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Introduction

Introduction

@ desirable to extend 2D algorithms to 3D

@ currently used workstations reach their technical limitations
@ expedient:

@ divide original problem in subproblems
@ solve independently on several CPU’s
o merge together to a solution of the complete problem

problem solution problem solution

— CoU -
— CPU
— CPU —
— CPU —

) CPU )

@ data dependences may arise (neglecting leads to undesirable
effects at the interfaces)
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Introduction

Image Denoising

function space for denoising

o Lebesgue space _
LP(Q) :={u:Q—R| [ ulPdx < oo}, p>1
@ contain oscillating images, in particular noise
@ Sobolev space
WLP(Q) := {u € LP(Q) g—x €LP(Q),j=1,...,d}, p>1

& to restrictiv, e.g. for piecewise constant images

@ need for a proper space

@ space of functions with bounded variation (BV)
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Introduction

Total Variation
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Introduction

Total Variation Denoising
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Total Variation Regularization The ROF model

Different Formulations

Total Variation Regularization

Let f: Q € RY — R be a noisy version of a given image ugp with
noise variance given by [(ug — f)? dx < 0.

The ROF model: (Rudin, Osher, Fatemi)

A
0 = arg min {/(u—f)2dx+ |u| v } (1)
weBv(@) (2 Ja
~———
data fitting regularization
where
® [u|Tv = supcpee(q) Jo uV - pdx
llelloo<1

denotes the total variation of u

o BV(Q) = {uec Q) ||ulrv < oo} is the space of functions
with bounded total variation.
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Total Variation Regularization The ROF model
Different Formulations

Total Variation Regularization

o depending on exact definition of the supremum norm
[Iplloc := esssup [[p(x)][,
x€N

family of equivalent seminorms:

/|Du|,s: sup /uV~<pdx
Q peCs(Q)? /0
lleplloo <1

with 2 +1 =1 (Hélder conjugate)
@ isotropic total variation (r = 2)

@ anisotropic total variation (r = o)

Jahn Miiller Parallel Total Variation Minimization



Total Variation Regularization The ROF model

Different Formulations

Isotropic vs Anistropic Total Variation

L

(a) Original image (b) Noisy image

¢ .
L .

(c) Isotropic TV (d) Anisotropic TV
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Total Variation Regularization The ROF model
Different Formulations

Total Variation Regularization

@ The functional

J(u) ::;/Q(U—f)2dx+/ﬂ|u|w

is strict convex and attains a unique minimum in BV (lower
semicontinuity and weak*- compactness of the sub-level sets).

@ optimality condition in terms of subgradients

(0J(u) ={pelU* | J(w)>J(u)+ (p,w — u),Yw € U}):

0 € dJ(u)
0€ ANu—"f)+0lultv
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Total Variation Regularization The ROF model
Different Formulations

Total Variation Regularization

Primal Formulation:

J(u)zg/g(u—f)2dx+/ﬂ|w|dx

for u sufficiently smooth, particularly u € W11(Q).

o Euler Lagrange equation:

)\(uff)fV~(|§Z|) =0

@ perturbe norm to overcome issue with singularity at Vu = 0:
[Vulg := V|Vu]> + 5

@ solution methods: steepest descent (Rudin et al.), fixed point
iteration (Vogel and Oman), Newton's method (Chan et al.)
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Total Variation Regularization The ROF model
Different Formulations

Total Variation Regularization

@ exact formulation:

min  sup {i/(u—ffdx—i- / uV-pdx}
ueBvV(@) lIpll<1 L2 Ja Ja

=:L(u,p)

@ interchange min and sup (not trivial!):

minsup L(u, p) = maxmin L(u, p)
u P P u

Dual Formulation:

. 1 . . 2
(i 15V -p—fl|5 (2)

@ after solving (2) we obtain the solution for u from
u=fF— %V -p
@ solution methods: projection algorithm (Chambolle)
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Total Variation Regularization The ROF model
Different Formulations

Total Variation Regularization

Primal Dual Formulation:

A
inf sup [/(u—f)zdx—i—/ uV-pdx}
ueBV(Q) lpllo<1 L2 Ja Q

=:L(u,p)

@ For a saddle point we achieve the following optimality

conditions
oL
e _f .p=
50 Au )+V-p=0 (3)
and
L(uvp) 2 L(U, q) Vq> ||quo S 17 (4)

o (4) implies V - p € d|u|1v and hence 0 € 9J(u)
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Total Variation Regularization The ROF model
Different Formulations

Penalty and Barrier Approximation

@ approximate the constraint ||p|| < 1 in (3) by using Barrier or
Penalty methods

Penalty approximation

L(up) = L(w, p) = ZF(lp] - 1)

with ¢ > 0 small and a term F penalizing if ||p|| — 1 > 0.
Typical example:

F(s) = % max{s, 0}2

@ still allows violations of the constraint
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Total Variation Regularization The ROF model
Different Formulations

Penalty and Barrier Approximation

Barrier approximation
add a continuous barrier term to L such that G(s) = oo, if the
constraint is violated

