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1 Convex non-smooth optimization with proximal operators

Remark 1.1 (Motivation). Convex optimization:

• easier to solve, global optimality,

• convexity is strong regularity property, even if functions are not differentiable, even in
infinite dimensions,

• usually strong duality,

• special class of algorithms for non-smooth, convex problems; easy to implement and to
parallelize. Objective function may assume value +∞, i.e. well suited for implementing
constraints.

So if possible: formulate convex optimization problems.
Of course: some phenomena can only be described by non-convex problems, e.g. formation of
transport networks.

Definition 1.2. Throughout this section H is Hilbert space, possibly infinite dimensional.

1.1 Convex sets

Definition 1.3 (Convex set). A set A ⊂ H is convex if for any a, b ∈ A, λ ∈ [0, 1] one has
λ · a+ (1− λ) · b ∈ A.

Comment: Line segment between any two points in A is contained in A

Sketch: Positive example with ellipsoid, counterexample with ‘kidney’

Comment: Study of geometry of convex sets is whole branch of mathematical research. See
lecture by Prof. Wirth in previous semester for more details. In this lecture: no focus on convex
sets, will repeat all relevant properties where required.

Proposition 1.4 (Intersection of convex sets). If {Ci}i∈I is family of convex sets, then C
def.
=⋂

i∈I Ci is convex.

Proof. • Let x, y ∈ C then for all i ∈ I have x, y ∈ Ci, thus λ · x + (1 − λ) · y ∈ Ci for all
λ ∈ [0, 1] and consequently λ · x+ (1− λ) · y ∈ C.
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Definition 1.5 (Convex hull). The convex hull convC of a set C is the intersection of all convex
sets that contain C.

Proposition 1.6. Let C ⊂ H, let T be the set of all convex combinations of elements of C, i.e.,

T
def.
=

{
k∑
i=1

λi xi

∣∣∣∣∣k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,
k∑
i=1

λi = 1

}
.

Then T = convC.

Proof. convC ⊂ T . T is convex: any x, y ∈ T are (finite) convex combinations of points in C.
Thus, so is any convex combination of x and y. Also, C ⊂ T . So convC ⊂ T .
convC ⊃ T . Let S be convex and S ⊃ C. We will show that S ⊃ T and thus convC ⊃ T , which
with the previous step implies equality of the two sets.
We show S ⊃ T by recursion. For some k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,

∑k
i=1 λi = 1 let

sk =

k∑
i=1

λi xi .

When k = 1 clearly sk ∈ S.
Otherwise, set λ̃i = λi/(1− λk) for i = 1, . . . , k − 1. Then

sk = λk xk + (1− λk) ·
k−1∑
i=1

λ̃i xi︸ ︷︷ ︸
def.
= sk−1

.

We find that sk ∈ S if sk−1 ∈ S. Applying this argument recursively to sk−1 until we reach s1,
we have shown that sk ∈ S.

Proposition 1.7 (Carathéodory). Let H = Rn. Every x ∈ convC can be written as convex
combination of at most n+ 1 elements of C.

Proof. Consider arbitrary convex combination x =
∑k

i=1 λi xi for k > n+ 1.
Claim: without changing x can change (λi)i such that one λi becomes 0.

• The vectors {x2 − x1, . . . , xk − x1} are linearly dependent, since k − 1 > n.

• ⇒ There are (β2, . . . , βk) ∈ Rk−1 \ {0} such that

0 =
k∑
i=2

βi (xi − x1) =
k∑
i=2

βi xi −
k∑
i=2

βi︸ ︷︷ ︸
def.
= −β1

x1 .

• Define λ̃i = λi − t∗ βi for t∗ = λi∗
βi∗

and i∗ = argmini=1,...,k:βi 6=0
λi
|βi| .

• λ̃i ≥ 0: λ̃i = λi ·
(
1− λi∗/βi∗

λi/βi︸ ︷︷ ︸
|·|≤1

)
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• λ̃i∗ = 0

•
k∑
i=1

λ̃i =

k∑
i=1

λi︸ ︷︷ ︸
=1

−t∗
k∑
i=1

βi︸ ︷︷ ︸
=0

= 1

•
k∑
i=1

λ̃i xi =
k∑
i=1

λi xi︸ ︷︷ ︸
=x

−t∗
k∑
i=1

βi xi︸ ︷︷ ︸
=0

= x

1.2 Convex functions

Definition 1.8 (Convex function). A function f : H → R ∪ {∞} is convex if for all x, y ∈ H,
λ ∈ [0, 1] one has f

(
λ · x+ (1− λ) · y

)
≤ λ · f(x) + (1− λ) · f(y). Set of convex functions over H

is denoted by Conv(H).

• f is strictly convex if for x 6= y and λ ∈ (0, 1): f
(
λ ·x+(1−λ) ·y

)
< λ ·f(x)+(1−λ) ·f(y).

