solution
to be time-harmonic as well, that is,

φ(r, s, t) = φ(r, s) exp(iωt),

the time-dependent radiative transfer equation (1.3) reduces to

s · ∇φ(r, s) + (µt(r, s) + ik)φ(r, s) = µs(r)

∫
S
θ(r, s · s′)φ(r, s′) ds′ +

1

c
f(r, s), (1.7)

where k = ω/c is the wave number. In order to complement (1.7), consider the boundary condition
(1.6), which transforms to

φ(r, s) = g(r, s) for all r ∈ ∂R, s ∈ S such that s ·n < 0. (1.8)
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Chapter 2

Functions spaces and traces

A main difference to more standard elliptic equations are the functions spaces used to analyze
radiative transfer problems. These spaces contain functions with anisotropic regularity, that is,
the functions possess derivatives only in certain directions.

In this chapter, we introduce the basic notation used in this work. In Section ??, we will
introduce and investigate function spaces and their corresponding trace spaces. In particular, a
Poincaré-Friedrichs type inequality and an integration-by-parts formula are given, cf. Lemma 2.10
and Lemma 2.8, see also [1, 3, 8, 15].

2.0.1 Geometry

Let R ⊂ Rd denote a convex domain with C1 boundary, and denote by n(r) ∈ S the continuous
unit outward pointing normal vector for a point r ∈ ∂R. Furthermore, let S = {s ∈ Rd : |s| = 1}
denote the unit sphere. We define the product domain D := R×S. The boundary ∂D := ∂R×S
of D, cf. Figure 2.1, can be decomposed into an inflow part

∂D− = Γ− = {(r, s) ∈ ∂D : s ·n < 0},

an outflow part
∂D+ = Γ+ = {(r, s) ∈ ∂D : s ·n > 0},

and a remaining tangential part

∂D0 = Γ0 = {(r, s) ∈ ∂D : s ·n = 0}.

For integration on D we use the measure d(r, s) = dr ds which is the product measure of the
d-dimensional Lebesgue measure and the surface measure on S. Similarly, for integation along
∂D we use dσ(r) ds which is the product measure of the surface measure on ∂R and the surface
measure on S.

Lemma 2.1. The in- and outflow boundaries ∂D− and ∂D+ are open subsets of ∂D, and ∂D0 is
a closed subset of ∂D with (2d− 2)-dimensional measure zero.

Proof. Due to the regularity of the boundary, the mapping (r, s) 7→ s ·n is continuous, and hence
the set ∂D0 is closed. With the same arguments, ∂D− and ∂D+ are open. Since ∂R ∈ C1, it is
locally diffeomorphic to a subset of Rd−1. A standard parametrization of the sphere S and the
product structure of ∂D−, ∂D+, ∂D0 ⊂ ∂R× S yield the assertion.

Lemma 2.1 allows us to identify measurable functions defined on ∂D with those defined on
∂D− ∪ ∂D+. Here and below, the subscript ± is used to treat the two cases + (outflow) and −
(inflow) simultaneously.
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∂D+PPPPP

∂D−XXXXX

∂D0 PPPPPPPPPPPP

Figure 2.1: Schematic diagram of the domain D = R×S, with R being the two-dimensional unit
circle. The angular domain S is identified with the interval [0, 2π) via s = (cos(α), sin(α))>. The
inflow part ∂D− is shaded in dark-gray, while the outflow boundary ∂D+ is in light-gray. The
separating black curves denote ∂D0.

2.0.2 The spaces W p and W̃ p

We begin with

C∞0 (D) = {ψ ∈ C∞(D) : supp(ψ) ⊂ K × S for some compact set K ⊂ R}.

For 1 ≤ p <∞, we denote by

Lp(D) = Lp(R× S) = {v : D → R : v is measurable and
∫
R

∫
S
|v(r, s)|p dsdr <∞}

the space of (equivalence classes) of measurable functions, whose pth power is integrable. The
space L∞(D) consists of measurable functions, which are essentially bounded. The spaces Lp(D),
1 ≤ p ≤ ∞ are Banach spaces (Theorem of Riesz-Fischer). L2(D) is a Hilbert space when endowed
with the scalar product

(v, w)L2(D) := (v, w)D :=

∫
R

∫
S
v(r, s)w(r, s) dsdr.

Similar notation is used for scalar products defined as integrals over other domains, and the norm
associated with a scalar product ( · , · )∗ is always denoted by ‖v‖∗ :=

√
(v, v)∗.

Lemma 2.2. C∞0 (D) is dense in Lp(D) for 1 ≤ p <∞.

Proof. Via convolution and parametrization of S.

For u ∈ C1(R) and s ∈ S the directional derivative is defined as

s · ∇u(r) =
∂

∂t
u(r + ts)|t=0, r ∈ R.

Similarly, we define s · ∇v(r, s) for a smooth function v : D → R. We define

W p = C∞(D)
‖ · ‖Wp

, ‖v‖pWp = ‖v‖pLp(D) + ‖s · ∇v‖pLp(D).



