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Chapter 1

Introduction

The goal of this lecture is to provide an overview of important techniques used for the anal-
ysis, regularization, and numerical solution of inverse problems. Generally speaking, inverse
problems are concerned with finding causes for an observed effect or a desired effect. With
respect to this aspect one usually divides into the terms

• Identification or reconstruction, if one looks for the cause for an observed effect.

• Control or design, if one looks for a possible cause of a desired effect.

Both problems are of course related, but there are also several mathematical consequences
due to the different aims. E.g., in an identification problem a desirable property is uniqueness
of a solution (identifiability), because there is probably a specific cause for the observed effect,
which one would like to obtain. In a control or design problem, uniqueness is not really of
importance, since non-uniqueness only means that the design goal can be reached by different
strategies and hence, one has additional freedom (e.g. to incorporate further design goals).

A common property of a vast majority of inverse problems is their ill-posedness. In the
sense of Hadamard, a mathematical problem (we can think of an equation or optimization
problem) is well-posed if it satisfies the following properties:

1. Existence: For all (suitable) data, there exists a solution of the problem (in an
appropriate sense).

2. Uniqueness: For all (suitable) data, the solution is unique.

3. Stability: The solution depends continuously on the data.

According to this definition, a problem is ill-posed if one of these three conditions is violated.
However, in general we shall be concerned in particular with problems violating the third
condition, i.e., the solution does not depend on the data in a stable way.

The prototype of inverse problem will be an equation of the form

F (x) = y, (1.1)

with a function space setting to be specified below. For such an equation, the unknown is
x and the data are usually the right-hand side y. If the stability condition is violated, the
numerical solution of the inverse problem by standard methods is difficult and often yields
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instability, even if the data are exact (since any numerical method has internal errors acting
like noise). Therefore, special techniques, so-called regularization methods have to be used in
order to obtain a stable approximation of the solution. Since the appropriate construction
and analysis of regularization methods and subsequently (or simultaneously) of numerical
schemes is the major issue in the solution of inverse problems, most of the lecture will be
concerned with this task.

Finally, we notice that the nomenclature ”inverse problem” somehow indicates the exis-
tence of a ”direct problem” or ”forward problem”. This is not always true, but in most cases
such a direct problem, which is well-posed, exists. For example, the direct problem could
be to simply evaluate an integral operator of the first kind, and the corresponding inverse
problem is to solve an integral equation involving this operator.

Inverse problems is a very active field of research in applied sciences, with a fast growing
bibliography. Throughout the lecture notes we shall refer to various papers and monographs
including further details on several aspects. As general references on inverse problems, and
also as sources for contents in this lecture we refer to the monographs by Engl, Hanke,
Neubauer [10], Kirsch [17], and Vogel [23], the latter focusing on computational methods.
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Chapter 2

Examples of Inverse Problems

In the following we shall discuss some motivating examples of inverse problems, the first two
of them being rather simple and therefore allowing a detailed insight into typical features of
inverse problems. The other problems rather motivate the practical importance of inverse
problems, but due to their complicated mathematical structure we will spend less on their
analysis at this point.

2.1 Differentiation of Data

One of the simplest ill-posed problems is (numerical) differentiation of noisy functions, a task
one faces in many applications. Assume that we want to compute the derivative of a function
which includes additive noise, i.e., instead of the exact function f we are only given the
function f δ with

f δ(x) = f(x) + nδ(x), x ∈ [0, 1]

and f δ(0) = f(0) = 0, f δ(1) = f(1) = 0, where nδ(x) represents the data noise. In many
typical measurement devices, the noise at each point x (nδ(x)) can be modeled as a normal
distribution with mean zero and variance δ > 0, being independent at different measurement
points x1 and x2. From the law of large numbers one may expect that∫ 1

0
|nδ(x)|2 dx ≈ δ2,

i.e., one obtains some information of the noise. However, even if we know exactly that∫ 1

0
|nδ(x)|2 dx = δ2

and δ is arbitrarily small, we cannot obtain any estimate on the derivative df
dx . In the worst

case, the noise nδ is not differentiable, so that one cannot even compute a derivative. However,
even if we assume that the noise is differentiable (even analytic) the error in the derivative
can be arbitrarily large. Take for example

nδ(x) =
√

2δ sin(2πkx)

for some k ∈ N. Then,
∫ 1
0 |n

δ(x)|2 dx = δ2 and

df δ

dx
(x) =

df

dx
(x) +

√
22πδk cos(2kπx)
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Now note that k can be arbitrarily large and therefore δk can be arbitrarily large. Hence, the
L2-error (∫ 1

0

(
df δ

dx
(x)− df

dx
(x)
)2

dx

)1/2

= 2πδk

or the L∞-error

sup
x∈[0,1]

∣∣∣∣df δ

dx
(x)− df

dx
(x)
∣∣∣∣ = √

22πδk

can be arbitrarily large. This statement holds true in general for ill-posed problems (and
could actually be used as a definition):

Without regularization and without further information, the error between the ex-
act and noisy solution can be arbitrarily large, even if the noise is arbitrarily small.

