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1 Convex non-smooth optimization with proximal operators

Remark 1.1 (Motivation). Convex optimization:

• easier to solve, global optimality,

• convexity is strong regularity property, even if functions are not differentiable, even in
infinite dimensions,

• usually strong duality,

• special class of algorithms for non-smooth, convex problems; easy to implement and to
parallelize. Objective function may assume value +∞, i.e. well suited for implementing
constraints.

So if possible: formulate convex optimization problems.
Of course: some phenomena can only be described by non-convex problems, e.g. formation of
transport networks.

Definition 1.2. Throughout this section H is Hilbert space, possibly infinite dimensional.

1.1 Convex sets

Definition 1.3 (Convex set). A set A ⊂ H is convex if for any a, b ∈ A, λ ∈ [0, 1] one has
λ · a+ (1− λ) · b ∈ A.

Comment: Line segment between any two points in A is contained in A

Sketch: Positive example with ellipsoid, counterexample with ‘kidney’

Comment: Study of geometry of convex sets is whole branch of mathematical research. See
lecture by Prof. Wirth in previous semester for more details. In this lecture: no focus on convex
sets, will repeat all relevant properties where required.

Proposition 1.4 (Intersection of convex sets). If {Ci}i∈I is family of convex sets, then C
def.
=⋂

i∈I Ci is convex.

Proof. • Let x, y ∈ C then for all i ∈ I have x, y ∈ Ci, thus λ · x + (1 − λ) · y ∈ Ci for all
λ ∈ [0, 1] and consequently λ · x+ (1− λ) · y ∈ C.
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Definition 1.5 (Convex hull). The convex hull convC of a set C is the intersection of all convex
sets that contain C.

Proposition 1.6. Let C ⊂ H, let T be the set of all convex combinations of elements of C, i.e.,

T
def.
=

{
k∑
i=1

λi xi

∣∣∣∣∣k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,
k∑
i=1

λi = 1

}
.

Then T = convC.

Proof. convC ⊂ T . T is convex: any x, y ∈ T are (finite) convex combinations of points in C.
Thus, so is any convex combination of x and y. Also, C ⊂ T . So convC ⊂ T .
convC ⊃ T . Let S be convex and S ⊃ C. We will show that S ⊃ T and thus convC ⊃ T , which
with the previous step implies equality of the two sets.
We show S ⊃ T by recursion. For some k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,

∑k
i=1 λi = 1 let

sk =

k∑
i=1

λi xi .

When k = 1 clearly sk ∈ S.
Otherwise, set λ̃i = λi/(1− λk) for i = 1, . . . , k − 1. Then

sk = λk xk + (1− λk) ·
k−1∑
i=1

λ̃i xi︸ ︷︷ ︸
def.
= sk−1

.

We find that sk ∈ S if sk−1 ∈ S. Applying this argument recursively to sk−1 until we reach s1,
we have shown that sk ∈ S.

Proposition 1.7 (Carathéodory). Let H = Rn. Every x ∈ convC can be written as convex
combination of at most n+ 1 elements of C.

Proof. Consider arbitrary convex combination x =
∑k

i=1 λi xi for k > n+ 1.
Claim: without changing x can change (λi)i such that one λi becomes 0.

• The vectors {x2 − x1, . . . , xk − x1} are linearly dependent, since k − 1 > n.

• ⇒ There are (β2, . . . , βk) ∈ Rk−1 \ {0} such that

0 =
k∑
i=2

βi (xi − x1) =
k∑
i=2

βi xi −
k∑
i=2

βi︸ ︷︷ ︸
def.
= −β1

x1 .

• Define λ̃i = λi − t∗ βi for t∗ = λi∗
βi∗

and i∗ = argmini=1,...,k:βi 6=0
λi
|βi| .

• λ̃i ≥ 0: λ̃i = λi ·
(
1− λi∗/βi∗

λi/βi︸ ︷︷ ︸
|·|≤1

)
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• λ̃i∗ = 0

•
k∑
i=1

λ̃i =

k∑
i=1

λi︸ ︷︷ ︸
=1

−t∗
k∑
i=1

βi︸ ︷︷ ︸
=0

= 1

•
k∑
i=1

λ̃i xi =
k∑
i=1

λi xi︸ ︷︷ ︸
=x

−t∗
k∑
i=1

βi xi︸ ︷︷ ︸
=0

= x

1.2 Convex functions

Definition 1.8 (Convex function). A function f : H → R ∪ {∞} is convex if for all x, y ∈ H,
λ ∈ [0, 1] one has f

(
λ · x+ (1− λ) · y

)
≤ λ · f(x) + (1− λ) · f(y). Set of convex functions over H

is denoted by Conv(H).

• f is strictly convex if for x 6= y and λ ∈ (0, 1): f
(
λ ·x+(1−λ) ·y

)
< λ ·f(x)+(1−λ) ·f(y).

• f is concave if −f is convex.

• The domain of f , denoted by dom f is the set {x ∈ H : f(x) < +∞}. f is called proper if
dom f 6= ∅.

• The graph of f is the set {(x, f(x))|x ∈ dom f}.

• The epigraph of f is the set ‘above the graph’, epi f = {(x, r) ∈ H × R : r ≥ f(x)}.

• The sublevel set of f with respect to r ∈ R is Sr(f) = {x ∈ H : f(x) ≤ r}.

Sketch: Strictly convex, graph, secant, epigraph, sublevel set

Proposition 1.9. (i) f convex ⇒ dom f convex.

(ii) [f convex] ⇔ [epi f convex].

(iii) [(x, r) ∈ epi f ] ⇔ [x ∈ Sr(f)].