9

One can show that W p = W p(D) = {v ∈ Lp(D) : s · ∇v ∈ Lp(D)}. Here, we say that a function
v ∈ Lp(D) has a weak directional derivative w ∈ Lp(D) if∫

D
w(r, s)ψ(r, s) d(r, s) = −

∫
D
v(r, s)s · ∇ψ(r, s) d(r, s) for all ψ ∈ C∞0 (D).

We write w = s · ∇v.
If v ∈ W 1, then we can define for a.e. (r, s) ∈ ∂D−, the function u(t) = v(r + ts, s), 0 ≤

t ≤ τ(r, s) defined in (2.2). Since u′(t) = s · ∇v(r + ts, s), we have u ∈ W 1,1(0, τ(r, s)). Hence,
u ∈ C0([0, τ(r, s)]), and for a.e. s ∈ S and any t1, t2 ∈ [0, τ(r, s)]

v(r + t2s, s)− v(r + t1s, s) =

∫ t2

t1

s · ∇v(r + ts, s) dt. (2.1)

In view of (2.1) a function v ∈ W p is defined a.e. on ∂D. In order to characterize the function
space containing these traces we need some more tools, see also [3, 15, 8, 1].

For a point (r, s) ∈ ∂D± we define the time of travel τ(r, s) by

τ(r, s) := sup{t > 0 : r ∓ t′s ∈ R for all 0 < t′ < t}, (2.2)

i.e., τ(r, s) is the length of the longest line segment through r with direction s lying completely
in R [8, 15], cf. Figure 2.2. Furthermore, we set τ(r + ts, s) = τ(r, s) for 0 ≤ t ≤ τ(r, s) and
(r, s) ∈ ∂D−, i.e.

s · ∇τ = 0. (2.3)

For fixed s ∈ S, there holds

R = {r + ts : r ∈ ∂R such that s ·n(r) < 0, and 0 ≤ t ≤ τ(r, s)}.

Lemma 2.3. For any u ∈ L1(R) there holds∫
R
u(r) dr =

∫
{r∈∂R:s ·n(r)<0}

∫ τ(r,s)

0

u(r + ts)|s ·n(r)|dtdσ(r), (2.4)

and ∫
R
u(r) dr =

∫
{s ·n>0}

∫ τ(r,s)

0

u(r − ts)|s ·n|dtdσ. (2.5)

Proof. Let s ∈ S be fixed. Let r̃ ∈ R be arbitrary. Choose r ∈ ∂R such that n(r) · s < 0 and
r̃ = r + t̃s for some 0 ≤ t̃ ≤ τ(r, s). Therefore, we can define for a.e. r̃ ∈ R

v(r̃, s) = v(r + t̃s, s) =

∫ τ(r,s)

t̃

u(r + ts) dt.

Then, by definition of the directional derivative,

s · ∇v(r̃, s) = −u(r̃) in D,
v(r̃, s) = 0 for r̃ ∈ ∂R with n(r̃) · s > 0.

Since s · ∇v = div(sv) ∈ L1(R), the divergence theorem yields∫
R
u(r̃) dr̃ = −

∫
∂R

v(r̃, s)s ·n(r̃) dσ(r̃) =

∫
{s ·n<0}

v(r̃, s)|s ·n(r̃)|dσ(r̃).

If r̃ ∈ ∂R is such that n(r̃) · s < 0, then t̃ = 0 and r = r̃. Therefore, we conclude with∫
{s ·n<0}

v(r̃, s)|s ·n(r̃)|dσ(r̃) =

∫
{s ·n<0}

∫ τ(r,s)

0

u(r + ts) dt|s ·n(r)|dσ(r).

Eq. (2.5) follows similarly.
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R

sr

r + τ(r, s)s

Figure 2.2: Travel time τ(r, s) for r ∈ ∂R and s ∈ S where R is the bean-shaped object.

As we will see below, we can define traces for functions in the space

W̃ p = C∞(D)
‖ · ‖

W̃p

, ‖v‖p
W̃p

= ‖v‖pLp(D) + ‖τs · ∇v‖pLp(D).

Since τ ∈ L∞(D), we have that W p ⊂ W̃ p.

Lemma 2.4. The partial trace operators v 7→ v|∂D± defined for continuous functions can be
extended to surjective, bounded linear operators γ± : W̃ p → Lp(∂D±; τ |s ·n|) with

‖γ±(v)‖Lp(D±;τ |s ·n| dσ ds) ≤ p
1
p ‖v‖

W̃p .

