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1 Convex non-smooth optimization with proximal operators

Remark 1.1 (Motivation). Convex optimization:
e casier to solve, global optimality,

e convexity is strong regularity property, even if functions are not differentiable, even in
infinite dimensions,

e usually strong duality,

e special class of algorithms for non-smooth, convex problems; easy to implement and to
parallelize. Objective function may assume value +o0o, i.e. well suited for implementing
constraints.

So if possible: formulate convex optimization problems.
Of course: some phenomena can only be described by non-convex problems, e.g. formation of
transport networks.

Definition 1.2. Throughout this section H is Hilbert space, possibly infinite dimensional.

1.1 Convex sets

Definition 1.3 (Convex set). A set A C H is convex if for any a,b € A, A € [0,1] one has
Aa+(1—X)-be A

Comment: Line segment between any two points in A is contained in A

Sketch: Positive example with ellipsoid, counterexample with ‘kidney’

Comment: Study of geometry of convex sets is whole branch of mathematical research. See
lecture by Prof. Wirth in previous semester for more details. In this lecture: no focus on convex
sets, will repeat all relevant properties where required.

Proposition 1.4 (Intersection of convex sets). If {C;}ier is family of convex sets, then C'

Nics Ci is convex.

Proof. e Let z,y € C then for all i € I have x,y € Cj, thus A -z + (1 — \) -y € C; for all
A € [0,1] and consequently A -z + (1 —)\) -y € C.
0



Definition 1.5 (Convex hull). The convez hull conv C of a set C'is the intersection of all convex
sets that contain C.

Proposition 1.6. Let C' C H, let T be the set of all convex combinations of elements of C| i.e.,

def {Z)\ T

=1

k
keN, zy,...,z € C, )\1,...,Ak>0,2)\i=1}.

Then T' = conv C.

Proof. convC C T. T is convex: any z,y € T are (finite) convex combinations of points in C'.
Thus, so is any convex combination of x and y. Also, C CT. So convC C T.

convC D T. Let S be convex and S O C. We will show that S D T and thus conv C D T, which
with the previous step implies equality of the two sets.

We show S D T by recursion. For some k € N, z1,...,2 € C, A,..., A\p > 0, Zle A =1 let

k
=1

When k =1 clearly s € S.
Otherwise, set A\; = A\;/(1 — Ag) fori=1,...,k— 1. Then

k—
= A\p Tk + 1_/\k Z .
i=1

def.
= Sk—1

We find that s € S if s;_1 € S. Applying this argument recursively to s;p_1 until we reach sq,
we have shown that s € S. O

Proposition 1.7 (Carathéodory). Let H = R™. Every x € convC can be written as convex
combination of at most n 4 1 elements of C.

Proof. Consider arbitrary convex combination x = Zle Az for k> n+ 1.
Claim: without changing x can change (\;); such that one \; becomes 0.

e The vectors {zg — x1,...,x; — x1} are linearly dependent, since k — 1 > n.

e = There are (Bs,..., ) € RF"1\ {0} such that

k
OZZ _xl Zﬂzxz Zﬁle
1=2

.“
op
e Define \; = \; — t* 3; for t* = B 1. k2 Bi£0 |g?|-
H,_/
[[I<1
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1.2 Convex functions

Definition 1.8 (Convex function). A function f: H — R U {oo} is convex if for all z,y € H,
A€[0,1] onehas f(A-z+(1—X)-y) <X f(z)+(1—A)- f(y). Set of convex functions over H
is denoted by Conv(H).

e [ is strictly convex if for x #yand A € (0,1): f(A-z+(1—=X)-y) <A f(z)+(1=N)-f(y).
e fis concave if —f is convex.

e The domain of f, denoted by dom f is the set {z € H: f(x) < +oo}. f is called proper if
dom f # 0.

e The graph of f is the set {(z, f(z))|z € dom f}.
e The epigraph of f is the set ‘above the graph’, epi f = {(z,7) € H x R: r > f(z)}.

e The sublevel set of f with respect tor € Ris S,.(f) ={z € H: f(x) <r}.