Example 1.10. (i) characteristic or indicator function of convex set C ⊂ H:

ιC(x) =

{
0 if x ∈ C
+∞ else.

Do not confuse with χC(x) =

{
1 if x ∈ C
0 else.

(ii) any norm on H is convex: For all x, y ∈ H, λ ∈ [0, 1]:

‖λ · x+ (1− λ) · y‖ ≤ ‖λ · x‖+ ‖(1− λ) · y‖ = λ · ‖x‖+ (1− λ) · ‖y‖

(iii) for H = Rn the maximum function

Rn 3 x 7→ max{xi|i = 1, . . . , n}

is convex.
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(iv) linear and affine functions are convex.

Example 1.11 (Optimization with constraints). Assume we want to solve an optimization
problem with linear constraints, e.g.,

min{f(x)|x ∈ Rn, A x = y}

where f : Rn → R ∪ {∞}, A ∈ Rm×n, y ∈ Rm. This can be formally rewritten as unconstrained
problem:

min{f(x) + g(Ax)|x ∈ Rn} where g = ι{y} .

We will later discuss algorithms that are particularly suited for problems of this form where one
only has to ‘interact’ with f and g separately, but not their combination.

As mentioned in the motivation: convexity is a strong regularity property. Here we give some
examples of consequences of convexity.

Definition 1.12. A function f : H → R ∪ {∞} is (sequentially) continuous in x if for every
convergent sequence (xk)k with limit x one has limk→∞ f(xk) = f(x). The set of points x where
f(x) ∈ R and f is continuous in x is denoted by cont f .

Remark 1.13 (Continuity in infinite dimensions). If H is infinite dimensional, it is a priori not
clear, whether closedness and sequential closedness coincide. But since H is a Hilbert space,
it has an inner product, which induces a norm, which induces a metric. On metric spaces the
notions of closedness and sequential closedness coincide and thus so do the corresponding notions
of continuity.

Proposition 1.14 (On convexity and continuity I). Let f ∈ Conv(H) be proper and let x0 ∈
dom f . Then the following are equivalent:

(i) f is locally Lipschitz continuous near x0.

(ii) f is bounded on a neighbourhood of x0.

(iii) f is bounded from above on a neighbourhood of x0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. We show (iii) ⇒ (i).

• If f is bounded from above in an environment of x0 then there is some ρ ∈ R++ such that
sup f(B(x0, ρ)) = η < +∞.

• Let x ∈ H, x 6= x0, such that α def.
= ‖x− x0‖/ρ ∈ (0, 1]

Sketch: Draw position of x̃.

• Let x̃ = x0+
1
α(x−x0) ∈ B(x0, ρ). Then x = (1−α) ·x0+α · x̃ and therefore by convexity

of f

f(x) ≤ (1− α) · f(x0) + α · f(x̃)

f(x)− f(x0) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)ρ

Sketch: Draw position of new x̃.
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• Now let x̃ = x0 +
1
α(x0 − x) ∈ B(x0, ρ). Then x0 = α

1+α · x̃+ 1
1+α · x. So:

f(x0) ≤ 1
1+α · f(x) +

α
1+α · f(x̃)

f(x0)− f(x) ≤ α
1+α · (f(x̃)− f(x0) + f(x0)− f(x))

f(x0)− f(x) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)ρ

We combine to get:

|f(x)− f(x0)| ≤ ‖x− x0‖ · η−f(x0)ρ

• Now need to extend to other ‘base points’ near x0. For every x1 ∈ B(x0, ρ/4) have
sup f(B(x1, ρ/2)) ≤ η and f(x1) ≥ f(x0) − ρ

4 ·
η−f(x0)

ρ ≥ 2 f(x0) − η. With arguments
above get for every x ∈ B(x1, ρ/2) that

|f(x)− f(x1)| ≤ ‖x− x1‖ · η−f(x1)ρ/2 ≤ ‖x− x1‖ · 4(η−f(x0))ρ .

• For every x1, x2 ∈ B(x0, ρ/4) have ‖x1 − x2‖ ≤ ρ/2 and thus

|f(x1)− f(x2)| ≤ ‖x1 − x2‖ · 4(η−f(x0))ρ .

Proposition 1.15 (On convexity and continuity II). If any of the conditions of Proposition 1.14
hold, then f is locally Lipschitz continuous on int dom f .

Proof. Sketch: Positions of x0, x, y and balls B(x0, ρ), B(x, α · ρ)

• By assumption there is some x0 ∈ dom f , ρ ∈ R++ and η < ∞ such that sup f(B(x0, ρ))
≤ η.

• For any x ∈ int dom f there is some y ∈ dom f such that x = γ · x0 + (1− γ) · y for some
γ ∈ (0, 1).

• Further, there is some α ∈ (0, γ) such that B(x, α · ρ) ⊂ dom f and y /∈ B(x, α · ρ).

• Then, B(x, α · ρ) ⊂ conv(B(x0, ρ) ∪ {y}).

• So for any z ∈ B(x, α · ρ) there is some w ∈ B(x0, ρ) and some β ∈ [0, 1] such that
z = β · w + (1− β) · y. Therefore,

f(z) ≤ β · f(w) + (1− β) · f(y) ≤ max{η, f(y)} .

• So f is bounded from above on B(x, α · ρ) and thus by Proposition 1.14 f is locally Lipschitz
near x.

Remark 1.16. One can show: If f : H → R∪{∞} is proper, convex and lower semi-continuous,
then cont f = int dom f .
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Proposition 1.17 (On convexity and continuity in finite dimensions). If f ∈ Conv(H = Rn)
then f is locally Lipschitz continuous at every point in int dom f .

Proof. • Let x0 ∈ int dom f .

