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Biological Background

located in membrane cells
proteins with a hole in
their middle
regulate movement of
inorganic ions through
impermeable cell
membrane
exact structure not known
topic of interest in
biophysics, medicine
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One-Dimensional Hopping Model

~~ ~-�

Probabilities
n(x , t) = P(negatively charged ion at position x at time t)
p(x , t) = P(positively charged ion at position x at time t)
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transitionrate:
Π

n/p
+ (x , t) =

P(jump of n/p from position x to x + h in (t, t + ∆t))·
1

∆t P(x + h is empty)

potential V (x , t) given
probability that a negative particle is located at position x at
time t + ∆t:
n(x , t + ∆t) = n(x , t)(1− Π+(x , t)− Π−(x , t))
+n(x + h, t)Π−(x + h, t) + n(x − h, t)Π+(x − h, t)

Resulting Model

∂tn = ∇ · (D(1−m)∇n − Dn∇m − n(1−m)∇V )
∂tp = ∇ · (D(1−m)∇p − Dp∇m + p(1−m)∇V )

D diffusion coefficient, mass m(x , t) = n(x , t) + p(x , t)
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V satisfies the Poisson equation:
λ2Vxx(x , t) = n(x , t)− p(x , t) + f (x)

f (x): Permanent charge on the membrane

Bärbel Schlake Crowded Particles - From Ions to Humans



Ions
Pedestrians

Motivation
One-Dimensional Model
Entropy

Solutions for Equilibrium

∂tn = ∇ · (D(1−m)∇n − Dn∇m − n(1−m)∇V )
∂tp = ∇ · (D(1−m)∇p − Dp∇m + p(1−m)∇V )

Solutions for Equilibrium

n(x , t) = exp(V (x ,t)/D)
exp(V (x ,t)/D)+β·exp(−V (x ,t)/D)+α

p(x , t) = β·exp(−V (x ,t)/D)
exp(V (x ,t)/D)+β·exp(−V (x ,t)/D)+α

α and β are constants, α, β > 0
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Entropy
E =∫

(n · log (n) + p · log (p) + (1−m) · log (1−m)− nV + pV ) dx

decreasing during the process
minimal in equilibrium state
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Under normal Condition

Fastest route, not the shortest one
Individual speed: most comfortable one (dependent of age,
sex, purpose of the trip...)
Speeds are Gaussian distibuted (mean value: 1,34 m/s, St-d
0.26 m/s)
Certain distance from other pedestrians and boundaries
Resting pedestrians are unifomly distributed about the
available space
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In Case of Competitive Evacuation (Panic)

Nervousness
Pedestrians try to move faster than normal
Interactions become physical in nature
Uncoordinated passing of bottlenecks
Jams build up. Arching and clogging at exits
Physical interactions add up ⇒ dangerous pressures up to 4,5
tons
Escape is slowed down by injured or fallen people
Herding behaviour
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Social Force Model (Helbing)

Equation of Motion

dri (t)

dt
= vi (t)

mi
dvi (t)

dt
= mi

v0
i e

0
i (t)− vi (t)

τi
+
∑
j( 6=i)

fij +
∑
W

fiW

ri position of pedestrian i
vi velocity
dvi (t)

dt acceleration

mi mass
τi acceleration time
v0
i desired velocity, e0

i desired
direction
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Forces

fij = f interact
ij + fbody

ij + fslidij

f interact
ij = Ai · e[(Rij−dij)/Bij ]nij

fbody
ij = k(Rij − dij)nij

fslidij = κ(Rij − dij)∆v t
jitij

fbody
ij and fslidij only if pedestrians i and j touch each other (panic)

Ai , Bi , k , κ constants
dij distance
nij = (n1

ij , n
2
ij) = (ri − rj)/dij normalized vector from j to i

tij = (−n2
ij , n

1
ij) tangential direction

∆v t
ji = (vj − vi ) · tij tangential velocity difference

Rij = (Ri + Rj) sum of radii
Bärbel Schlake Crowded Particles - From Ions to Humans
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Additional Forces

Walls are treated analogously
Anisotropy:

fij = Aiexp[(Rij − dij)/Bi ]nij ·
(
λi + (1− λi )

1 + cosϕij

2

)
(1)

λ < 1: happenings in front more weighted than events behind
ϕij : angle between ei and −nij

Sights: forces of type (1) (B larger, A smaller and negative)
Groups: fattij = Cijnij

Fluctuation term ξi
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Self-Organization Phenomena

Helbing’s Model describes the following phenomena quite
realistically:

Segregation
Lane Formation

-

�

�x x x x x x x x xh h h h h h h h h hh h h h h h h h h hx x x x x x x x x

Oscillations
Bottlenecks: Passing of direction
Intersections
Unstable traffic
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Behaviour in Competitive Evacuation (Panic)

People are getting nervous ⇒ Higher level of fluctuations
Higher desired velocity
Herding behaviour:

e0
i =

(1− ni )ei + ni

〈
e0
j

〉
i∥∥∥(1− ni )ei + ni

〈
e0
j

〉
i

∥∥∥ ni nervousness

Freezing by heating:

- �

~ ~ ~ ~ m m m~ ~ ~ m m m m~ ~ ~ ~ m m m
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Behaviour in Competitive Evacuation (Panic)

‘Faster is slower Effect’:
t tt

uuuu
uuuu
uuuu
uuu

uuuu
utuu
uuuv
uut

uuvu
uutu
uvuu
v

uvuu
uuuu
uuu

ttuu
uvuu
uvtu

vuuu
uuuvut
t
uuuu
uuvtvu

‘Phantom Panics’:

v0
i (t) = [1− ni (t)] v0

i (0) + ni (t)vmax
i ni (t) = 1− v̄i (t)

v0
i (0)