Proof. Let p = 1 and v ∈ C∞(D) and (r, s) ∈ ∂D−, let r̃ = r + t̃s ∈ R, t̃ ∈ [0, τ(r, s)], be the first
point where |v(r̃, s)| is minimal. In particular, there holds

|v(r̃, s)|τ(r, s) ≤
∫ τ(r,s)

0

|v(r + ts, s)|dt. (2.6)

By (2.1) we obtain that

v(r, s) = v(r̃, s)−
∫ t̃

0

s · ∇v(r + ts, s) dt. (2.7)

Integrating (2.7) over ∂D− with measure τ(r, s)|s ·n|dσ ds, and using (2.4), (2.6) yields∫
∂D−
|v(r, s)|τ(r, s)|s ·n|dσ ds ≤

∫
∂D−
|v(r̃, s)|τ(r, s)|s ·n|dσ ds

+

∫
S

∫
{s ·n<0}

∫ t

0

|s · ∇v(r + ts, s)||s ·n|τ(r, s) dtdσ ds

≤
∫
S

∫
{s ·n<0}

∫ τ(r,s)

0

|v(r + ts, s)||s ·n|dtdσ ds

+

∫
S

∫
{s ·n<0}

∫ τ(r,s)

0

|s · ∇v(r + ts, s)|τ(r, s)|s ·n|dtdσ ds

= ‖v‖L1(D) + ‖τs · ∇v‖L1(D).

For the general case p > 1, set ṽ = |v|p, and observe that

τ |s · ∇ṽ| = τ |p|v|p−2vs · ∇v| = pτ |v|p−1|s · ∇v| ≤ (p− 1)|v|p + |τs · ∇v|p.
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Therefore, ∫
∂D−
|v(r, s)|pτ(r, s)|s ·n|dσ ds ≤ p‖v‖pLp(D) + ‖τs · ∇v‖pLp(D).

To show surjectivity of the trace mapping, let g ∈ Lp(∂D−; τ |s ·n|) and define

v(r + ts, s) = g(r, s) for a.e. (r, s) ∈ ∂D−, 0 ≤ t ≤ τ(r, s).

By construction v is constant along the line r + ts, i.e. s · ∇v = 0. Moreover, by (2.4) there holds

‖g‖pLp(∂D−;τ |s ·n|) =

∫
∂D−
|g(r, s)|pτ(r, s)|s ·n|dσ ds

=

∫
S

∫
{s ·n<0}

∫ τ(r,s)

0

|v(r + ts, s)|p|s ·n|dtdσ ds = ‖v‖pLp(D).

The result for the outflow part follows in the same way due to (2.5).

Lemma 2.5 (Poincaré-Friedrichs inequality 1). For v ∈ W̃ p there holds

‖v‖pLp(D) ≤ 2p−1
(
‖v‖pLp(∂D−;τ |s ·n|) + ‖τs · ∇v‖pLp(D)

)
.

Proof. Let s ∈ S, r ∈ ∂R such that s ·n < 0, and 0 ≤ t ≤ τ(r, s). For v ∈ C∞(D) we obtain by
the fundamental theorem of calculus

|v(r + ts, s)|p ≤ 2p−1

(
|v(r, s)|p + τ(r, s)p−1

∫ τ(r,s)

0

|s · ∇v(r + ts, s)|p dt

)
.

Integrating gives with (2.4)

‖v‖pLp(D) =

∫
∂D−

∫ τ(r,s)

0

|v(r + ts, s)|p dt|s ·n|dσ ds

≤ 2p−1

∫
∂D−

(
|v(r, s)|pτ(r, s) + τ(r, s)p

∫ τ(r,s)

0

|s · ∇v(r + ts, s)|p dt

)
|s ·n|dσ ds

= 2p−1
(
‖v‖pLp(∂D−;τ |s ·n|) + ‖τs · ∇v‖pLp(D)

)
.

Corollary 2.6. Let v : D → R be a measurable function such that τs · ∇v ∈ Lp(D). Then the
following statements are equivalent:
(i) v ∈ Lp(D).
(ii) v ∈ Lp(∂D−; τ |s ·n|).
(iii) v ∈ Lp(∂D+; τ |s ·n|).

Proof. (i) implies (ii) and (iii) according to Lemma 2.4. According to Lemma 2.5 (ii) implies (i).
Similarly, (iii) implies (i).

Since by Lemma 2.1, the boundary ∂D coincides with the union of ∂D+ and ∂D− up to a set
of measure zero, we have

W p = {v ∈ Lp(D) : s · ∇v ∈ Lp(D) and γ±(v) ∈ Lp(∂D±; τ |s ·n|)}.

and W 2 is a Hilbert space when equipped with the inner product

(v, w)W 2 = (v, w)D + (s · ∇v, s · ∇w)D + (τ |s ·n| v, w)∂D.



12 CHAPTER 2. FUNCTIONS SPACES AND TRACES

2.0.3 The spaces Vp and Wp

The spaces W p defined in the previous section are not sufficient for our analysis. To see this let
w, v ∈ C∞(D). Then, integration by parts shows that∫

S

∫
R
s · ∇vw dr ds = −

∫
S

∫
R
vs · ∇w dr ds+

∫
S

∫
∂R

vws ·ndσ(r) ds.