• If H is finite-dimensional then there is a finite set {xi}i∈I ⊂ dom f such that x0 ∈
int conv({xi}i∈I) ⊂ dom f .

• For example: along every axis i = 1, . . . , n pick x2i−1 = x + ε · ei, x2i = x − ε · ei for
sufficiently small ε where ei denotes the canonical i-th Euclidean basis vector.

• Since every point in conv({xi}i∈I) can be written as convex combination of {xi}i∈I we find
sup f(conv({xi}i∈I)) ≤ maxi∈I f(xi) < +∞.

• So f is bounded from above on an environment of x0 and thus Lipschitz continuous in x0
by the previous Proposition.

Comment: Why is interior necessary in Proposition above?

Example 1.18. The above result does not extend to infinite dimensions.

• For instance, the H1-norm is not continuous with respect to the topology induced by the
L2-norm.

• An unbounded linear functional is convex but not continuous.

Definition 1.19 (Lower semi-continuity). A function f : H → R ∪ {∞} is called (sequentially,
see Remark 1.13) lower semi-continuous in x ∈ H if for every sequence (xn)n that converges to
x one has

lim inf
n→∞

f(xn) ≥ f(x) .

f is called lower semi-continuous if it is lower semi-continuous on H.

Example 1.20. f(x) =

{
0 if x ≤ 0,

1 if x > 0
is lower semi-continuous, f(x) =

{
0 if x < 0,

1 if x ≥ 0
is not.

Sketch: Plot the two graphs.

Comment: Assuming continuity is sometimes impractically strong. Lower semi-continuity is a
weaker assumption and also sufficient for well-posedness of minimization problems: If (xn)n is a
convergent minimizing sequence of a lower semi-continuous function f with limit x then x is a
minimizer.

Proposition 1.21. Let f : H → R ∪ {∞}. The following are equivalent:

(i) f is lower semi-continuous.

(ii) epi f is closed in H × R.

(iii) The sublevel sets Sr(f) are closed for all r ∈ R.
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Proof. (i) ⇒ (ii). Let (yk, rk)k be a converging sequence in epi f with limit (y, r). Then

r = lim
k→∞

rk ≥ lim inf
k→∞

f(yk) ≥ f(y) ⇒ (y, r) ∈ epi f .

(ii) ⇒ (iii). For r ∈ R let Ar : H → H × R, x 7→ (x, r) and Qr = epi f ∩ (H × {r}). Qr is
closed, Ar is continuous.

Sr(f) = {x ∈ H : f(x) ≤ r} = {x ∈ H : (x, y) ∈ Qr} = A−1r (Qr) is closed.

(iii)⇒ (i). Assume (i) is false. Then there is a sequence (yk)k inH converging to y ∈ H such that
ρ

def.
= limk→∞ f(yk) < f(x). Let r ∈ (ρ, f(y)). For k ≥ k0 sufficiently large, f(yk) ≤ r < f(y),

i.e. yk ∈ Sr(f) but y /∈ Sr(f). Contradiction.
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1.3 Subdifferential

Definition 1.22. The power set of H is the set of all subsets of H and denoted by 2H .

Comment: Meaning of notation.

Definition 1.23 (Subdifferential). Let f : H → R ∪ {∞} be proper. The subdifferential of f is
the set-valued operator

∂f : H → 2H , x 7→ {u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉 for all y ∈ H}

For x ∈ H, f is subdifferentiable at x if ∂f(x) 6= ∅. Elements of ∂f(x) are called subgradients of
f at x.

Sketch: Subgradients are slopes of affine functions that touch graph of function in x from below.

Definition 1.24. The domain domA of a set-valued operator A are the points where A(x) 6= ∅.

Definition 1.25. Let f : H → R ∪ {∞} be proper. x is a minimizer of f if f(x) = inf f(H).
The set of minimizers of f is denoted by argmin f .

The following is an adaption of first order optimality condition for differentiable functions to
convex non-smooth functions.

Proposition 1.26 (Fermat’s rule). Let f : H → R ∪ {∞} be proper. Then

argmin f = {x ∈ H : 0 ∈ ∂f(x)} .

Proof. Let x ∈ H. Then

[x ∈ argmin f ]⇔ [f(y) ≥ f(x) = f(x) + 〈y − x, 0〉 for all y ∈ H]⇔ [0 ∈ ∂f(x)] .

Proposition 1.27 (Basic properties of subdifferential). Let f : H → R ∪ {∞}.

(i) ∂f(x) is closed and convex.

(ii) If x ∈ dom ∂f then f is lower semi-continuous at x.

Proof. (i):

∂f(x) =
⋂

y∈dom f

{u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉}

So ∂f(x) is the intersection of closed and convex sets. Therefore it is closed and convex.
(ii): Let u ∈ ∂f(x). Then for all y ∈ H: f(y) ≥ f(x) + 〈y − x, u〉. So, for any sequence (xk)k
converging to x one finds

lim inf
k→∞

f(xk) ≥ f(x) + lim inf
k→∞

〈y − x, u〉 = f(x) .
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Definition 1.28 (Monotonicity). A set-valued function A : H → 2H is monotone if

〈x− y, u− v〉 ≥ 0

for every tuple (x, y, u, v) ∈ H4 such that u ∈ A(x) and v ∈ A(y).

Proposition 1.29. The subdifferential of a proper function is monotone.

Proof. Let u ∈ ∂f(x), v ∈ ∂f(y). We get:

f(y) ≥ f(x) + 〈y − x, u〉 ,
f(x) ≥ f(y) + 〈x− y, v〉 ,

and by combining:

0 ≥ 〈y − x, u− v〉

Proposition 1.30. Let I be a finite index set, let H =
⊗

i∈I Hi a product of several Hilbert
spaces. Let fi : Hi → R ∪ {∞} be proper and let f : H → R ∪ {∞}, x = (xi)i∈I 7→

∑
i∈I fi(xi).

