Übung zur Vorlesung

Einführung in die Numerische Mathematik

WS 2007/2008 — Blatt 12

Abgabe: 22.1.2008, vor der Vorlesung

Aufgabe 1 (FFT) (4 Punkte)

Bestimmen Sie das trigonometrische Interpolationspolynom zu f(x) := x auf $[0, 2\pi)$ zu den Stützstellen $x_k = \frac{\pi k}{2}, k = 0, ..., 3$, mittels schneller Fouriertransformation. Fertigen Sie eine Skizze des Interpolationspolynoms an.

Aufgabe 2 (B-Splines)

(1+3+4 Punkte)

Für eine Knotenfolge $(t_i)_{i\in\mathbb{Z}}$ mit $t_i \leq t_{i+1}$ und $\lim_{i\to\infty} t_i = \infty$, $\lim_{i\to-\infty} t_i = -\infty$ seien für $i\in\mathbb{Z}, k\in\mathbb{N}_0$ die $B-Splines\ B_{ik}:\mathbb{R}\to\mathbb{R}$ vom Grad k rekursiv definiert durch:

$$B_{i0} := \begin{cases} 1 & \text{für } t_i \leq x < t_{i+1} \\ 0 & \text{sonst} \end{cases}$$

$$B_{ik} := \omega_{ik}(x)B_{i,k-1}(x) + (1 - \omega_{i+1,k}(x))B_{i+1,k-1}(x),$$
wobei $\omega_{ik}(x) := \begin{cases} \frac{x - t_i}{t_{i+k} - t_i} & \text{für } t_i < t_{i+k} \\ 0 & \text{sonst} \end{cases}.$

Für die folgenden Aufgaben sei die Folge $(t_i)_{i\in\mathbb{Z}}$ streng monoton wachsend.

- a) Berechnen und skizzieren Sie $B_{i1}, B_{i+1,1}$ und B_{i2} .
- b) Zeigen Sie, dass für alle $i, j \in \mathbb{Z}, k \in \mathbb{N}_0$ gilt:
 - i) $B_{ik}|_{[t_i,t_{i+1})} \in \mathbb{P}_k$,
 - ii) supp $(B_{ik}) = [t_i, t_{i+k+1}],$
 - iii) $B_{ik} \geq 0, \sum_{i \in \mathbb{Z}} B_{ik}(x) = 1$ (Zerlegung der Eins).
- c) Zeigen Sie:
 - i) Für k > 1 und $x \in \mathbb{R}$ gilt

$$\frac{d}{dx}B_{ik}(x) = \frac{k}{t_{i+k} - t_i}B_{i,k-1}(x) - \frac{k}{t_{i+k+1} - t_{i+1}}B_{i+1,k-1}(x).$$

ii) $B_{ik} \in C^{k-1}(\mathbb{R})$ für alle $i \in \mathbb{Z}$ und alle $k \ge 1$.

Hinweis: Verwenden Sie für i), dass für k > 1 gilt

$$\frac{\omega_{ik}(x)}{t_{i+k-1}-t_i} = \frac{\omega_{i,k-1}(x)}{t_{i+k}-t_i}, \frac{1-\omega_{ik}(x)}{t_{i+k}-t_{i+1}} = \frac{1-\omega_{i+1,k-1}(x)}{t_{i+k}-t_i}.$$

Aufgabe 3 (Programmieraufgabe: Spline Interpolationsfehler/EOC) (4 Punkte) Sei $f(x) = \sqrt{x}$, $\Delta := \{0 = x_0 < \ldots < x_n = 1\}$ und $s \in S^{1,0}_{\Delta}$ der lineare Interpolierende Spline von f auf [0,1].

a) Wir definieren als Approximation für den $\|\cdot\|_{\infty}$ -Fehler für $m \in \mathbb{N}, m > 2$:

$$e_{\Delta,m} := \max_{x \in \Delta_m} |f(x) - s(x)|,$$

wobei Δ_m das m-fach unterteilte Gitter Δ bezeichnet, d.h. $\Delta_m := \Delta \cup \{x_i + r(x_{i+1} - x_i)/m\}|_{i=0,\ldots,n-1,r=1,\ldots,m-1}$. Schreiben Sie eine Routine, die die Stützstellen Δ und den Unterteilungsgrad m als Eingabe bekommt, und den Fehler $e_{\Delta,m}$ berechnet.

- b) Bestimmen Sie den Fehler $e_{\Delta,m}$ für $m=10, x_k=k/n, k=0,\ldots,n$ und n=1,3,7,15,31,63. Wiederholen Sie dies für die Knotenwahl $x_k=(k/n)^4$.
- c) Seien Δ und Δ' zwei Mengen von Interpolationspunkten mit unterschiedlicher Anzahl von Punkten $|\Delta| \neq |\Delta'|$. Hiermit definieren wir die experimentelle Konvergenzordnung (Experimental Order of Convergence) des Interpolationsfehlers als

$$EOC(\Delta, \Delta') := \frac{\ln(e_{\Delta,m}/e_{\Delta',m})}{\ln(|\Delta|/|\Delta'|)}.$$

Berechnen Sie diese Größe für alle aufeinanderfolgenden Glieder obiger n-Sequenz.

Hinweis: Man kann zeigen, dass für die erste Knotenwahl aus b) gilt $||f - s||_{\infty} \ge \frac{1}{4}n^{-1/2}$ und für die zweite Knotenwahl $||f - s||_{\infty} \le \frac{1}{2}n^{-2}$.