The term, involving the boundary integral is not well-defined for functions in W 2. Therefore, for
smooth functions w, v ∈ C∞(D) let us define a norm by

‖v‖pVp = ‖τ−
1
p v‖pLp(D) + ‖τ1− 1

p s · ∇v‖pLp(D), (2.8)

and let Vp denote the completion of C∞(D) with respect to the associated norm.
Since 0 ≤ τ(r, s) ≤ diam(R) < ∞ on ∂D, integrability with respect to τ(r, s)|s ·n|dsdσ is

a weaker condition than integrability with respect to |s ·n|dsdσ. Next, we will see that traces
of functions in Vp have the required regularity. We denote by Lp(∂D±; |s ·n|) the completion of
Lp(∂D±) with respect to ‖ · ‖Lp(∂D±;|s ·n|).

Lemma 2.7. The trace mappings v 7→ v|∂D defined for v ∈ C1(D) can be extended by continuity
to bounded linear operators γ± : Vp → Lp(∂D±; |s ·n|) with ‖γ±(v)‖Lp(∂D±;|s ·n|) ≤ p1/p‖v‖Vp .
The mappings γ± are surjective.

Proof. The assertion follows from Lemma 2.4 and (2.3). To see this, let v ∈ Vp and set ṽ = τ−
1
p v.

Then, using (2.3) we see that

ṽ ∈ Lp(D) and τs · ∇ṽ = s · ∇(τ1− 1
p v) = τ1− 1

p s · ∇v ∈ Lp(D),

i.e. ṽ ∈ W̃ p and ‖ṽ‖
W̃p = ‖v‖Vp . By Lemma 2.7, ṽ ∈ Lp(∂D±; τ |s ·n|). The assertion follows from∫

∂D±
|ṽ|pτ |s ·n|dσ ds =

∫
∂D±
|v|p|s ·n|dσ ds.

Lemma 2.8 (Poincaré-Friedrichs inequality). For v ∈ Vp there holds

‖τ−
1
p v‖pLp(D) ≤ 2p−1

(
‖v‖pLp(∂D−;|s ·n|) + ‖τ1− 1

p s · ∇v‖pLp(D)

)
.

Proof. The assertion follows from Lemma 2.5 and (2.3) with ṽ = τ−
1
p v for v ∈ Vp.

Corollary 2.9. Let v : D → R be a measurable function such that τ1− 1
p s · ∇v ∈ Lp(D). Then the

following statements are equivalent:
(i) τ−

1
p v ∈ Lp(D).

(ii) v ∈ Lp(∂D−; |s ·n|).
(iii) v ∈ Lp(∂D+; |s ·n|).

Proof. (i) implies (ii) and (iii) according to Lemma 2.7. According to Lemma 2.8 (ii) implies (i).
Similarly, (iii) implies (i).

For further details, we refer to [1, 3, 8, 12, 15]. The following integration-by-parts formula will
be a central tool in the derivation of a variational framework for the radiative transfer equation.
Note, that it does not hold for arbitrary functions in space W 2, since the boundary values do not
have the required regularity.
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Lemma 2.10 (Integration by parts). For any pair of functions v, w ∈ V2 there holds

(s · ∇v, w)D = −(v, s · ∇w)D + (s ·n v,w)∂D. (2.9)

Proof. For smooth functions v ∈ C∞(D), the formula is a direct consequence of Green’s theorem,
and the result then follows by density of C∞(D) ⊂ V2 and Lemma 2.7.

Remark 2.11. It is easy to see that V1 ⊂W 1 and W∞ ⊂ V∞, and W̃∞ = V∞. A further function
space is

Wp = {v ∈W p : γ−(v) ∈ Lp(∂D−; |s ·n|)}.

Since τ ∈ L∞(D), we have that τ1− 1
p s · ∇v ∈ Lp(D) for any s · ∇v ∈ Lp(D). Using Corollary 2.9,

we see that Wp ⊂ Vp for all 1 ≤ p ≤ ∞ and W1 = V1. In particular, the following Poincaré-
Friedrichs inequality holds true

‖v‖Lp(D) ≤ C(‖v‖Lp(∂D−;|s ·n|) + ‖s · ∇v‖Lp(D)), for v ∈ Wp. (2.10)

The constant C depends on diam(R) and p only.
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Chapter 3

Existence theory

By means of a fixed-point argument we can show under certain conditions on the data that the
stationary radiative transfer equation has a unique solution. We consider

s · ∇φ(r, s) + µt(r)φ(r, s) = µs(r)

∫
S
θ(r, s · s′)φ(r, s′) ds′ + f(r, s) for (r, s) ∈ D (3.1)

φ(r, s) = g(r, s) where n(r) · s < 0. (3.2)

We make the following assumptions:

(A1) µt, µs : R → R are non-negative and µt, µs ∈ L∞(R) and

µt − µs ≥ 0.

(A2) θ : R× [−1, 1]→ R is non-negative and measurable and for each (r, s) ∈ D∫
S
θ(r, s · s′) ds′ = 1.

In Section 3.4 we will prove well-posedness of the radiative transfer equation (3.1)–(3.2).