Sketch: Strictly convex, graph, secant, epigraph, sublevel set

Proposition 1.9. (i) f convex = dom f convex.
(ii) [f convex| < [epi f convex].

(ii) [(x,r) € epi f|] & |z € S, (f)].

Example 1.10. (i) characteristic or indicator function of convex set C C H:

Do not confuse with xo(x) =

0 else.

0 fzeC 1 fzeC
wo(r) =

+oo else.
(ii) any norm on H is convex: For all x,y € H, A € [0,1]:
A2+ (1 =A) -yl < A2 +[[(1=A)-yll = A-[lzfl + (1 =) - [ly]
(iii) for H = R™ the maximum function
R" 35z +— max{z;[i=1,...,n}

1S convex.



(iv) linear and affine functions are convex.

Example 1.11 (Optimization with constraints). Assume we want to solve an optimization
problem with linear constraints, e.g.,

min{ f(z)|z € R", Az =y}

where f: R" - RU{o0}, A € R™*" y € R™. This can be formally rewritten as unconstrained
problem:

min{f(z) + g(Ax)|z € R"} where g=ty}-

We will later discuss algorithms that are particularly suited for problems of this form where one
only has to ‘interact’ with f and g separately, but not their combination.

As mentioned in the motivation: convexity is a strong regularity property. Here we give some
examples of consequences of convexity.

Definition 1.12. A function f : H — R U {oo} is (sequentially) continuous in x if for every
convergent sequence (xy)r with limit = one has limg_, f(zr) = f(z). The set of points = where
f(z) € R and f is continuous in z is denoted by cont f.

Remark 1.13 (Continuity in infinite dimensions). If H is infinite dimensional, it is a priori not
clear, whether closedness and sequential closedness coincide. But since H is a Hilbert space,
it has an inner product, which induces a norm, which induces a metric. On metric spaces the
notions of closedness and sequential closedness coincide and thus so do the corresponding notions
of continuity.

Proposition 1.14 (On convexity and continuity I). Let f € Conv(H) be proper and let xg €
dom f. Then the following are equivalent:

(i) f is locally Lipschitz continuous near xg.
(ii) f is bounded on a neighbourhood of xy.
(iii) f is bounded from above on a neighbourhood of .
Proof. The implications (i) = (ii) = (iii) are clear. We show (iii) = (i).

e If f is bounded from above in an environment of zy then there is some p € R4 such that
sup f(B(zo,p)) =n < +o00.

o Let z € H, x # x¢, such that o = ||z — 2| /p € (0,1]

Sketch: Draw position of Z.

e Let & = o+ 1(z—x0) € B(zg, p). Then z = (1 —a)-z9+a-F and therefore by convexity

of f

fl@)<(1—a)- f(zo) +a- f(F)
F@) — flao) < @ (0 f(z0)) = |l — o] - 1120

Sketch: Draw position of new Z.




e Now let & = g + % (20 — 2) € B(wo, p). Then$0:ﬁ-j+ﬁ-x. So:

fl@o) < 15 - fl@) + 155 - F(@)
v) < 155 - (f(@) = f(wo) + flzo) — f(2))

z) < a-(n— f(xo)) = |z — xo - =L

We combine to get:

|£(2) = f(z0)] < [l — wo| - L0

e Now need to extend to other ‘base points’ near xg. For every z; € B(zg,p/4) have
sup f(Bler, p/2) < nand f(z) > flwo) — & 2109 > 2 f(zg) — . With arguments
above get for every z € B(x1, p/2) that

£(@) = F(an)] < o= |- L5 < fla — ay | - 2=L0D)

e For every z1, 29 € B(xo, p/4) have ||z1 — x2| < p/2 and thus

|f(@1) = f(w2)] < [y — g - 2=Llzod)

O

Proposition 1.15 (On convexity and continuity II). If any of the conditions of Proposition 1.14
hold, then f is locally Lipschitz continuous on int dom f.