L.(u, p) = L(u, p) — =G([Ip|I* — 1)

For example:
G(s) = — log(~s)

@ ensures that the constraint is not violated

@ also called interior-point method

@ choice of approximation effects the shape of the solution u
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Total Variation Regularization The ROF model

Different Formulations

Penalty and Barrier Approximation

Jahn Miiller
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Penalty method
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Barrier method
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Total Variation Regularization The ROF model
Different Formulations

Newton method with damping

@ Optimality conditions (using penalty approximation)

oL. B
5y Mu—Ff)+V-p =0
8L€_ 2 o
ap Vu—=H(p) =0

with H(p) being the derivative of F(||p| —1).
@ Linearize H(p) via first-order Taylor-approximation

H(p*™) ~ H(p")+ H'(p")(p*" - p)

@ Add damping term, with damping parameter 7

Tk(pk-‘rl _ pk)
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Total Variation Regularization The ROF model
Different Formulations

Newton method with damping

Solve in each step

)\(uk+1 _ f) T v pk+1 =0
—Vuftt — 2ZH/(p*)(p*t — p¥) — 2H(p*) — TH(p*T! - p¥) =

@ linear system and easy to descretize

@ choose € — 0 during iteration, to obtain fast convergence

@ start with small value 7 and increase during iteration, to avoid
oscillations

@ ¢ and 7 are chosen from experimental runs
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Overlapping Decomposition
Domain Decomposition Schwarz Methods

Domain Decomposition

Jahn Miiller

Lu = f in Q
u = 0 on 0N

split the given domain Q of the problem into subdomains
Q,i=1,...,S8

overlapping or non overlapping decompositions

when all unknowns are coupled, a straight forward splitting
leads to signifant errors at the interfaces

transmission conditions at the interface

avoid computing transmission conditions by using overlapping
decompositions
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Overlapping Decomposition
Domain Decomposition Schwarz Methods

Overlapping Decomposition

P M

N——
S
o for a uniform lattice with stepsize h, 6 = mh, with m € N
@ redundant degress of freedom

@ achieve update for boundary data from this redundancy
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Overlapping Decomposition
Domain Decomposition Schwarz Methods

Additive Schwarz Method

Let u(© be an initial function,

LUY‘H) =f, in Q Luék“) =f, in
ugkﬂ) = u(k)“—l, on Iy and ugkﬂ) = u{k)m, on Ny
u%kﬂ) =0, on 01\ 'y ung) =0, on 9 \ 2.

The next step is computed by

ul ) (x), ifxeQ\
ul D (x) = { uf P (x), ifxeQ\Q

AR 0l g

% If X E Ql ﬁ QQ.

@ related to the well-known Jacobi method

o direct application of parallelization
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Overlapping Decomposition
Domain Decomposition Schwarz Methods

Multiplicative Schwarz Method

Let u(© be an initial function,

L =f, in Luf ) = f, in Q;
u§k+1) = u(k)‘rl, onl; and uékﬂ) = u§k+1)|r2, on [
u§k+1) = O7 on 891 \ F1 u£k+1) = 07 on 892 \ rg‘

The next step is computed by

S () = {800, i xe
(%), ifx € Q\ Q.

o related to the well-known Gauss-Seidel method
@ seems not conventient for a parallel implementation

@ need of coloring
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Overlapp Decomposition
Domain Decomposition Schwarz ods

Multiplicative Schwarz Method - Coloring

Pzzzzzzzzzzzz2z222222 222
P2

@ painting subdomins in several colors, such that same colored
domains do not overlap

@ solve domains of same color in parallel using the latest
boundary conditions from the other “colors"
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Numerical Realization
Results
The Algorithm

Numerical Realization

° * ° * R °
Y11 Ph 12 Pl Pin1 Y1n
X 1 X 1 e * 1
P11 Pi2 Pin
° * ° * * °
421 Py Y22 P P3n_1 Y2n
X 1 X 1 * 1
P21 P22 P2n
* 1 * 1 * 1
Ph—11 Ph—12 Ph—1n
® *pil ®un *Pzz e *Pgn_l ®un

o Lay the degrees of freedom of the dual variable p in the center
between the pixels of u

@ compute the divergence of p effective as a value in each pixel
(using a single-sided difference quotient)
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Numerical Realization
Results
The Algorithm

Numerical Realization

@ applying anisotropic total variation

@ slightly change penalty term F:
1 2, 1 2
F(p) = 5 max{|p1| — 1,0} + 5 max{|pz2| — 1,0}

and hence

sgn(p1) - (Ip1] — 1) - Lyjpy>1y >
H — p1|=

(P) ( sgn(p2) - (Ip2| = 1) - Lyjpy>1y
and its Hessian

1 0
H'(p) = ( {Ipé\zl} )

Liipy|>1}

Jahn Miiller Parallel Total Variation Minimization



Numerical Realization
Results
The Algorithm

Numerical Realization

@ write u, p', p? column wise in vectors, to obtain a vector
X = (l_ja pla p2)

