rbmatlab 0.10.01
test/test_lebesgue.m
Go to the documentation of this file.
00001 function OK=test_lebesgue
00002 % this is a script showing the ei_detailed construction for a function which
00003 % empirically interpolated turns out to have the worst possible Lebesgue
00004 % constant `\Lambda = \max_{x} \sum_{m=1}^M |\xi_m(x)| = 2^M - 1`
00005 %
00006 
00007 descr.maxfuncs = 10;
00008 
00009 descr.name = 'Lebesgue-Test';
00010 descr.verbose = 0;
00011 descr.rb_problem_type='LebesgueTest';
00012 
00013 [dmodel, rmodel] = gen_models(descr);
00014 
00015 model_data = gen_model_data(dmodel);
00016 
00017 dummy_arg_generator = SnapshotsGenerator.Random(dmodel, 'dummy', [0 1], true, false);
00018 ei_generator = SnapshotsGenerator.SpaceOpEvals(dmodel, 'ei_bad', dummy_arg_generator, dmodel.local_op, true, false);
00019 ei_plugin    = Greedy.Plugin.EI(ei_generator);
00020 ei_plugin.stop_Mmax        = 3;
00021 ei_plugin.ei_target_error  = 'interpol';
00022 ei_plugin.compute_lebesgue = true;
00023 ei_plugin.use_l2_error     = false;
00024 
00025 M_train      = ParameterSampling.Uniform(dmodel.maxfuncs-1);
00026 M_train.init_sample(dmodel);
00027 disp(M_train.sample);
00028 ei_algorithm = Greedy.Algorithm(ei_plugin, M_train);
00029 
00030 detailed_data = ei_algorithm.init_basis(rmodel, model_data);
00031 detailed_data = ei_algorithm.basis_extension(rmodel, detailed_data);
00032 
00033 OK = (detailed_data.get_field('lebesgue') == detailed_data.get_field('max_lebesgue'));
00034 
00035 end
00036 
All Classes Namespaces Files Functions Variables