How can additional information that helps to bound the error, look like ? Of course, one
could assume that the noise is bounded in a stronger norm, e.g.,∫ 1

0

(
dnδ

dx
(x)
)2

dx ≤ δ2.

In this case, we would obtain in a trivial way the error estimate(∫ 1

0

(
df δ

dx
(x)− df

dx
(x)
)2

dx

)1/2

≤ δ,

but our result does not correspond to the practical applications, where we can hardly get an
estimate for dnδ

dx . Thus, it seems not a good idea to assume stronger bounds on the noise.
A more realistic alternative is to assume further regularity of the solution f , e.g., f ∈

C2([0, 1]). The error is then still arbitrarily large for the original problem, but can be esti-
mated if regularization is used. As a simple example we could smooth the data by solving

−αd
2fα

dx2
(x) + fα(x) = f δ(x), fα(0) = fα(1) = 0,

which is also equivalent to applying the associated Green operator (an integral operator with
smooth kernel) to f δ. We shall see later that this approach can be identified with so-called
Tikhonov regularization. Note that due to the standard variational interpretation of elliptic
differential operators, this smoothing is also equivalent to mimimizing the functional

Hα(fα) =
∫ 1

0
(fα(x)− f δ(x))2 dx+ α

∫ 1

0

(
dfα

dx
(x)
)2

dx,

i.e., we perform a least-squares fit with a penalty term that enforces dfα

dx to be bounded. Then
we have

−α d2

dx2
(fα(x)− f(x)) + (fα(x)− f(x)) = (f δ(x)− f(x)) + α

d2f

dx2
(x)
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and multiplication by fα(x)− f(x) and integration with respect to x yields∫ 1

0

[
α

(
dfα

dx
− df

dx

)2

+ (fα(x)− f(x))2
]
dx =∫ 1

0

(
f δ(x)− f(x) + α

d2f

dx

)
(fα(x)− f(x)) dx

where we have used integration by parts for the first term. By applying the Cauchy-Schwarz
inequality to the right-hand side we further obtain∫ 1

0

[
α

(
dfα

dx
− df

dx

)2

+
1
2
(fα(x)− f(x))2

]
dx ≤

∫ 1

0
(f δ(x)− f(x))2 dx+ α2C2

≤ δ2 + α2C2,

where C = ‖f‖C2 . Thus, we may conclude in particular∫ 1

0

(
dfα

dx
− df

dx

)2

dx ≤ δ2

α
+ αC2,

i.e., we obtain a bound on the error in terms of α and δ. The obvious next question is the
choice of the regularization parameter: How to choose α such that the error in the solution is
minimal ? In general it will not be possible to really minimize the error, but with an estimate
like the one above we can at least minimize the right-hand side, which happens for α = δ

C
and the error estimate takes the form∫ 1

0

(
dfα

dx
− df

dx

)2

dx ≤ 2δ.

If we take the square root in this estimat to obtain the norm on the left-hand side, the error
is
√

2δ, i.e., of order
√
δ and hence, much larger than the data error δ. This is another typical

effect for ill-posed problems: Even with regularization, we can never achieve an error in the
reconstruction which is as slow as the error in the data. Note also that the error bound

√
2δ

was only achieved for f ∈ C2([0, 1]). If we only assume that f ∈ C1([0, 1]), which seems
actually much more natural for differentiating once, we would need to estimate alternatively∫ 1

0
α
d2f

dx
(fα(x)− f(x)) dx = −α

∫ 1

0
α
df

dx
(
dfα

dx
(x)− df

dx
(x)) dx

≤ α

2

∫ 1

0

(
dfα

dx
− df

dx

)2

dx+
α

2

∫ 1

0

(
df

dx

)2

dx.

Since the second integral can be estimated by α
2C

2 with C = ‖f‖C1 the final estimate becomes∫ 1

0

(
dfα

dx
− df

dx

)2

dx ≤ 2
δ2

α
+ C2,

and the right-hand side is larger than C no matter how we choose α. As we shall see later,

one can show by different arguments that
∫ 1
0

(
dfα

dx − df
dx

)2
dx → 0, but this convergence is
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arbitrarily slow, another general statement for ill-posed problems: Without additional smooth-
ness assumptions on the exact solution, the convergence of regularized solutions is arbitrarily
small.

Above we have motivated inverse problems as the inversion of some kind of direct problem.
For numerical differentiation, we have started with the inverse problem immediately. However,
the direct problem can easily be obtained by integration. E.g., if f(0) = 0, then the direct
problem is given by the integral equation of the first kind

f δ(x) =
∫ x

0

df

dx
(y) dy.

This integral operator can be shown to be compact and we will see later that the inversion
of a compact linear operator is always an ill-posed problem.

We finally mention that analogous reasoning can be applied to numerical differentiation
of sampled data of a function f , e.g. by one-sided or central finite difference schemes. In this
case, the difference scheme has the effect of a regularization method and the grid size h plays
the role of a regularization parameter. A detailed analysis can be found in [10, 14].