Theorem 3.1. Let (A1)–(A2) hold. Then for all 1 ≤ p ≤ ∞ and for f ∈ Lp(D; τp−1), g ∈
Lp(∂D−; |s ·n|), the radiative transfer problem (3.1)–(3.2) admits a unique solution φ ∈ Vp that
satisfies

‖φ‖Vp ≤ C
(
‖τ1− 1

p f‖Lp(D) + ‖g‖Lp(Γ−;|n · s|)
)
, (3.3)

with C = (3 + 2‖τµt‖L∞(D))e
‖τµs‖L∞ .

3.1 Reformulation as fixed-point equation

Let us start by reformulating the radiative transfer problem as an equivalent integral equation [4].
We define the scattering operator by

Kφ(r, s) = µs(r)

∫
S
θ(r, s · s′)φ(r, s′) ds′, (r, s) ∈ D, (3.4)

further denote by

(J g)(r− + ts, s) = e−
∫ t
0
µt(r−+t′s) dt′g(r−, s), (r−, s) ∈ Γ− (3.5)

15
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the extension of boundary values, and define a lifting

Lf(r− + ts, s) =

∫ t

0

e−
∫ t
t′ µt(r−+t′′s) dt′′f(r− + t′s, s) dt′, (r−, s) ∈ Γ−, (3.6)

where 0 < t < τ(r−, s). By elementary calculations (exercise) one can verify that

(s · ∇+ µt)J g = 0, J g|Γ− = g, and (3.7)

(s · ∇+ µt)Lf = f, Lf |Γ− = 0. (3.8)

This means that the extension J g of the boundary values lies in the kernel of the differential
operator and that the lifting L is a right inverse of s · ∇ + µt. Note, that each of the latter two
equations can be interpreted as an ordinary differential equation with parameter s. Using the
variation of constants formula, the radiative transfer problem can then be seen to be equivalent to
the following operator equation in integral form [4]

φ = LKφ+ Lf + J g. (3.9)

The unique solvability for (3.1)–(3.2) is therefore equivalent to the existence of a unique fixed-point
for (3.9). To show the existence of a unique fixed-point, we will in the following sections select
appropriate solution spaces, provide conditions on the data such that Lf and J g lie in this space,
and show that LK is a contraction.

3.2 Solvability in L∞

We will assume throughout that (A1)–(A2) hold and use the fact that for every point r ∈ R and
any velocity s ∈ S we can find a point (r−, s) on the inflow boundary Γ− such that

r = r− + ts with 0 < t < τ(r, s). (3.10)

Also note that τ(r, s) = τ(r−, s). We show first that LK is a contraction on L∞(R× S).

Lemma 3.2. For any φ ∈ L∞(D) there holds

‖LKφ‖L∞(D) ≤
(
1− e−‖µsτ‖L∞(D)

)
‖φ‖L∞(D).

Proof. Using f = Kφ in (3.6) and the assumption that µs ≤ µt, we obtain for 0 < t < τ(r−, s)

|(LKφ)(r− + ts, s)| ≤
∫ t

0

e−
∫ t
t′ µs(r−+t′′s) dt′′µs(r− + t′s) dt′‖φ‖L∞(D)

≤
(
1− e−‖µsτ‖L∞

)
‖φ‖L∞(D).

For the last estimate see the exercises.

Applying Banach’s fixed-point theorem, we see that (3.9) has a unique solution φ ∈ L∞(D)

whenever Lf and J g are in L∞(D). This can be guaranteed by the following two results.

Lemma 3.3. Assume that τf ∈ L∞(D). Then

‖Lf‖L∞(D) ≤ ‖τf‖L∞(D).

Proof. Using the definition of L, we obtain

|Lf(r− + ts, s)| ≤
∫ t

0

e−
∫ t
t′ µt(r−+t′′s) dt′′τ−1|τf(r− + t′s, s)|dt′ ≤ ‖τf‖L∞(D).
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Lemma 3.4. For any g ∈ L∞(Γ−) there holds

‖LKJ g‖L∞(D) ≤ ‖J g‖L∞(D) ≤ ‖g‖L∞(Γ−).

Proof. Since µt ≥ 0 we immediately obtain |J g(r− + ts, s)| ≤ |g(r−, s)|, which yields the second
estimate. The first one follows from Lemma 3.2.

Combining the three previous Lemmas and the equivalence of the fixed-point equation (3.9)
with the radiative transfer problem, we obtain

Theorem 3.5. For any g ∈ L∞(Γ−) and τf ∈ L∞(D), problem (3.1)–(3.2) has a unique solution
φ ∈ L∞(D) which satisfies the a-priori bound

‖φ‖L∞(D) ≤ e‖µsτ‖L∞
(
‖τf‖L∞(D) + ‖g‖L∞(Γ−)

)
.

Proof. Define the mapping F∞ : L∞(D) → L∞(D) by F∞(φ) = LKφ + Lf + J g. In view
of Lemma 3.2, Lemma 3.3 and Lemma 3.4, F∞ is well-defined. Moreover, by Lemma 3.2, for
φ, ψ ∈ L∞(D), we have

‖F∞(φ)−F∞(ψ)‖L∞(D) = ‖LK(φ− ψ)‖L∞(D) ≤ (1− e−‖µsτ‖L∞ )‖φ− ψ‖L∞(D).