Proof. Sketch: Positions of xg, z, y and balls B(zg, p), B(z,a - p)

e By assumption there is some z¢ € dom f, p € Ry, and n < oo such that sup f(B(xo, p))
<.

e For any x € intdom f there is some y € dom f such that x = v -2z¢ + (1 — ) - y for some
v € (0,1).
e Further, there is some a € (0,~) such that B(z,a - p) C dom f and y ¢ B(z,« - p).

e Then, B(x,a - p) C conv(B(zo, p) U{y}).

e So for any z € B(x,«-p) there is some w € B(xg,p) and some 5 € [0,1] such that
z=pF-w+ (1—7)-y. Therefore,

f(2) <B-f(w)+ (1 —=8)- fly) <max{n, f(y)}.

e So fis bounded from above on B(z, « - p) and thus by Proposition 1.14 f is locally Lipschitz
near .

O

Remark 1.16. One can show: If f : H — RU{oo} is proper, convex and lower semi-continuous,
then cont f = int dom f.



Proposition 1.17 (On convexity and continuity in finite dimensions). If f € Conv(H = R")
then f is locally Lipschitz continuous at every point in int dom f.

Proof. e Let xg € intdom f.

e If H is finite-dimensional then there is a finite set {z;};c; C dom f such that zy €
int conv({x; };er) C dom f.

e For example: along every axis ¢ = 1,...,n pick 9,1 = x +¢€-¢;, x9; = x — € - ¢; for
sufficiently small £ where e; denotes the canonical i-th Euclidean basis vector.

e Since every point in conv({z;}icsr) can be written as convex combination of {xz;};er we find
sup f(conv({z; }icr)) < max;er f(z;) < +o0.

e So f is bounded from above on an environment of xg and thus Lipschitz continuous in xg
by the previous Proposition.
O

Comment: Why is interior necessary in Proposition above?

Example 1.18. The above result does not extend to infinite dimensions.

e For instance, the H'-norm is not continuous with respect to the topology induced by the
L?-norm.

e An unbounded linear functional is convex but not continuous.

Definition 1.19 (Lower semi-continuity). A function f: H — R U {oo} is called (sequentially,
see Remark 1.13) lower semi-continuous in = € H if for every sequence (z,), that converges to
x one has

liminf f(xy,) > f(z).

n—o0

f is called lower semi-continuous if it is lower semi-continuous on H.

0 if z <0,
1 fxz>0

) ) ) 0 ifz<O, .
is lower semi-continuous, f(x) = 18 not.

Example 1.20. f(z) = { 1 ife>0
if x>

Sketch: Plot the two graphs.

Comment: Assuming continuity is sometimes impractically strong. Lower semi-continuity is a
weaker assumption and also sufficient for well-posedness of minimization problems: If (x,), is a
convergent minimizing sequence of a lower semi-continuous function f with limit x then x is a
minimizer.

Proposition 1.21. Let f: H — RU {oc}. The following are equivalent:
(i) f is lower semi-continuous.
(i) epi f is closed in H x R.

(iii) The sublevel sets S, (f) are closed for all r € R.



Proof. (i) = (ii). Let (yk,7k)r be a converging sequence in epi f with limit (y,r). Then

r= lim ry, > liminf f(y,) > f(y) = (y,r) €epif.
—00

k—o0

(ii) = (iii). Forr e Rlet A, : H - H xR, z — (z,7) and Q, = epi f N (H x {r}). Q, is
closed, A, is continuous.

S (f)y={zecH: flz)<rt={zxcH: (z,9) €Q} = A7(Q,) is closed.

(iii) = (i). Assume (i) is false. Then there is a sequence (yg )i in H converging to y € H such that

p = limpsoo f(yr) < f(x). Let v € (p, f(y)). For k > ko sufficiently large, f(yx) < r < f(y),
ie. yp € Sp(f) but y ¢ S,(f). Contradiction. O