2.2 Computerized Tomography: Radon Inversion

An inverse problem that became of high practical importance almost fourty years ago due
to the invention of X–ray tomography is the inversion of the Radon transform of a function
f : R2 → R. The Radon transform is defined as

Rf(s, w) =
∫

R
f(sw + tw⊥) dt, w ∈ R2, |w| = 1, s ∈ R+,

where w⊥ denotes an orthogonal vector to w.
In X–ray tomography, the function f represents the spatially varying density in a domain

D ⊂ R2, which might be the cross-section of a human body or of some material to be tested
in a nondestructive way. The inverse problem consists in recovering the density f from X-ray
measurements in a plane covering D. These X–rays travel along different lines, each ray is
parametrized by its distance s > 0 from the origin, and by its unit normal vector w ∈ R2

(|w| = 1). The basic modeling assumption is that the decay −∆I of the intensity of an X–ray
beam along a small distance ∆t is proportional to the intensity I itself, the density f , and to
∆t. Hence,

∆I(sw + tw⊥)
∆t

= −I(sw + tw⊥)f(sw + tw⊥).

For ∆t→ 0 we obtain the ordinary differential equation

dI(sw + tw⊥)
dt

= −I(sw + tw⊥)f(sw + tw⊥).

By integrating this differential equation from t = 0, the position of the emitter, to t = L, the
position of the detector, we obtain

ln I(sw + Lw⊥)− ln I(sw) = −
∫ L

0
f(sw + tw⊥) dt.
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The functions IL(s, w) := I(sw+Lw⊥) and I0(s, w) := I(sw) can be measured at the emitters
and detectors for all s and w (the positions of emitters and detectors can be changed), and
since f can be extended to be zero for t /∈ (0, L) we can reformulate the inverse problem of
computerized tomography as the inversion of the Radon-transform

ln I0(s, w)− ln IL(s, w) = Rf(s, w), w ∈ R2, |w| = 1, s ∈ R+.

An interesting special case consists of a radially symmetric density f and D being a
circle. In this case it suffices to use a single direction w, e.g., w0 = (0, 1), and moreover
f(sw + tw⊥) = F (r) can be written as a function of the radius r =

√
s2 + t2. Using a

transformation to polar coordinates, the Radon transform can be rewritten as

Rf(s, w0) = 2
∫ ρ

s

rF (r)√
r2 − s2

dr

with ρ sufficiently large such that F (r) = 0 for r < ρ. With the notation g(s) = −1
2(ln I0(s, w0)−

ln IL(s, w0)), the Radon inversion in this special case can be written as the Abel integral equa-
tion

g(s) =
∫ ρ

s

rF (r)√
r2 − s2

dr, 0 < s ≤ ρ.

It is possible to find an explicit inversion formula for the Abel integral equation, which yields

F (r) = − 2
π

∫ ρ

r

g′(s)√
s2 − r2

dr.

Note that in the inversion formula, the derivative g′ appears and we have seen in the previous
section that differentiation of data is ill-posed. The differentiation is compensated partly by
the additional integration, but one can show that the inversion of the Abel integral equation
is ill-posed. For the Radon inversion, an explicit (but more complicated) inversion formula
exists, which also involves differentiation of data.

2.3 Image Denoising and Deblurring

Two basic problems in mathematical imaging are image denoising and image deblurring. In
the case of denoising, the data are a noisy version of the original image u,

uδ(x) = u(x) + nδ(x), x ∈ Ω ⊂ R2,

with the noise satisfying similar properties as in the first example, in particular a bound of
the form ∫

Ω
(nδ(x))2 dx ≤ δ2.

The major goal is to compute an approximation of the original image u avoiding oversmooth-
ing and keeping features of particular importance in the image such as e.g. edges. One might
argue that denoising is not an ill-posed problem, since the data is the function u itself. The
real ill-posedness in denoising is the fact that we want to obtain specific features of the image
like edges, which are distorted by the noise. One can formally argue that features like edges
are rather related to derivatives of u and hence, denoising is ill-posed in the same way as
numerical differentiation.
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In the case of deblurring, the image u is first transfered through a channel, which can be
modeled via a linear integral operator, and the given output is

f δ(x) =
∫

Ω
k(x, y)u(y) dy + nδ(x), x ∈ Ω ⊂ R2.

The goal is the same as in image denoising, but it is much more difficult to reach, since some
information is lost while the image ins transfered through the channel. A typical model for
the point-spread-function k is a Gaussian, i.e.,

k(x, y) = c exp
(
−|x− y|2

σ

)
.

With increasing σ, the Gauss kernel becomes broader and the averaging of the image is
stronger than for small σ. Again, the direct problem involves an integral operator of the first
kind with smooth kernel, which is in particular a compact linear operator and the inverse
problem is clearly ill-posed.