Thus, F∞ is a contraction, and the existence of a fixed-point follows from Banach’s fixed point
theorem. For the a-priori estimate, we employ again the above Lemmata, i.e.

‖φ‖L∞(D) = ‖F∞(φ)‖L∞(D) ≤ ‖LKφ‖L∞(D) + ‖Lf‖L∞(D) + ‖J g‖L∞(D)

≤ (1− e−‖µsτ‖L∞ )‖φ‖L∞(D) + ‖τf‖L∞(D) + ‖g‖L∞(Γ−;|s ·n|).

Rearrangement of the terms yields the assertion.

3.3 Solvability in L1

Setting w = s · ∇φ + µtφ allows us to express the solution as φ = J g + Lw. The fixed-point
problem (3.9) can then be stated equivalently as

w = KLw + f +KJ g, φ = Lw + J g. (3.11)

We want to show existence of a unique fixed-point for (3.11) in L1(D). To do so, we will first
establish the contraction property for the operator KL.

Lemma 3.6. For any w ∈ L1(D) there holds

‖KLw‖L1(D) ≤ (1− e−‖µsτ‖L∞ )‖w‖L1(D).

Proof. By the definitions of K and µs, we get

‖KLw‖L1(D) ≤
∫
R

∫
S
µs(r)

∫
S
θ(r, s · s′)|(Lw)(r, s′)|ds′ dsdr

=

∫
R

∫
S
µs(r)|(Lw)(r, s′)|ds′ dr = (∗).
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Using the definition of L and applying the integral formula (2.4) further yields

(∗) ≤
∫

Γ−

∫ τ(r−,s)

0

µs(r− + ts)

∫ t

0

e−
∫ t
t′ µt(r−+t′′s) dt′′ |w(r− + t′s, s)|dt′ dt|n · s|d(r−, s)

=

∫
Γ−

∫ τ(r−,s)

0

∫ τ(r−,s)

t′
µs(r− + ts)e−

∫ t
t′ µt(r−+t′′s) dt′′ dt|w(r− + t′s, s)|dt′|n · s|d(r−, s)

≤
∫

Γ−

∫ τ(r−,s)

0

(
1− e−

∫ τ(r−,s)
t′ µs(r−+t′′s) dt′′

)
|w(r− + t′s, s)|dt′|n · s|d(r−, s).

Here we used µs ≤ µt and applied Fubini’s theorem again to exchange the order of integrals with
respect to dt′ and dt and explicitly computed the latter. The assertion now follows from (2.4).

To establish the existence of a fixed-point, we additionally have to require that f and KJ g are
in L1(D). For the latter term, we use

Lemma 3.7. For any g ∈ L1(Γ−; |s ·n|) there holds

‖KJ g‖L1(D) ≤ ‖µsJ g‖L1(D) ≤ (1− e−‖µsτ‖L∞ )‖g‖L1(Γ−;|s ·n|).

Proof. By the definition of K and exchanging the order of integration, we obtain

‖KJ g‖L1(D) ≤
∫
R

∫
S
µs(r)

∫
S
θ(r, s · s′)|J g(r, s′)|ds′ dsdr = ‖µsJ g‖L1(D).

Employing the definition of J and the integral formula (2.4), yields

‖µsJ g‖L1(D) ≤
∫

Γ−

∫ τ(r−,s)

0

µs(r− + ts)e−
∫ t
0
µt(r−+t′s) dt′ dt|g(r−, s)||s ·n|d(r−, s)

≤ (1− e−‖µsτ‖L∞ )‖g‖L1(Γ−;|s ·n|),

where in the last step, we used µs ≤ µt and a direct computation of the integral similar as in the
proof of Lemma 3.6.

By Banach’s fixed-point theorem and the previous estimates, we now obtain

Lemma 3.8. For any f ∈ L1(D) and g ∈ L1(Γ−; |s ·n|), the fixed-point problem (3.11) has a
unique solution w ∈ L1(D) and there holds

‖w‖L1(D) ≤ e‖µsτ‖L∞
(
‖f‖L1(D) + (1− e−‖µsτ‖L∞ )‖g‖L1(Γ−;|s ·n|)

)
.

Proof. Define the mapping F1 : L1(D) → L1(D) by F1(w) = KLw + f + KJ g. In view of
Lemma 3.6 and Lemma 3.7, F1 is well-defined. Moreover, by Lemma 3.6, for w, v ∈ L1(D), we
have

‖F1(w)−F1(v)‖L1(D) = ‖KL(w − v)‖L1(D) ≤ (1− e−‖µsτ‖L∞ )‖w − v‖L1(D).

Thus, F1 is a contraction, and the existence of a fixed-point follows from Banach’s fixed point
theorem. For the a-priori estimate, we employ again Lemma 3.6 and Lemma 3.7, i.e.