Then ∂f(x) =
⊗

i∈I ∂fi(xi).

Proof. ∂f(x) ⊃
⊗

i∈I ∂fi(xi): For x ∈ H let pi ∈ ∂fi(xi). Then

f(x+ y) =
∑
i∈I

fi(xi + yi) ≥
∑
i∈I

fi(xi) + 〈yi, pi〉 = f(x) + 〈y, p〉 .

Therefore p = (pi)i∈I ∈ ∂f(x).
∂f(x) ⊂

⊗
i∈I ∂fi(xi): Let p = (pi)i∈I ∈ ∂f(x). For j ∈ I let yj ∈ Hj and let y = (ỹi)i∈I where

ỹi = 0 if i 6= j and ỹj = yj . We get

f(x+ y) =
∑
i∈I

fi(xi + ỹi) =
∑

i∈I\{j}

fi(xi) + fj(xj + yj) ≥ f(x) + 〈y, p〉 =
∑
i∈I

fi(xi) + 〈yj , pj〉

This holds for all yj ∈ Hj . Therefore, pj ∈ ∂fj(xj).

Example 1.31. • f(x) = 1
2‖x‖

2: f is Gâteaux differentiable (see below) with ∇f(x) = x.
We will show that this implies ∂f(x) = {∇f(x)} = {x}.

• f(x) = ‖x‖:

– For x 6= 0 f is again Gâteaux differentiable with ∇f(x) = x
‖x‖ .

– For x = 0 we get f(y) ≥ 〈y, p〉 = f(0)+ 〈y − 0, p〉 for ‖p‖ ≤ 1 via the Cauchy-Schwarz
inequality. So B(0, 1) ⊂ ∂f(0).

– Assume some p ∈ ∂f(0) has ‖p‖ > 1. Then p
‖p‖ ∈ ∂f(p). We test:

〈
p− 0, p

‖p‖ − p
〉
=

‖p‖ − ‖p‖2 < 0 which contradicts monotonicity of the subdifferential. Therefore
∂f(0) = B(0, 1).

Sketch: Draw ‘graph’ of subdifferential.
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• H = R, f(x) = |x| is a special case of the above.

∂f(x) =


{−1} if x < 0,

[−1, 1] if x = 0,

{+1} if x > 0

• H = Rn, f(x) = ‖x‖1. The L1 norm is not induced by an inner product. Therefore the
above does not apply. We can use Proposition 1.30:

∂f(x) =
n⊗
k=1

∂abs(xk)

Sketch: Draw subdifferential ‘graph’ for 2D.

Proposition 1.32. Let f, g : H → R∪ {∞}. For x ∈ H one finds ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x).

Proof. Let u ∈ ∂f(x), v ∈ ∂g(x). Then

f(x+ y) + g(x+ y) ≥ f(x) + 〈u, y〉+ g(x) + 〈v, y〉 = f(x) + g(x) + 〈u+ v, y〉 .

Therefore, u+ v ∈ ∂(f + g)(x).

Remark 1.33. The converse inclusion is not true in general and much harder to proof. A simple
counter-example is f(x) = ‖x‖2 and g(x) = −‖x‖2/2. The subdifferential of g is empty but the
subdifferential of f + g is not.

An application of the sub-differential is a simple proof of Jensen’s inequality.

Proposition 1.34 (Jensen’s inequality). Let f : H = Rn → R ∪ {∞} be convex. Let µ be a
probability measure on H such that

x =

∫
H
x dµ(x) ∈ H

and x ∈ dom ∂f . Then ∫
H
f(x) dµ(x) ≥ f(x) .

Proof. Let u ∈ ∂f(x).∫
H
f(x) dµ(x) ≥

∫
H
f(x) + 〈x− x, u〉 dµ(x) = f(x)

Let us examine the subdifferential of differentiable functions.

Definition 1.35 (Gâteaux differentiability). A function f : H → R ∪ {∞} is Gâteaux differen-
tiable in x ∈ dom f if there is a unique Gâteaux gradient ∇f(x) ∈ H such that for any y ∈ H
the directional derivative is given by

lim
α↘0

f(x+α·y)−f(x)
α = 〈y,∇f(x)〉 .
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Proposition 1.36. Let f : H → R∪{∞} be proper and convex, let x ∈ dom f . If f is Gâteaux
differentiable in x then ∂f(x) = {∇f(x)}.

Proof. ∇f(x) ∈ ∂f(x):

• For fixed y ∈ H consider the function φ : R++→ R ∪ {∞}, α 7→ f(x+α·y)−f(x)
α .

• φ is increasing: let β ∈ (0, α). Then x+ β · y = (1− β/α) · x+ β/α · (x+ α · y). So

f(x+ β · y) ≤ (1− β/α) · f(x) + β/α · f(x+ α · y),

φ(β) ≤ (1− β/α) · f(x) + β/α · f(x+ α · y)− f(x)
β

=
β/α · (f(x+ α · y)− f(x))

β
= φ(α) .

• Therefore,

〈y,∇f(x)〉 = lim
α↘0

f(x+ α · y)− f(x)
α

= inf
α∈R++

φ(α) ≤ f(x+ y)− f(x) .

(We set α = 1 to get the last inequality.)

∂f(x) ⊂ {∇f(x)}:

• For u ∈ ∂f(x) we find for any y ∈ H

〈y,∇f(x)〉 = lim
α↘0

f(x+ α · y)− f(x)
α

≥ lim
α↘0

f(x) + 〈α · y, u〉 − f(x)
α

= 〈y, u〉 .