2.4 Parameter Identification

By parameter identification one usually denotes the problem of reconstructing unknown coef-
ficients in partial differential equations from indirect measurements of the solution. A simple
example is the following model from groundwater filtration, which is modeled through the
elliptic equation

−div (a∇u) = f, in Ω ⊂ Rd,

where u is the unkown, f a given source, and a the hydraulic permittivity. The direct
problem consists in solving the partial differential equation for u given a and suitable boundary
conditions on ∂Ω. The inverse problem consists in reconstructing the unknown function a on
Ω given a noisy measurement

uδ(x) = u(x) + nδ(x), x ∈ Ω,

of the solution.
If the solution of the direct problem is unique for each parameter a, which is the case for the

groundwater filtration problem with appropriate boundary conditions, then one can introduce
the parameter-to-solution map a 7→ ua, where ua is the solution of the direct problem given a
specific a. Note that even if the direct problem is linear (for u), the inverse problem and the
parameter-to-output map are usually nonlinear. E.g., in the groundwater filtration problem
we have u2a = 1

2ua, i.e., u2a 6= 2ua and hence, the problem is not linear.
The uniqueness question for parameter identification problems is usually denoted as iden-

tifiability. In the case Ω = [0, 1] with boundary conditions du
dx(0) = 0 and u(1) = 0 we can

easily answer the question by integrating the equation with respect to x, which yields the
formula

a(x)
du

dx
(x) =

∫ x

0
f(y) dy.

Hence, the parameter a is determined uniquely for every x such that du
dx(x) 6= 0. On the

other hand, there are many realistic assumptions on f , which guarantee that du
dx 6= 0 almost

everywhere. For example, if the antiderivative of f is positive in (0, 1), then the above formula
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shows that du
dx 6= 0. Another possible assumption is f(x) 6= 0 for almost every x, then du

dx
cannot vanish on an open interval I ⊂ [0, 1], since otherwise

0 =
d0
dx

=
d

dx

(
a(x)

du

dx
(x)
)

= f(x), x ∈ I

yields a contradiction. On the other hand, if f ≡ 0, then u ≡ 0 and du
dx ≡ 0 for any a and it is

never possible to reconstruct the parameter. The choice of f or in reality the action leading
to the source f is a matter of design of experiments, one could even ask the question what is
the best source with respect to stable reconstruction of the parameter.

The solution formula

a(x) =

∫ x
0 f(y) dy

du
dx(x)

also shows that besides the usual linear ill-posedness arising from the fact that data (u) have
to be differentiated, there is a nonlinear ill-posedness from the quotient, whose consequence
is that errors at small values of du

dx are amplified much stronger than errors at large values of
du
dx . I.e., if du

dx(x) is very small in an interval I, then we still have identifiability, but in practice
we must expect very high errors due to the noise amplification.

Another interesting issue in parameter identification problems are stability estimates,
which concerns the continuity of the inverse operator on special subsets. Note that for an
ill-posed problem, the inverse operator (if it exists) is not continuous, but it is continuous on
compact subsets of its domain. As an example we consider the compact subset

Cγ,M = { u ∈ C2([0, 1]) | , ‖u‖C2 ≤M,
du

dx
≥ γ > 0 in [0, 1] }.

Let uj be the solution of the forward problem for given parameter aj , j = 1, 2. Then, from
the above inversion formula we obtain

a1(x)− a2(x) =

∫ x
0 f(y) dy

du1
dx (x)du2

dx (x)

(
du2

dx
(x)− du1

dx
(x)
)

Hence, we obtain∫ 1

0
(a1(x)− a2(x))2 dx ≤

(
∫ 1
0 |f(y)| dy)2

γ4

∫ 1

0

(
du2

dx
(x)− du1

dx
(x)
)2

dx.

Using integration by parts and the Cauchy-Schwarz inequality we obtain∫ 1

0

(
du2

dx
(x)− du1

dx
(x)
)2

dx

=
∫ 1

0
(u1(x)− u2(x))

(
d2u2

dx

2

(x)− d2u1

dx

2

(x)

)
dx

≤

√∫ 1

0
(u1(x)− u2(x))2 dx

√∫ 1

0

(
d2u2

dx2
(x)− d2u1

dx2
(x)
)2

dx

≤ 2M‖u1 − u2‖L2
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Thus, for the difference a1 − a2 we obtain the estimate

‖a1 − a2‖L2 ≤
‖f‖L1

γ2

√
2M‖u1 − u2‖1/2

L2 ,

i.e., the inverse operator G : u ∈ Cγ 7→ a is locally Hölder continuous with exponent 1
2 in

the L2-norm. This result corresponds to the Hölder estimate we have derived for numerical
differentiation above. The effect that the estimate is only a local one for the parameter
identification problem, is a consequence of the nonlinearity. One clearly observes the influence
of smoothness of the solution, for increasing M the constant in the Hölder estimate increases.
Moreover, the nonlinear instability is reflected in the estimate by the term 1

γ2 , i.e., the closer
u gets to zero, the larger the constant becomes.

In practical applications, it is hardly the case that the solution of a partial differential
equation can be measured on a whole domain, since one usually cannot place many detectors
inside an object (e.g. a patient in medical applications or a microelectronic device). In such
cases boundary measurements either on a space- or time-boundary are available. An example
is the diffusion equation

∂u

∂t
= div (a∇u) + f in Ω× (0, T ),

with measurements at final time, i.e., u(x, T ), for x ∈ Ω, or at the boundary, e.g., ∂u
∂n on

∂Ω × (0, T ). Of course, with such a measurement, the dimensionality of the data is much
lower than the one of the unknown a(x, t). Thus, in such cases one can only identify special
parameters such as a = a(x), which is however realistic since a might describe material
properties that do not change in time.