• f is concave if −f is convex.

• The domain of f , denoted by dom f is the set {x ∈ H : f(x) < +∞}. f is called proper if
dom f 6= ∅.

• The graph of f is the set {(x, f(x))|x ∈ dom f}.

• The epigraph of f is the set ‘above the graph’, epi f = {(x, r) ∈ H × R : r ≥ f(x)}.

• The sublevel set of f with respect to r ∈ R is Sr(f) = {x ∈ H : f(x) ≤ r}.

Sketch: Strictly convex, graph, secant, epigraph, sublevel set

Proposition 1.9. (i) f convex ⇒ dom f convex.

(ii) [f convex] ⇔ [epi f convex].

(iii) [(x, r) ∈ epi f ] ⇔ [x ∈ Sr(f)].

Example 1.10. (i) characteristic or indicator function of convex set C ⊂ H:

ιC(x) =

{
0 if x ∈ C
+∞ else.

Do not confuse with χC(x) =

{
1 if x ∈ C
0 else.

(ii) any norm on H is convex: For all x, y ∈ H, λ ∈ [0, 1]:

‖λ · x+ (1− λ) · y‖ ≤ ‖λ · x‖+ ‖(1− λ) · y‖ = λ · ‖x‖+ (1− λ) · ‖y‖

(iii) for H = Rn the maximum function

Rn 3 x 7→ max{xi|i = 1, . . . , n}

is convex.
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(iv) linear and affine functions are convex.

Example 1.11 (Optimization with constraints). Assume we want to solve an optimization
problem with linear constraints, e.g.,

min{f(x)|x ∈ Rn, A x = y}

where f : Rn → R ∪ {∞}, A ∈ Rm×n, y ∈ Rm. This can be formally rewritten as unconstrained
problem:

min{f(x) + g(Ax)|x ∈ Rn} where g = ι{y} .

We will later discuss algorithms that are particularly suited for problems of this form where one
only has to ‘interact’ with f and g separately, but not their combination.

As mentioned in the motivation: convexity is a strong regularity property. Here we give some
examples of consequences of convexity.

Definition 1.12. A function f : H → R ∪ {∞} is (sequentially) continuous in x if for every
convergent sequence (xk)k with limit x one has limk→∞ f(xk) = f(x). The set of points x where
f(x) ∈ R and f is continuous in x is denoted by cont f .

Remark 1.13 (Continuity in infinite dimensions). If H is infinite dimensional, it is a priori not
clear, whether closedness and sequential closedness coincide. But since H is a Hilbert space,
it has an inner product, which induces a norm, which induces a metric. On metric spaces the
notions of closedness and sequential closedness coincide and thus so do the corresponding notions
of continuity.

Proposition 1.14 (On convexity and continuity I). Let f ∈ Conv(H) be proper and let x0 ∈
dom f . Then the following are equivalent:

(i) f is locally Lipschitz continuous near x0.

(ii) f is bounded on a neighbourhood of x0.

(iii) f is bounded from above on a neighbourhood of x0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. We show (iii) ⇒ (i).

• If f is bounded from above in an environment of x0 then there is some ρ ∈ R++ such that
sup f(B(x0, ρ)) = η < +∞.

• Let x ∈ H, x 6= x0, such that α def.
= ‖x− x0‖/ρ ∈ (0, 1]

Sketch: Draw position of x̃.

• Let x̃ = x0+
1
α(x−x0) ∈ B(x0, ρ). Then x = (1−α) ·x0+α · x̃ and therefore by convexity

of f

f(x) ≤ (1− α) · f(x0) + α · f(x̃)

f(x)− f(x0) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)ρ

Sketch: Draw position of new x̃.
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• Now let x̃ = x0 +
1
α(x0 − x) ∈ B(x0, ρ). Then x0 = α

1+α · x̃+ 1
1+α · x. So:

f(x0) ≤ 1
1+α · f(x) +

α
1+α · f(x̃)

f(x0)− f(x) ≤ α
1+α · (f(x̃)− f(x0) + f(x0)− f(x))

f(x0)− f(x) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)ρ

We combine to get:

|f(x)− f(x0)| ≤ ‖x− x0‖ · η−f(x0)ρ

• Now need to extend to other ‘base points’ near x0. For every x1 ∈ B(x0, ρ/4) have
sup f(B(x1, ρ/2)) ≤ η and f(x1) ≥ f(x0) − ρ

4 ·
η−f(x0)

ρ ≥ 2 f(x0) − η. With arguments
above get for every x ∈ B(x1, ρ/2) that

|f(x)− f(x1)| ≤ ‖x− x1‖ · η−f(x1)ρ/2 ≤ ‖x− x1‖ · 4(η−f(x0))ρ .