• This inequality holds for any y and −y simultaneously. Therefore u = ∇f(x).

Remark 1.37. For differentiable functions in one dimension this implies monotonicity of the
derivative: Let f ∈ C1(R). With Propositions 1.36 and 1.29 we get: if x ≥ y then f ′(x) ≥ f ′(y).
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1.4 Cones and Support Functions

Cones are a special class of sets with many applications in convex analysis.

Definition 1.38. A set C ⊂ H is a cone if for any x ∈ C, λ ∈ R++ one has λ · x ∈ C. In short
notation: C = R++ · C.

Remark 1.39. A cone need not contain 0, but for any x ∈ C it must contain the open line
segment (0, x].

Proposition 1.40. The intersection of a family {Ci}i∈I of cones is cone. The conical hull of a
set C ⊂ H, denoted by coneC is the smallest cone that contains C. It is given by R++ · C.

Proof. • Let C =
⋂
i∈I Ci. If x ∈ C then x ∈ Ci for all i ∈ I and for any λ ∈ R++ one has

λ · x ∈ Ci for all i ∈ I. Hence λ · x ∈ C and C is also a cone.

• Let D = R++ · C. Then D is a cone, C ⊂ D and therefore coneC ⊂ D. Conversely, let
y ∈ D. Then there are x ∈ C and λ ∈ R++ such that y = λ · x. So x ∈ coneC, therefore
y ∈ coneC and thus D ⊂ coneC.

Proposition 1.41. A cone C is convex if and only if C + C ⊂ C.

Proof. C convex ⇒ C +C ⊂ C: Let a, b ∈ C. ⇒ 1
2 · a+

1
2 · b ∈ C ⇒ a+ b ∈ C ⇒ C +C ⊂ C.

C +C ⊂ C ⇒ C convex: Let a, b ∈ C. ⇒ a+ b ∈ C and λ · a, (1− λ) · b ∈ C for all λ ∈ (0, 1).
⇒ λ · a+ (1− λ) · b ∈ C. ⇒ [a, b] ∈ C ⇒ C convex.

Definition 1.42. Let C ⊂ H. The polar cone of C is

C	 = {y ∈ H : sup 〈C, y〉 ≤ 0} .

Sketch: Draw a cone in 2D with angle < π/2 and its polar cone.

Proposition 1.43. Let C be a linear subspace of H. Then C	 = C⊥.

Proof. • Since C is a linear subspace, if 〈x, y〉 6= 0 for some y ∈ H, x ∈ C then sup 〈C, y〉 =∞.

• Therefore, C	 = {y ∈ H : 〈x, y〉 = 0 for all x ∈ C}.

Definition 1.44. Let C ⊂ H convex, non-empty and x ∈ H. The tangent cone to C at x is

TCx =

{
cone(C − x) if x ∈ C,
∅ else.

The normal cone to C at x is

NCx =

{
(C − x)	 = {u ∈ H : sup 〈C − x, u〉 ≤ 0} if x ∈ C,
∅ else.
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Example 1.45. Let C = B(0, 1). Then for x ∈ C:

TCx =

{
{y ∈ H : 〈y, x〉 ≤ 0} if ‖x‖ = 1,

H if ‖x‖ < 1.

Note: the ≤ in the ‖x‖ = 1 case comes from the closure in the definition of TCx. Without closure
it would merely be <.

NCx =

{
R+ · x if ‖x‖ = 1,

{0} if ‖x‖ < 1.

Example 1.46. What are tangent and normal cone for the L1-norm ball in R2?

We start to see connections between different concepts introduced so far.

Proposition 1.47. Let C ⊂ H be a convex set. Then ∂ιC(x) = NCx.

Proof. • x /∈ C: ∂ιC(x) = ∅ = NCx.

• x ∈ C:

[u ∈ ∂ιC(x)] ⇔ [ιC(y) ≥ ιC(x) + 〈y − x, u〉 ∀ y ∈ C]⇔ [0 ≥ 〈y − x, u〉 ∀ y ∈ C]
⇔ [sup 〈C − x, u〉 ≤ 0]⇔ [u ∈ NCx]

Comment: This will become relevant, when doing constrained optimization, where parts of the
objective are given by indicator functions.
Now we introduce the projection onto convex sets. It will play an important role in analysis and
numerical methods for constrained optimization.

Proposition 1.48 (Projection). Let C ⊂ H be non-empty, closed convex. For x ∈ H the
problem

inf{‖x− p‖ | p ∈ C}

has a unique minimizer. This minimizer is called the projection of x onto C and is denoted by
PCx.

Proof. • We will need the following inequality for any x, y, z ∈ H, which can be shown by
careful expansion:

‖x− y‖2 = 2 ‖x− z‖2 + 2 ‖y − z‖2 − 4 ‖(x+ y)/2− z‖2

• C is non-empty, y 7→ ‖x− y‖ is bounded from below, so the infimal value is a real number,
denoted by d.

• Let (pk)k∈N be a minimizing sequence. For k, l ∈ N one has 1
2(pk + pl) ∈ C by convexity

and therefore ‖x− 1
2(pk + pl)‖ ≥ d.

• With the above inequality we find:

‖pk − pl‖2 = 2‖pk − x‖2 + 2‖pl − x‖2 − 4‖pk+pl2 − x‖2 ≤ 2‖pk − x‖2 + 2‖pl − x‖2 − 4 d2

13



• So by sending k, l→∞ we find that (pk)k is a Cauchy sequence which converges to a limit
p. Since C is closed, p ∈ C. And since y 7→ ‖x− y‖ is continuous, p is a minimizer.