‖w‖L1(D) = ‖F1(w)‖L1(D) ≤ ‖KLw‖L1(D) + ‖f‖L1(D) + ‖KJ g‖L1(D)

≤ (1− e−‖µsτ‖L∞ )‖w‖L1(D) + ‖f‖L1(D) + (1− e−‖µsτ‖L∞ )‖g‖L1(Γ−;|s ·n|).

Rearrangement of the terms yields the assertion.

To establish an L1 estimate for the solution φ = Lw + J g of problem (3.1)–(3.2), we have to
establish additional bounds for Lw and J g.
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Lemma 3.9. For any w ∈ L1(D) and any g ∈ L1(Γ−; |s ·n|) there holds

‖τ−1Lw‖L1(D) ≤ ‖w‖L1(D) and ‖τ−1J g‖L1(D) ≤ ‖g‖L1(Γ−;|s ·n|).

Proof. Using integral formula (2.4) and writing τ = τ(r−, s), we obtain

‖τ−1Lw‖L1(D) =

∫
Γ−

∫ τ

0

1

τ

∫ t

0

e−
∫ t
t′ µt(r−+t′′s) dt′′w(r− + t′s, s) dt′|s ·n|dtd(r−, s)

≤
∫

Γ−

∫ τ

0

1

τ

∫ τ

0

w(r− + t′s, s) dt′|s ·n|dtd(r−, s) = ‖w‖L1(D).

Similarly,

‖τ−1J g‖L1(D) ≤
∫

Γ−

∫ τ

0

1

τ
e−

∫ t
0
µt(r−+t′s) dt′ |g(r−, s)||s ·n|dtd(r−, s) ≤ ‖g‖L1(Γ−;|s ·n|).

A combination of the previous estimates now yields

Theorem 3.10. For any f ∈ L1(D) and g ∈ L1(Γ−; |s ·n|), the boundary value problem (3.1)–
(3.2) has a unique solution φ ∈ L1(D) which satisfies

‖τ−1φ‖L1(D) ≤ e‖µsτ‖L∞
(
‖f‖L1(D) + ‖g‖L1(Γ−;|s ·n|)

)
.

Proof. The result follows from the representation φ = Lw + J g of the solution by applying the
triangle inequality and using the estimates of Lemmas 3.8 and 3.9.

3.4 Solvability in Lp

For establishing solvability in Lp we will need the following classical result, a proof can be found
e.g. in [2, Chapter 4, Theorem 2.2].

Theorem 3.11 (Riesz-Thorin convexity theorem). Let (M, dµ) and (Λ, dν) be σ-finite measure
spaces. Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let T : Lp0(M) + Lp1(M) → Lq0(Λ) + Lq1(Λ) be a linear
operator such that

‖T‖Lpi (M)→Lqi (Λ) ≤Mi, i = 0, 1.

Then T ∈ L(Lpθ (M), Lqθ (Λ)) for

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
, 0 < θ < 1.

Moreover, if pi ≤ qi, i = 0, 1, then

‖T‖Lpθ (M)→Lqθ (Λ) ≤M1−θ
0 Mθ

1 .

Remark 3.12. The restriction pi ≤ qi in Theorem 3.11 is not necessary for complex Lp-spaces. For
real Lp-spaces and pi 6≤ qi, there holds ‖T‖Lpθ (M)→Lqθ (Λ) ≤ 2M1−θ

0 Mθ
1 , see [2].



20 CHAPTER 3. EXISTENCE THEORY

3.4.1 Existence and Lp estimate

As a first step, let us establish the a-priori estimate for data that simultaneously satisfy the
requirements of Theorems 3.5 and 3.10. Noting that

‖φ‖Lp(D;τ−1) = ‖τ−
1
pφ‖Lp(D),

the a-priori bounds of these previous results can be written as

‖φ‖Lp(D;τ−1) ≤ e‖µsτ‖L∞
(
‖τf‖Lp(D;τ−1) + ‖g‖Lp(Γ−;|s ·n|)

)
for p ∈ {1,∞}.

Using the linearity of the problem, we can decompose φ = φg + φf , where φg and φf are the
solutions of (3.1)–(3.2) with f ≡ 0 and g ≡ 0, respectively. An application of the Riesz-Thorin
theorem 3.11 to the solution operator then yields

‖φf‖Lp(D;τ−1) ≤ e‖µsτ‖L∞ ‖τf‖Lp(D;τ−1) and ‖φg‖Lp(D;τ−1) ≤ e‖µsτ‖L∞ ‖g‖Lp(Γ−;|s ·n|)

for any 1 ≤ p ≤ ∞. From this estimate the a-priori estimate is derived via the triangle inequality.
The unique solvability for all admissible data follows by a density argument.