• For every x1, x2 ∈ B(x0, ρ/4) have ‖x1 − x2‖ ≤ ρ/2 and thus

|f(x1)− f(x2)| ≤ ‖x1 − x2‖ · 4(η−f(x0))ρ .

Proposition 1.15 (On convexity and continuity II). If any of the conditions of Proposition 1.14
hold, then f is locally Lipschitz continuous on int dom f .

Proof. Sketch: Positions of x0, x, y and balls B(x0, ρ), B(x, α · ρ)

• By assumption there is some x0 ∈ dom f , ρ ∈ R++ and η < ∞ such that sup f(B(x0, ρ))
≤ η.

• For any x ∈ int dom f there is some y ∈ dom f such that x = γ · x0 + (1− γ) · y for some
γ ∈ (0, 1).

• Further, there is some α ∈ (0, γ) such that B(x, α · ρ) ⊂ dom f and y /∈ B(x, α · ρ).

• Then, B(x, α · ρ) ⊂ conv(B(x0, ρ) ∪ {y}).

• So for any z ∈ B(x, α · ρ) there is some w ∈ B(x0, ρ) and some β ∈ [0, 1] such that
z = β · w + (1− β) · y. Therefore,

f(z) ≤ β · f(w) + (1− β) · f(y) ≤ max{η, f(y)} .

• So f is bounded from above on B(x, α · ρ) and thus by Proposition 1.14 f is locally Lipschitz
near x.

Remark 1.16. One can show: If f : H → R∪{∞} is proper, convex and lower semi-continuous,
then cont f = int dom f .
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Proposition 1.17 (On convexity and continuity in finite dimensions). If f ∈ Conv(H = Rn)
then f is locally Lipschitz continuous at every point in int dom f .

Proof. • Let x0 ∈ int dom f .

• If H is finite-dimensional then there is a finite set {xi}i∈I ⊂ dom f such that x0 ∈
int conv({xi}i∈I) ⊂ dom f .

• For example: along every axis i = 1, . . . , n pick x2i−1 = x + ε · ei, x2i = x − ε · ei for
sufficiently small ε where ei denotes the canonical i-th Euclidean basis vector.

• Since every point in conv({xi}i∈I) can be written as convex combination of {xi}i∈I we find
sup f(conv({xi}i∈I)) ≤ maxi∈I f(xi) < +∞.

• So f is bounded from above on an environment of x0 and thus Lipschitz continuous in x0
by the previous Proposition.

Comment: Why is interior necessary in Proposition above?

Example 1.18. The above result does not extend to infinite dimensions.

• For instance, the H1-norm is not continuous with respect to the topology induced by the
L2-norm.

• An unbounded linear functional is convex but not continuous.

Definition 1.19 (Lower semi-continuity). A function f : H → R ∪ {∞} is called (sequentially,
see Remark 1.13) lower semi-continuous in x ∈ H if for every sequence (xn)n that converges to
x one has

lim inf
n→∞

f(xn) ≥ f(x) .

f is called lower semi-continuous if it is lower semi-continuous on H.

Example 1.20. f(x) =

{
0 if x ≤ 0,

1 if x > 0
is lower semi-continuous, f(x) =

{
0 if x < 0,

1 if x ≥ 0
is not.

Sketch: Plot the two graphs.

Comment: Assuming continuity is sometimes impractically strong. Lower semi-continuity is a
weaker assumption and also sufficient for well-posedness of minimization problems: If (xn)n is a
convergent minimizing sequence of a lower semi-continuous function f with limit x then x is a
minimizer.

Proposition 1.21. Let f : H → R ∪ {∞}. The following are equivalent:

(i) f is lower semi-continuous.

(ii) epi f is closed in H × R.

(iii) The sublevel sets Sr(f) are closed for all r ∈ R.
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Proof. (i) ⇒ (ii). Let (yk, rk)k be a converging sequence in epi f with limit (y, r). Then

r = lim
k→∞

rk ≥ lim inf
k→∞

f(yk) ≥ f(y) ⇒ (y, r) ∈ epi f .

(ii) ⇒ (iii). For r ∈ R let Ar : H → H × R, x 7→ (x, r) and Qr = epi f ∩ (H × {r}). Qr is
closed, Ar is continuous.

Sr(f) = {x ∈ H : f(x) ≤ r} = {x ∈ H : (x, y) ∈ Qr} = A−1r (Qr) is closed.

(iii)⇒ (i). Assume (i) is false. Then there is a sequence (yk)k inH converging to y ∈ H such that
ρ

def.
= limk→∞ f(yk) < f(x). Let r ∈ (ρ, f(y)). For k ≥ k0 sufficiently large, f(yk) ≤ r < f(y),

i.e. yk ∈ Sr(f) but y /∈ Sr(f). Contradiction.
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