• Uniqueness of p, quick answer: the optimization problem is equivalent to minimizing y 7→
‖x− y‖2, which is strictly convex. Therefore p must be unique.

• Uniqueness of p, detailed answer: assume there is another minimizer q 6= p. Then 1
2(p+q) ∈

C and we find:

‖x− p‖2 + ‖x− q‖2 − 2‖x− 1
2(p+ q)‖2 = 1

2‖p− q‖
2 > 0

So the sum of the objectives at p and q is strictly larger than twice the objective at the
midpoint. Therefore, neither p nor q can be optimal.

Proposition 1.49 (Characterization of projection). Let C ⊂ H be non-empty, convex, closed.
Then p = PCx if and only if

[p ∈ C] ∧ [〈y − p, x− p〉 ≤ 0 for all y ∈ C] .

Sketch: Illustrate inequality.

Proof. • It is clear that [p = PCx] ⇒ [p ∈ C], and that [p /∈ C] ⇒ [p 6= PCx].

• So, need to show that for p ∈ C one has [p = PCx] ⇔ [〈y − p, x− p〉 ≤ 0 for all y ∈ C].

• For some y ∈ C and some ε ∈ R++ consider:

‖x− (p+ ε · (y − p))‖2 − ‖x− p‖2 = ‖p+ ε · (y − p)‖2 − ‖p‖2 − 2 ε 〈x, y − p〉
= ε2‖y − p‖2 − 2 ε 〈x− p, y − p〉

If 〈x− p, y − p〉 > 0 then this is negative for sufficiently small ε and thus p cannot be the
projection. Conversely, if 〈x− p, y − p〉 ≤ 0 for all y ∈ C, then for ε = 1 we see that p is
indeed the minimizer of y 7→ ‖x− y‖2 over C and thus the projection.

Corollary 1.50 (Projection and normal cone). Let C ⊂ H be non-empty, closed, convex. Then
[p = PCx] ⇔ [x ∈ p+NCp].

Proof. [p = PCx] ⇔ [p ∈ C ∧ sup 〈C − p, x− p〉 ≥ 0] ⇔ [x− p ∈ NCp].

Comment: This condition is actually useful for computing projections.

Example 1.51 (Projection onto L1-ball in R2). Let C = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}. We find:

NC(x, y) =



∅ if |x|+ |y| > 1,

{0} if |x|+ |y| < 1,

cone{(1, 1), (−1, 1)} if (x, y) = (0, 1),

cone{(1, 1), (1,−1)} if (x, y) = (1, 0),

cone{(1, 1)} if x+ y = 1, x ∈ (0, 1),

. . .
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Sketch: Draw normal cones attached to points in C.
Now compute projection of (a, b) ∈ R2. W.l.o.g. assume (a, b) ∈ R2

+. Then

PC(a, b) =


(0, 1) if [a+ b ≥ 1] ∧ [b− a ≥ 1],

(1, 0) if [a+ b ≥ 1] ∧ [a− b ≥ 1],

((1 + a− b)/2, (1− a+ b)/2) else.

Comment: Do computation in detail.

Comment: Result is very intuitive, but not so trivial to prove rigorously due to non-smoothness
of problem. Comment: Eistüte.
We now establish a sequence of results that will later allow us to analyze the subdifferential via
cones and prepare results for the study of the Fenchel–Legendre conjugate.

Proposition 1.52. Let K ⊂ H be a non-empty, closed, convex cone. Let x, p ∈ H. Then

[p = PKx] ⇔ [p ∈ K, x− p ⊥ p, x− p ∈ K	] .

Proof. • By virtue of Corollary 1.50 (Characterization of projection with normal cone inclu-
sion) we need to show

[x− p ∈ NKp] ⇔ [p ∈ K, x− p ⊥ p, x− p ∈ K	] .

• ⇒: Let x − p ∈ NKp. Then p ∈ K. By definition have sup 〈K − p, x− p〉 ≤ 0. Since
2p, 0 ∈ K (K is closed) this implies 〈p, x− p〉 = 0. Further, since K is convex, we have
(Prop. 1.41) K+K ⊂ K, and in particular K+p ⊂ K. Therefore sup 〈K + p− p, x− p〉 ≤
sup 〈K − p, x− p〉 ≤ 0 and thus x− p ∈ K	.

Sketch: Recall that K + p ⊂ K. Counter-example for non-convex K.

• ⇐: Since p ⊥ x− p have sup 〈K − p, x− p〉 = sup 〈K,x− p〉 ≤ 0 since x− p ∈ K	. Then,
since p ∈ K have x− p ∈ NKp.

Proposition 1.53. Let K ⊂ H be a non-empty, closed, convex cone. Then K		 = K.

Proof. • K ⊂ K		: Recall: K	 = {u ∈ H : sup 〈K,u〉 ≤ 0}.

• Let x ∈ K. Then 〈x, u〉 ≤ 0 for all u ∈ K	. Therefore sup 〈x,K	〉 ≤ 0 and so x ∈ K		.
Therefore: K ⊂ K		.

• K		 ⊂ K: Let x ∈ K		, set p ∈ PKx. Then by Proposition 1.52 (Projection onto closed,
convex cone): x− p ⊥ p, x− p ∈ K	.

• [x ∈ K		] ∧ [x− p ∈ K	]⇒ 〈x, x− p〉 ≤ 0.

• ‖x− p‖2 = 〈x, x− p〉 − 〈p, x− p〉 ≤ 0 ⇒ x = p ⇒ x ∈ K. Therefore K		 ⊂ K.