3.4.2 Estimates for the derivatives

Using the a-priori estimates of Section 3.4.1 and the fixed-point equation (3.9), it is straight-
forward to obtain also estimates for the directional derivatives s · ∇φ. Let us first consider the case
p = 1, where we have

Lemma 3.13. Under the assumptions of Theorem 3.10 one has

‖s · ∇φ‖L1(D) ≤ 2e‖µsτ‖L∞
(
‖f‖L1(D) + ‖g‖L1(Γ−;|s ·n|)

)
.

Proof. By φ = Lw + J g and the properties of the operators L and J , we obtain

‖s · ∇φ‖L1(D) ≤ ‖w‖L1(D) + ‖µtφ‖L1(D).

The first term can be estimated by Lemma 3.8, and for the second, we use

‖µtφ‖L1(D) ≤ ‖µtLw‖L1(D) + ‖µtJ g‖L1(D) ≤ ‖w‖L1(D) + ‖g‖L1(Γ−;|s ·n|).

The second estimate for the boundary term is obtained as in Lemma 3.7.

For the case p =∞, we have

Lemma 3.14. Under the assumptions of Theorem 3.5 there holds

‖τs · ∇φ‖L∞(D) ≤
(
1 + 2‖µtτ‖L∞

)
e‖µsτ‖L∞(D)

(
‖τf‖L∞(D) + ‖g‖L∞(Γ−;|s ·n|)).

Proof. The identity s · ∇φ = Kφ− µtφ+ f yields

‖τs · ∇φ‖L∞(D) ≤ (‖τµs‖L∞(D) + ‖τµt‖L∞(D))‖φ‖L∞(D) + ‖τf‖L∞(D).

The estimate then follows from the bounds of Theorem 3.5 and the condition µ′s ≤ µt.

Arguing as in the proof of Theorem 3.1, the case 1 ≤ p ≤ ∞ is then covered by

Theorem 3.15. Under the assumptions of Theorem 3.1 there holds

‖τ1− 1
p s · ∇φ‖Lp(D) ≤ 2(1 + ‖µtτ‖L∞)e‖τµs‖L∞

(
‖τ1− 1

p f‖Lp(D) + ‖g‖Lp(Γ−;|s ·n|)
)
.
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Using the results of Sections 3.2–3.4, we also obtain that

‖τ1− 1
p
(
s · ∇φ+ µtφ−Kφ

)
‖Lp(D) ≤ (1 + 2‖µtτ‖L∞)‖φ‖Vp .

The individual operators could be estimated in the same way. Summarizing, we obtain

Theorem 3.16. Let (A1)–(A2) hold. Then the mapping

Vp → Lp(D; τp−1)× Lp(Γ−; |s ·n|), φ 7→ (s · ∇φ+ µtφ−Kφ, γ−φ)

is continuous and boundedly invertible.

This result shows that the assumptions on the data cannot be relaxed when searching for
solutions in Vp.
Remark 3.17. Using (A1)–(A2), we see from the proof of Lemma 3.14 that s · ∇φ ∈ L∞(D) as
long as f ∈ L∞(D), i.e.

‖s · ∇φ‖L∞(D) ≤ (‖µs‖L∞(D) + ‖µt‖L∞(D))‖φ‖L∞(D) + ‖f‖L∞(D).

Therefore, φ ∈ W∞, cf. Remark 2.11. According to Remark 2.11 we also have W1 = V1. Hence,
employing similar arguments as above, we conclude that the mapping

Wp → Lp(D)× Lp(Γ−; |s ·n|), φ 7→ (s · ∇φ+ µtφ−Kφ, γ−φ)

is continuous and boundedly invertible.

3.5 Spectral estimates and convergence of the fixed-point it-
erations

The solvability results of the previous sections were based on Banach’s fixed-point theorem. The
corresponding fixed-point iteration reads

φn+1 = LKφn + Lf + J g. (3.12)

We show now that under our general assumptions (A1)–(A2), the spectral radius of the fixed-point
operator LK is always uniformly bounded away from one.

Theorem 3.18. Let (A1)–(A2) hold. Then for all 1 ≤ p ≤ ∞

ρp(LK) := lim
n→∞

n

√
‖(LK)n‖Lp(D;τ−1) ≤ 1− e−‖τµs‖∞ .

Proof. The case p = ∞ follows immediately from Lemma 3.2. For p = 1, on the other hand, we
can estimate the powers of the fixed-point operator by

‖(LK)n‖L1(D;τ−1) = ‖τ−1(LK)nτ‖L1(D) ≤ ‖τ−1L‖L1(D)‖KL‖n−1
L1(D)‖Kτ‖L1(D).

The first two terms can be bounded by Lemma 3.7 and 3.6, and for the third term we use the
estimate ‖Kτ‖L1(D) ≤ ‖µsτ‖L∞(D). From this we obtain the estimate for the spectral radius for
p = 1. The general case then follows again by interpolation arguments.

We conclude, that under the weak sub-criticality assumptions (A1), the source iteration (3.12)
converges in Lp for any 1 ≤ p ≤ ∞ with a contraction factor 1− e−‖τµs‖∞ . Note that no positive
lower bound on the absorption is needed for the convergence.
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