2.5 Impedance Tomography

Impedance tomography can be considered as a parameter identification problem with bound-
ary measurements. The technological setup is as follows: at the boundary of an object
(represented by a domain D ⊂ Rd), different electrical voltages are applied, and the arising
electrical currents are measured. From these measurements one would like to reconstruct the
conductivity as a function of space, which gives information about different materials inside
the object.

The simplest mathematical model for this process is the solution of the elliptic partial
differential equation

div (a∇u) = 0 in D,

where u is the electric potential and a is the conductivity, modeled as a function of the spatial
location inside D. The applied voltages f are directly related to the electric potential u at
the boundary, i.e.,

u = f on ∂D.

The measured currents over the boundary for a specific voltage f are given by

gf = a
∂u

∂n
on ∂D.
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Hence, if all possible voltages f (in the sense of all functions on ∂D in a certain class) are
applied, and the corresponding currents are measured, the data consist of the Dirichlet-to-
Neumann map

Λa : f 7→ gf ,

which is a linear operator due to the linearity of the differential equation and boundary
conditions for fixed a.

The inverse problem of impedance tomography (called inverse conductivity problem) con-
sists in reconstructing the conductivity a as a function on D from a measurement of the
Dirichlet-to-Neumann map Λa. Again, due to the appearance of a as a coefficient in the
equation, the inverse problem is nonlinear, though the direct problem of computing the
Dirichlet-Neumann map for given a is linear.

From the dimensionality of the data it is not clear whether one can reconstruct the con-
ductivity uniquely, since the unknown is a function on D and the measurement is a linear
operator on a class of functions on ∂D. The answer depends on the spatial dimension, for
d ≥ 2 it is indeed possible to identify the conductivity uniquely if the class of voltages f
on ∂D is sufficiently large. For dimension d = 1, the answer is negative. Consider e.g. the
domain D = [0, 1] with boundary ∂D = {0, 1}. Then a function f on ∂D can be represented
by two values, f0 for x = 0, and f1 for x = 1. Hence, the Dirichlet-to-Neumann map can
be considered as a linear operator Λa : R2 → R2. Since each such linear operator can be
represented by a 2×2 matrix, the data consist only of 4 real numbers representing the matrix
entries, Since the dimension of the data space (R2×2) is finite, but the dimension of the space
for the unknown (e.g. C1(D)) is infinite, the data cannot suffice to determine the conductivity
uniquely.

An interesting case in impedance tomography is the case of objects consisting only of two
different materials and consequently of two different conductivity values, i.e.,

a(x) =
{
a1 if x ∈ Ω ⊂ D
a2 if x ∈ D\Ω.

The subset Ω could for example represent the shape of some inclusion in the object. In
such a case the interest is focused on identifying the shape Ω. Since the class of possible
functions a is now strongly limited by introducing a-priori knowledge, one may argue that
less measurements suffice in order to obtain uniqueness, at least for the shape Ω at given
values a1 and a2. Indeed, one can show that the measurement of the Neumann value for a
single Dirichlet value yields local uniqueness of the inverse problem.

2.6 Inverse Scattering

Inverse scattering problems are, generally speaking, inverse problems where one tries to re-
cover information about an unknown object from measurements of waves (or fields) scattered
by this object. Inverse scattering problems exist for all kinds of waves (e.g. acoustic and
electromagnetic waves) and all kinds of models (e.g. wave equation, Helmholtz equation,
Schrödinger equation, Maxwell equations). We consider the case of an acoustic scattering
problem for the Helmholtz equation in the following.

The original mathematical model for the density of an acoustic wave is the wave equation

∂2U

∂t
=

1
n2

∆u in Rd × R+,
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where n = n(x) describes a spatially varying acoustic profile (reciprocal to the speed of
sound), where n is scaled to equal one outside a compact domain (n = 1 may e.g. represent
surrounding air or water). The region where n(x) 6= 1 represents the scattering object, the
deviation of n(x) from one provides information about the structure of the scatterer. If we
only consider time harmonic waves of the form U(x, t) = eiktu(x) for k ∈ R, then the function
u solves the Helmholtz equation

∆u+ k2n2u = 0.

In inverse scattering, an incident wave ui is sent in, which corresponds to the wave propagating
in absence of the scatterer, i.e.,

∆ui + k2ui = 0.

The scattered wave, which is the difference between the really observed and the incident wave,
i.e., with us = u− ui satisfies

∆us + k2us = k2f(ui + us),

f := 1− n2. The inverse scattering problem consists in identifying the compactly supported
function f from the knowledge of the incident wave ui and a measurement of the scattered
wave us. The scattered wave can only be measured far away from the scatterer, in many
cases it is reasonable to assume that us can be measured at the sphere with radius R >> 1
including the scatterer, which is referred to as the far-field pattern.

A closer look at the dimensonality of the unknown (f) and the data (us|r=R) shows that
we have to identify a function on a d-dimensional domain (d = 2, 3), but the measurement is a
function on a d−1-dimensional manifold. Hence, it seems obvious that a single measurement
will not suffice to determine f uniquely. For this reason, one uses many different incident
waves (varying the value of k) and measures the far-field pattern for all of them, which yields
reasonable data for the inverse problem.