For subsequent results we need the following Lemma that once more illustrates that convexity
implies strong regularity.
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Proposition 1.54. Let C ⊂ H be convex. Then the following hold:

(i) For all x ∈ intC, y ∈ C, [x, y) ⊂ intC.

(ii) C is convex.

(iii) intC is convex.

(iv) If intC 6= ∅ then intC = intC and C = intC.

Proof. • (i): Assume x 6= y (otherwise the result is trivial). Then for z ∈ [x, y) there is some
α ∈ (0, 1] such that z = α · x+ (1− α) · y.

• Since x ∈ intC there is some ε ∈ R++ such that B(x, ε · (2− α)/α) ⊂ C.

• Since y ∈ C, one has y ∈ C +B(0, ε).

• By convexity of C:

B(z, ε) = α · x+ (1− α) · y +B(0, ε)

⊂ α · x+ (1− α) · (C +B(0, ε)) +B(0, ε)

= α ·B(x, ε · 2−αα ) + (1− α) · C
⊂ α · C + (1− α) · C = C

• Therefore z ∈ intC.

• (ii): Let x, y ∈ C. By definition there are sequences (xk)k, (yk)k in C that converge to x
and y. For λ ∈ [0, 1] the sequence (λ ·xk+(1−λ) · yk)k converges to λ ·x+(1−λ) · y ⊂ C.

• (iii): Let x, y ∈ intC. Then y ∈ C. By (i) therefore (x, y) ∈ intC.

• (iv): By definition intC ⊂ intC. Show converse inclusion. Let y ∈ intC. Then there is
ε ∈ R++ such that B(y, ε) ⊂ C. Let x ∈ intC, x 6= y. Then there is some α ∈ R++ such
that y + α · (y − x) ∈ B(y, ε) ⊂ C.

• Since y ∈ (x, y + α · (y − x)) it follows from (i) that y ∈ intC.

• Similarly, it is clear that intC ⊂ C. We show the converse inclusion. Let x ∈ intC,
y ∈ C. For α ∈ (0, 1] let yα = (1 − α) · y + α · x. Then yα ∈ intC by (i) and thus
y = limα→0 yα ∈ intC.

Example 1.55. Let H = R, C = Q ∪ [0, 1]. intC = (0, 1) 6= ∅ but C is not convex. We find
intC = (0, 1) 6= intC = intR = R and C = R 6= intC = [0, 1].

We can characterize the tangent and normal cones of a convex set, depending on the base point
position.

Proposition 1.56. Let C ⊂ H be convex with intC 6= ∅ and x ∈ C. Then

[x ∈ intC]⇔ [TCx = H]⇔ [NCx = {0}] .

Proof. • [x ∈ intC]⇔ [TCx = H]: Let D = C − x. Then 0 ∈ D, [[x ∈ intC]⇔ [0 ∈ intD]]
and TCx = coneD.
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• One can show: if D ⊂ H is convex with intD 6= ∅ and 0 ∈ D, then [0 ∈ intD] ⇔
[coneD = H].

• Sketch: assume 0 ∈ intD. Then coneD = coneD = H since there is some ε > 0 such that
for any u ∈ H \ {0} one has ε u

‖u‖ ∈ D. The converse conclusion is more tedious. It relies
on Proposition 1.54. See [Bauschke, Combettes; Prop. 6.17] for details.

• [TCx = H] ⇔ [NCx = {0}]: Recall NCx = {u ∈ H : sup 〈C − x, u〉 ≤ 0}. We can extend
the supremum to cone(C−x) and we can then extend it to the closure cone(C − x) without
changing whether it will be ≤ 0 (why?). So NCx = {u ∈ H : sup 〈TCx, u〉 ≤ 0} = (TCx)

	.

• Now, if TCx = H then NCx = {0}.

• Conversely, since for x ∈ C, TCx is a non-empty, closed, convex cone, one has (TCx)		 =
TCx (Prop. 1.53) and therefore TCx = (NCx)

	. So if NCx = {0} then TCx = H.

Comment: Observation: subdifferential describes affine functions that touch graph in one point
and always lie below graph. Similarly: for convex sets there are hyperplanes, that touch set in
one point and separate the set from the opposite half-space. These are called ‘supporting hyper-
planes’. The study of the subdifferential is thus related to the study of supporting hyperplanes.
Supporting hyperplanes, in turn, are again closely related to normal cones, as we will learn.

Definition 1.57. Let C ⊂ H, x ∈ C and let u ∈ H \ {0}. If

sup 〈C, u〉 ≤ 〈x, u〉

then the set {y ∈ H : 〈y, u〉 = 〈x, u〉} is a supporting hyperplane of C at x and x is a support
point at C with normal vector u. The set of support points of C is denoted by sptsC.

Proposition 1.58. Let C ⊂ H, C 6= ∅ and convex. Then:

sptsC = {x ∈ C : NCx 6= {0}}

Proof. Let x ∈ C. Then:

[x ∈ sptsC] ⇔ [∃u ∈ H \ {0} : sup 〈C − x, u〉 ≤ 0] ⇔ [0 6= u ∈ NCx]

Proposition 1.59. Let C ⊂ H convex, intC 6= ∅. Then

bdryC ⊂ sptsC and C ∩ bdryC ⊂ sptsC .

Proof. • If C = H the result is clear. (Why?) So assume C 6= H.

• Let x ∈ bdryC ⊂ C. So x ∈ C \ intC = C \ intC (Prop. 1.54).

• Consequence of Prop. 1.56: ∃u ∈ NCx \ {0}.

• Consequence of Prop. 1.58: x ∈ sptsC. Therefore bdryC ⊂ sptsC.