@ construct a system matrix A and righthand side b to obtain a
system Ax = b

| |
[ [
[ [
Dy D>
P |
U m T T T 1T T T
D} I My I 0
,,,,,, L
. [ [
D} | 0 | Mo
| |

@ due to the shape of A some improvements to solve this
system are applicable , e.g. Schur complement, or conjugate
gradient methods.
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Numerical Realization
Results
The Algorithm

Parallel Implementation

Processor #1 Processor #2

e — 6 — o — — & — @& — @

| | \ | | |

e — &6 — o — — & — e — @
c e e e b L
‘ | | ‘ e — & — o — — & — e — @
) é | | \ | \ |
\ B | B B | B \ Processor #3 Processor #4
\ | | \
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Numerical Realization
Results
The Algorithm

Parallel Implementation

Jahn Miiller

“ghost cells“(red) have to be communicated after each
iteration

explicit communication needed

communication realized via the Message Passing Interface
(MPI)

MatlabMPI makes MPI available in MATLAB (provided by
the Lincoln Laboratory of the Massachusetts Institute Of
Technology (MIT))
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Numerical Realization
Results
The Algorithm

Additive Version

@ Neumann boundary conditions for u turn into Dirichlet
boundary conditions for p

A(;) - b in Q

p = 0 on 0.
@ solve in each step
U(k+1) . U(k+1) .
A|Ql %k+1) = b|Ql in Q1 A|92 %k+1) = bmz in Q5
P1 [2)
p§k+1) _ pgk) on Iy p§k+1) _ p%k) on Iy
ngﬂ) = 0 ondQ\IN pékﬂ) = 0 ondQ\I.
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Numerical Realization
Results

The Algorithm

Multiplicative Version

@ using m colors, the number of divisions would be m times
higher than the number of CPUs

@ alternatively coloring similar to a checkerboard

@ overlapping of domains of same color (but only 1 pixel)

Parallel Total Variation Minimization
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Numerical Realization
Results

The Algorithm

100 150 200 250 300

(a) Original (b) Noisy

@ using the following parameters:
e A=2
e e=1072

Jahn Miiller el Total Variation Minimization



Numerical Realization
Results

The Algorithm

Results: Sequential Algorithm

5 100 150 200 250 00 30 400 450 50 5 100 150 200 250 30 3 4 450

(a) After 1 iteration (b) After 2 iterations

5 100 150 200 250 00 3}0 400 450 50 5 100 150 200 250 30 3} AW 450

(c) After 3 iterations (d) After 13 iterations
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Numerical Realization
Results

The Algorithm

Results: Multiplicative version on 2 CPUs (4 domains)

5 100 150 200 250 00 30 400 450 50 5 100 150 200 250 00 30 400 450 50

(a) After 1 iteration (b) After 2 iterations

5 100 150 200 250 00 3}0 400 450 50 5 100 150 200 250 00 3}0 400 450 50

(c) After 3 iterations (d) After 13 iterations
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Numerical Realization
Results

The Algorithm

Results: Additive Version on 4 CPUs

5 100 150 200 250 00 30 400 450 50 5 100 150 200 250 00 30 400 450 50

(a) After 1 iteration (b) After 2 iterations

5 100 150 200 250 00 3}0 400 450 50 5 100 150 200 250 00 3}0 400 450 50

(c) After 3 iterations (d) After 13 iterations
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Numerical Realization
Results

The Algorithm

Results: Multiplicative Version on 32 CPUs (64 domains)

5 100 150 200 250 00 30 400 450 50 5 100 150 200 250 00 30 400 450 50

(a) After 1 iteration (b) After 2 iterations

5 100 150 200 250 00 B0 400 450 50 5 100 150 200 250 00 3}0 40 450 50

(c) After 3 iterations (d) After 14 iterations
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Numerical Realization
Results

The Algorithm

Results: Additive Version on 32 CPUs

5 100 150 200 250 00 30 400 450 50

(a) After 1 iteration

5 100 150 200 250 00 3}0 400 450 50 5 100 150 200 250 00 3}0 400 450 50

(c) After 3 iterations (d) After 16 iterations
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Numerical Realization
Results

The Algorithm

Computation Time

— Addiive i
90| —— wulipicate|

— hadive
—— Muliplicaive|

(a) Image size 512 x 512 (b) Image size 1024 x 1024
. T

16 £ 2 4 0 16 2
Processes Processes

(c) Image size 2048 x 2048 (d) Image size 4096 x 4096
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Numerical Realization
Results

The Algorithm

—— Addiive Addiive
30— Watspcaive * Multplcative
linear Speedup linear Speedup

: :

12//4 8 PJEU‘ — 12 4 8 PJEU‘

(a) Image size 512 x 512 (b) Image size 1024 x 1024
= =

linear Speedup -~ linear Speedup

Speedup
Speedup
s

12 4 0 16 £ 12 4 0 16 2
Processes Processes

(c) Image size 2048 x 2048 (d) Image size 4096 x 4096
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