Due to the appearance of f as a coefficient in the Helmholtz equation, the acoustic inverse
scattering problem is nonlinear. In several situations it is reasonable to assume that the
scattered wave in a neighborhood of the scatterer is much smaller than the incident wave,
i.e., the term ui + us on the right-hand side can be approximated well by ui. Under this
assumption one can use a linearized version of the inverse scattering problem via the equation

∆us + k2us = k2fui,

which is known as the Born approximation.
A related situation is inverse obstacle scattering, where the scattering appears at an ob-

stacle (represented by a domain D), which is not penetrated by the wave. In this case, the
Helmholtz equation is a model for wave propagation outside D, i.e.,

∆u+ k2u = 0 in Rd\D,

coupled with a boundary condition of the form

∂u

∂n
+ λu = 0 on ∂D.

The inverse obstacle scattering problem consists in identifying the shape D, and similary to
the corresponding situation for electrical impedance tomography this can be achieved using
less measurements (i.e., for only few values of k).
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Chapter 3

Regularization of Linear Ill-Posed
Problems

In this paper we shall derive the basic ideas of (linear) regularization methods for linear ill-
posed problems. We motivate the main ideas for positive definite matrices and then discuss
general regularization techniques for linear operator equations involving compact operators.

3.1 Ill-Conditioned Matrix Equations

We start with a linear matrix equation of the form

Ax = y, (3.1)

with A ∈ Rn×n being a symmetric positive definite matrix. From the spectral theory of
symmetric matrices it is well-known that there exist eigenvalues 0 ≤ λ1 ≤ . . . ≤ λn and
corresponding eigenvectors ui ∈ Rn (‖ui‖ = 1) such that A has a representation of the form

A =
n∑

i=1

λiuiuT
i .

It is well-known that the condition number (if λ1 6= 0) of A is given by the quotient of
largest and smallest eigenvalue, i.e., κ = λn

λ1
. For the sake of simplicity and coherence with

the analysis for the inifinite-dimensional case below, we shall assume that the scaling is such
that λn = 1, then the condition number corresponds to κ = λ−1

1 .
The condition number is a measure for the stable solvability of the problem. Assume that

we have noisy data yδ instead of y, which satisfy

‖yδ − y‖ ≤ δ (3.2)

in the Euclidean norm on Rn. Let xδ denote the solution with right-hand side yδ. Then,
from the spectral representation we obtain

xδ − x =
n∑

i=1

λ−1
i uiuT

i (yδ − y).
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Hence, we can estimate (using the orthogonality of eigenvectors)

‖xδ − x‖2 =
n∑

i=1

λ−2
i |uT

i (yδ − y)|2 ≤ λ−2
1 ‖yδ − y‖2,

or, in other words
‖xδ − x‖ ≤ κ‖yδ − y‖ ≤ κδ.

The sharpness of this estimate can be seen immediately for yδ − y = δu1. One observes
that with increasing condition number of the matrix A, the noise amplification increases in
the worst-case. For large κ one therefore speaks of an ill-conditioned problem. Note that a
finite-dimensional linear problem is never ill-posed in the sense that the third condition in
Hadamards definition is violated, but for κ large one certainly approximates this case.

We also observe that errors in low frequencies (i.e., corresponding to eigenvectors with
large eigenvalues) are amplified less. In the particular, an error in the lowest frequency,
i.e., yδ − y = δun is not amplified at all, we just obtain ‖xδ − x‖ = δ from the spectral
representation. This is a typical effect for inverse problems: Not all possible versions of
noise of the same size are equally bad, high-frequency noise corresponding to low eigenvalues
is always worse then low-frequency noise. However, as discussed earlier, it is usually not
possible to make any assumptions on the noise in practice, so that a regularization method
should be able to deal with arbitrary noise.

So far, we have assumed that the minimal eigenvalue is positive. If this is not the case,
i.e., the matrix has a non-trivial nullspace, one can decompose the vector space as

Rn = N (A) +R(A), (3.3)

where R denotes the range and N denotes the nullspace. If λm denotes the minimal nonzero
eigenvalue, then the solution formula becomes

x =
n∑

i=m

λ−1
i uiuT

i y

and the problem is only solvable if and only if uT
i y = 0 for i < m. If the data are noisy

(yδ) we can use their projection Pyδ onto the range of A and obtain for the corresponding
solution xδ with data Pyδ that

xδ − x =
n∑

i=m

λ−1
i uiuT

i (Pyδ − y).

Since uT
i Pyδ = uT

i yδ for i ≥ m we thus can estimate similary as above

‖xδ − x‖ ≤ λmδ.

There is no error propagation in the nullspace components and the noise amplification is
actually determined by minimal nonzero eigenvalue.

This property is a typical one for finite-dimensional operators (i.e., matrices), if A is
an operator acting between arbitrary Hilbert spaces X and Y , and A∗ denotes its adjoint
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operator, then we only the range of the operators A and A∗ respectively, is not necessarily
closed. The decomposition becomes

X = N (A) +R(A∗), Y = N (A∗) +R(A),

where Z denotes the closure of a subspace Z. In the case of a non-closed range, the projection
operator P onto the range of R is not continuous, which creates the instability of the inverse
problem. Another appearance of this effect is that there will be nonzero eigenvalues of A
arbitrarily close to zero, so that the condition number is really infinite and the problem is
ill-posed.