• Show sptsC = C ∩ sptsC: For this use sup
〈
C, u

〉
= sup 〈C, u〉 (why?).
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• Let x ∈ sptsC: ⇒ x ∈ C ⊂ C, ∃u 6= 0 s.t. sup 〈C, u〉 ≤ 〈x, u〉. ⇒ x ∈ C ∩ sptsC.

• Let x ∈ sptsC ∩ C: ⇒ x ∈ C, ∃u 6= 0 s.t. sup
〈
C, u

〉
≤ 〈x, u〉. ⇒ x ∈ sptsC.

• So: C ∩ bdryC ⊂ C ∩ sptsC = sptsC.

Example 1.60. Let H = R, C = [−1, 1). Then intC = (−1, 1), C = [−1, 1], bdryC = {−1, 1},
sptsC = {−1}, sptsC = {−1, 1}.

An application of the previous results is to show that the subdifferential of a convex function is
non-empty in a point of its domain where the function is continuous.

Proposition 1.61. Let f : H → R∪{∞} be proper and convex and let x ∈ dom f . If x ∈ cont f
then ∂f(x) 6= ∅.

Proof. • Since f is proper and convex, epi f is non-empty and convex.

• Since x ∈ cont f , f is bounded in an environment of x. Let ε > 0, η < +∞ such
that f(y) < f(x) + η for ‖x − y‖ < ε. Therefore, int epi f 6= ∅ because it contains
B(x, ε/2)× (f(x) + 2 η,∞).

• Further: consider sequence (yk = (x, f(x)− 1/k))∞k=1. Clearly yk /∈ epi f but limk→∞ yk =
(x, f(x) ∈ epi f . Therefore (x, f(x)) ∈ bdry epi f .

• So by Proposition 1.59 there is some (u, r) ∈ Nepi f (x, f(x)) \ {(0, 0)}.

• By definition of normal cone: For every (v, s) ∈ epi f have:〈(
v
s

)
−
(

x
f(x)

)
,

(
u
r

)〉
≤ 0

• So in particular for y ∈ dom f have (y, f(y)) ∈ epi f and therefore:

〈y − x, u〉+ (f(y)− f(x)) · r ≤ 0

• If r < 0 we could divide by r and get that u/|r| ∈ ∂f(x). So need to show r < 0.

• Show that r ≤ 0: For any δ > 0 have:

[(x, f(x)+δ) ∈ epi f ]⇔
[〈(

x
f(x) + δ

)
−
(

x
f(x)

)
,

(
u
r

)〉
≤ 0

]
⇔ [δ ·r ≤ 0]⇔ [r ≤ 0]

• Assume r = 0: Then must have u 6= 0. Then there is some ρ > 0 such that ‖ρ · u‖ < ε and
therefore (x+ ρ · u, f(x) + η) ∈ epi f . Then:[〈(

x+ ρ · u
f(x) + η

)
−
(

x
f(x)

)
,

(
u
0

)〉
≤ 0

]
⇔ [ρ · 〈u, u〉 ≤ 0]

This is a contradiction, therefore r 6= 0.
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Corollary 1.62. Let f : H → R ∪ {∞} convex, proper, lower semi-continuous. Then

int dom f = cont f ⊂ dom ∂f ⊂ dom f

Proof. • The first inclusion was cited in Remark 1.16 (see e.g. [Bauschke, Combettes; Corol-
lary 8.30]).

• The second inclusion is shown in Prop. 1.61.

• The third inclusion follows from contraposition of [x /∈ dom f ]⇒ [∂f(x) = ∅].

Finally, we show that closed, convex sets can be expressed solely in terms of their supporting
hyperplanes.
For notational convenience introduce ‘support function’.

Definition 1.63. Let C ⊂ H. The support function of C is

σC : H 7→ [−∞,∞], u 7→ sup 〈C, u〉 .

Sketch: Definition.
We will later learn that each convex, lower-semicontinuous and 1-homogeneous function is the
support function of a suitable auxiliary set.
Sketch: Following remark.

Remark 1.64. If C 6= ∅, u ∈ H \ {0} and σC(u) < +∞, then {x ∈ H : 〈x, u〉 ≤ σC(u)} is
smallest closed half-space with outer normal u that contains C. If x ∈ C and σC(u) = 〈x, u〉
then x ∈ sptsC and {y ∈ H : 〈y, u〉 = σC(u) = 〈x, u〉} is a supporting hyperplane of C at x.

Proposition 1.65. Let C ⊂ H and set for u ∈ H

Au = {x ∈ H : 〈x, u〉 ≤ σC(u)} .

Then convC =
⋂
u∈H Au.

Proof. • If C = ∅ then σC(u) = −∞ and Au = ∅ for all u ∈ H. Hence, the result is trivial.

• Otherwise, σC(u) > −∞. Let D =
⋂
u∈H Au.

• Each Au is closed, convex and contains C. Therefore D is closed, convex and convC ⊂ D.
Since D is closed, also convC ⊂ D.

• Now, let x ∈ D, set p = PconvCx.

• Then 〈x− p, y − p〉 ≤ 0 for all y ∈ convC and thus σconvC(x− p) = sup
〈
convC, x− p

〉
=

〈p, x− p〉.

• Moreover, x ∈ D ⊂ Ax−p. So 〈x, x− p〉 ≤ σC(x− p).

• Since C ⊂ convC we get σC ≤ σconvC .

• Now: ‖x − p‖2 = 〈x, x− p〉 − 〈p, x− p〉 ≤ σC(x − p) − σconvC(x − p) ≤ 0. Therefore
x = p ⊂ convC and thus D ⊂ convC.

Corollary 1.66. Any closed convex subset of H is the intersection of all closed half-spaces of
which it is a subset.
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