Bärbel Schlake Crowded Particles - From Ions to Humans



Ions
Pedestrians

Observations
Models
1D Movement
Further Work

Optimization

Series of columns in the middle of a corridor
Funnelshaped geometrie at bottlenecks
Two small doors better than a large one
Intersections: Guidance arrangements which lead to a
roundabout, an obstacle in the centre
Slim queues
Zigzag shape
Avoidance of staircases
Escape routes should not have a constant width
Column placed asymetrically in front of exits
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Model for hard Bodies with Remote Action

General Model (Helbing)

mi
dvi

dt
= fi

fi = mi
v0
i − vi

τi
−
∑
j 6=i

A′i (‖rj − ri‖ − di )

A′ potential
di = ai + bivi safety margin; ai and bi are constants
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Seyfried’s Model

The Model

fi (t) =

{
Gi (t) ; if vi (t) > 0
max(0,Gi (t)) ; if vi (t) ≤ 0

Gi (t) =
v0
i − vi (t)

τi
− ei

(
1

ri+1(t)− ri (t)− di (t)

)Bi

ei and Bi : strength and the range of the force
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Investigations for the Model

Old Model

dvi (t)

dt
=

{
Gi (t) , if vi (t) > 0
max(0,Gi (t)) , if vi (t) ≤ 0

Gi (t) =
v0
i − vi (t)

τi
− ei

(
1

ri+1(t)− ri (t)− di (t)

)gi

Problem:
Do pedestrians go backwards?
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Acceleration Term

Seyfried’s term:

Gi (t) =
v0
i − vi (t)

τi
− ei

(
1

ri+1(t)− ri (t)− di (t)

)gi

New Acceleration Term

G̃i (t) =

{ v0
i −vi (t)
τi

− ei
mi

(
h

ri+1(t)−ri (t)−di (t)

)gi
, ri+1 − ri − di > 0

−∞ , else
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Improved Model

New Model

dvi

dt
= G̃i (t) · H(vi (t), G̃i (t))

H(vi (t), G̃i (t)) =

{
0 , if vi (t) ≤ 0 and G̃i ≤ 0
1 , if G̃i (t) ≥ δ or vi (t) ≥ ε

Old model: dvi (t)

dt
=

{
Gi (t) , if vi (t) > 0
max(0,Gi (t)) , if vi (t) ≤ 0

Main difference: Interpolation
Interpolation decreases the deceleration in case the velocity comes
close to zero.
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Results

Pedestrians do not go backwards, if their initial safety margin is
large enough, because

The interpolation we used lessened the deceleration in case the
velocity came close to zero
Pedestrians start deceleration sufficiently long before they
approach an obstacle
The more a person decelerates, the less becomes the velocity
and the required safety margin

⇒ Model works well!
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Existence and Uniqueness

Lemma 1:
Let ri+1(0)− ri (0) > di (0) ∀i . Then the ODE-System

ṙ1
v̇1
ṙ2
v̇2
...
˙rN
˙vN


=



v1

G̃1(t, r1, r2, v1) · H(v1(t), G̃1(t))
v2

G2(tr2, r3, v2) · H(v2(t), G̃2(t))
...

vN

G̃N(t, rN , r1, vN) · H(vN(t), G̃N(t))


⇔ ẏ = f(t, y)

has a local solution. The solution is unique.
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Velocity Density Relation
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Limiting Behaviour

What happens if the number of pedestrians N tends to ∞?

We investigate the general formulation:

dvi

dt
=

v0
i − vi

τi
+

1
m

A′(N(xi+1 − xi )− di )
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General Distribution of Particles

Equation for particle distribution function
f N = f N(x1, x2, ..., xN , t):

∂t f N +
∑

i

∂xi

(
dxi

dt
f N
)

= 0

In our case

∂t f N +
∑

i

∂xi

([
v0
i −

1
m

A′(N(xi+1 − xi )− di )

]
f N
)

= 0

Analogon of BBGKY hierarchy (classical kinetic theory):

mN
k (xk , xk−1, ..., x1, t) =

∫
RN−k

f N(x1, ..., xN , t)dxk+1dxk+2...dxN
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General Distribution of Particles

Equation for k-th marginal:

∂tmN
k +∑

i≤k

∫
R
∂xi

([
v0
i −

1
m
∇A(N(xi+1 − xi )− di )

−Bi

]
mN

k+1

)
dxk+1 = 0

We assume mN
k to be dependent of mN

1 and the distances
xi − xi−1 ∀i ≤ k , furthermore

mN
1 (x1)

N→∞−→ ρ(x)

ρ denotes density function.
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Results

Equation from k-th particle marginal in the limit N →∞

∂tρ(x , t)+

∂x

([
v0 − 1

m
A′
(

1
ρ(x , t)

− d
)]

ρ(x , t)

)
= 0

Continuity equation:

∂tρ+ ∂x(vρ) = 0

v = v0 − 1
m

A′
(

1
ρ(x , t)

− d
)
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Conclusions

In the limits N →∞ and τ → 0 all stochastic fluctuations
disappear

Motion can be described by a deterministic equation!

Motion does not depend on initial distribution
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Further Work

Analyze existing data
New experiments (train evacuation)
Group dynamics
Influence of audible signals (message, voice)
Influence of fitness
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Thank you for your Attention!
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