We now turn our attention to regularization methods. Since we have seen above that
small eigenvalues of A cause most difficulties, it seems natural to approximate A by a family
of matrices, whose smallest eigenvalues are shifted away from zero. A simple candidate is the
matrix

Aα := A + αI, α > 0.

It is easy to see that the eigenvalues of Aα are given by λi + α and the eigenvectors are the
same as for A. For x = A−1y and xα == A−1

α y, we thus have

x− xα =
n∑

i=1

(λ−1
i − (λi + α)−1)uiuT

i y = −
n∑

i=1

α

λi(λi + α)
uiuT

i y.

The approximation error of this regularization can be estimated by

Ea(α) := ‖x− xα‖ ≤
α

λ1(λ1 + α)
‖y‖

and in particular, Eα decays to zero for α → 0. Besides the approximation error for exact
data y, we can derive error estimates for the regularized solutions with noisy data, i.e., the
for the difference of xα and xδ

α = A−1
α yδ. From the spectral representation we have

xδ
α − xα =

n∑
i=1

(λi + α)−1uiuT
i (yδ − y).

The error can be estimated as

Er(α, δ) := ‖xδ
α − xα‖ ≤

δ

λ1 + α
.

Finally, by the triangle inequality, we can estimate the error between the exact solution and
the regularized solution for noisy data as

‖x− xδ
α‖ ≤ Ea(α) + Er(α, δ) ≤

α

λ1(λ1 + α)
‖y‖+

δ

λ1 + α
.

Note that in practice one does not know the exact data y and hence, ‖y‖ is unknown, too.
Using the bound for the noise, we can at least estimate ‖y‖ ≤ ‖yδ‖+ δ. Hence,

‖x− xδ
α‖ ≤

α

λ1(λ1 + α)
(‖yδ‖+ δ) +

δ

λ1 + α
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Note that the two error terms have different behaviour (for fixed δ), the second term is
increasing for α→ 0 and the first term is decreasing. Hence, it seems clear that there exists
a positive α = α(δ,yδ) which minimizes the total error. The choice of α in dependence of
the noise level δ and the noisy data yδ is called parameter choice rule. The rule is a-priori if
α = α(δ) and a-posteriori if α = α(δ,yδ). Note that the a-priori choice will not depend on
the specific data yδ, but on the noise level only, i.e., it is fixed a-priori as a function on the
real line. An a-posteriori choice will change the parameter choice for each specific yδ. The
parameter choice becomes even more important for really ill-posed problems, i.e., eigenvalues
tending to zero.

We finally mention that all of the above analysis for symmetric positive semidefinite
matrices can be extended to equations with a general matrix A ∈ Rn×m by considering the
associated Gaussian normal equation

ATAx = ATy,

whose system matrix ATA is always symmetric positive semidefinite. We shall follow the
analogous approach also for general linear inverse problems in the next sections.

3.2 Generalized Inverses

In the following we consider general linear operator equations of the form

Ax = y, , (3.4)

where A : X → Y is a bounded linear operator acting between the Hilbert spaces X and Y .
If the range of A is not the full image space (or not even dense), then (3.4) is not solvable
for arbitrary right-hand side y. In this case it seems reasonable to look for x such that Ax
has minimal distance to x. On the other hand, if A has a nontrivial nullspace, (3.4) may
have multiple solutions and it seems reasonable to choose the one with minimal norm among
them. This leads to the following definition:

Definition 3.1. An element x ∈ X is called

(i) least-squares solution of (3.4) if

‖Ax− y‖ = inf{ ‖Az − y‖ | z ∈ X }. (3.5)

(ii) best-approximate solution or minimal-norm solution of (3.4) if

‖x‖ = inf{ ‖z‖ | z is least-squares solution of (3.4) }. (3.6)

In general, a least-squares solution or minimal-norm solution need not exist for arbitrary
y, since the range of A need not be closed, a fact we have seen in several examples above. It
is easy to see that if a least-squares solution exists, then the minimal-norm solution is unique,
because it is the minimizer of a strictly convex (quadratic) functional on a linear subspace.

For those y, where it exists, the minimal-norm solution can (at least in theory) be com-
puted via the Moore-Penrose generalized inverse, which is defined as follows:
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Definition 3.2. Let A ∈ L(X,Y ) and let Ã : N (A)⊥ → R(A) denote its restriction. Then
the Moore-Penrose generalized inverse A† is defined as the unique linear extension of Ã−1 to

D(A†) := R(A)⊕R(A)⊥

with N (A†) = R(A)⊥.

Note that the Moore-Penrose inverse A† is well-defined: First of all, due to the restriction
to N (A)⊥ and R(A), the operator Ã is injective and surjective, and hence, Ã−1 exists. As
a consequence, A† is well-defined on R(A). For arbitrary y ∈ D(A†) we can find unique
y1 ∈ R(A) and y2 ∈ R(A)⊥ and from the linearity and N (A†) = R(A)⊥ we finally obtain

A†y = A†y1 +A†y2 = Ã−1y1.

It can be shown that A† is characterized by the ”Moore-Penrose equations”

AA†A = A

A†AA† = A†

A†A = I − P

AA† = Q|D(A†),

where P : X → N (A) and Q : Y → R(A) are the orthogonal projectors onto N (A) and
R(A), respectively.

We have announced above that minimal-norm solutions can be computed using the Moore-
Penrose generalized inverse, which we make precise by the following result:

Theorem 3.3. For each y ∈ D(A†), the equation (3.4) has a unique minimal-norm solution
given by

x† := A†y.

The set of all least-squares solutions is given by {x†}+N (A).

For non-symmetric matrices, it is well-known from linear algebra, that the Gaussian nor-
mal equation can be considered to obtain least-squares solutions. We now verify that this
assertion is true in the general case:

Theorem 3.4. For given y ∈ D(A†), x ∈ X is a least-squares solution of (3.4) if and only if
x satisfies the Gaussian normal equations

A∗Ax = A∗y. (3.7)

Proof. An element x ∈ X is a least-squares solution if and only if Ax is the projection of y
onto R(A), which is equivalent to Ax−y ∈ R(A)⊥. Since R(A)⊥ = N (A∗), this is equivalent
to (3.7).

Since A†y is the least-squares solution of minimal-norm, we obtain from Theorem 3.4 that
A†y is a solution of (3.7) with minimal norm, i.e.,

A†y = (A∗A)†A∗y.

This means that in order to approximate A†y we may as well compute an approximation to the
minimal-norm solution in (3.7), a fact we will heavily use in the construction of regularization
methods.
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3.3 Compact Linear Operators

In the following we consider the special case of A being a compact linear operator, compactness
being defined as follows.

Definition 3.5. Let A : X → Y be a continuous linear operator between the Banach spaces
X and Y . Then A is said to be compact if for any bounded set B ⊂ X the image A(B) ⊂ Y
is pre-compact.

An alternative definition of compactness can be given in terms of sequences. If (xn)
is a bounded sequence in X, then compactness of A implies that (Axn) is contained in a
precompact set and therefore has a convergent subsequence.

As we have seen already in the introductory examples, inverse problems with compact
operators are an important case, actually most inverse problems involve compact operators.
In other words one could argue that compactness of the operator A is a source of ill-posedness
for the equation (3.4), which is confirmed by the following result:

Theorem 3.6. Let A : X → Y be a compact linear operator between the infinite-dimensional
Hilbert spaces X and Y , such that the dimension of R(A) is infinite. Then the problem (3.4)
is ill-posed, i.e., A† is discontinuous.

Proof. Since X and R(A) are infinite-dimensional, also N (A)⊥ is infinite-dimensional (note
that the dimension of R(A) always smaller or equal the dimension of N (A)⊥). Hence, we can
find a sequence (xn) with xn ∈ N (A)⊥, ‖xn‖ = 1, and

〈xn, xk〉 = 0 for k 6= n.

Since A is a compact operator, the sequence (yn) := (Axn) is compact and hence for each
δ > 0 we can find k, ` such that ‖yk − y`‖ < δ, but

‖A†yk −A†y`‖2 = ‖xk − x`‖2 = ‖xk‖2 + ‖xk‖2 − 2〈xk, x`〉 = 2.

Hence, A† is unbounded.

As for matrices, one can prove a spectral representation theorem for compact linear self-
adjoint operators in Hilbert spaces. If A is compact, then the spectrum of A is given by
{0} ∪ {λn}∞n=1, where λn are the (at most countably many) nonzero eigenvalues of A. Since
A is self-adjoint, all eigenvalues are real, and hence, with a set of normalized eigenvectors xn

one has

Ax =
∞∑

n=1

λnxn〈x, xn〉 ∀ x ∈ X.

If A is not self-adjoint we can (as in the case of matrices) pass to the operators B := A∗A
and C := AA∗. Both B and C are compact, self-adjoint and even positive semidefinite, so
that both admit a spectral representation with positive real eigenvalues of the form

Bx =
∞∑

n=1

σ2
nun〈x, un〉 ∀ x ∈ X,

and

Cx =
∞∑

n=1

σ̃2
nvn〈x, vn〉 ∀ y ∈ Y.
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Note that for σ̃2
n being an eigenvalue of C with eigenvector vn we have

σ̃2
nA

∗vn = A∗Cvn = A∗AA∗vn = BA∗vn

and hence, σ̃2
n is an eigenvalue of B (with eigenvector A∗vn). Vice versa, it follows that an

eigenvalue σ2
n of B is also an eigenvalue of C (with eigenvector Aun). Thus, there is a one-to-

one relation between eigenvalues and eigenvectors of B and C, and we can assume without
restriction of generality that

σ̃n = σn, vn =
Aun

‖Aun‖
.

The above construction of eigensystems for B and C is the basis of the singular value
decomposition of compact linear operators. We call (σn, un, vn) singular system, and using
this system we obtain

Ax =
∞∑

n=1

σn〈x, un〉vn, ∀ x ∈ X, (3.8)

which is called singular value decomposition of the operator A. For the adjoint operator one
can derive an analogous relation of the form

A∗y =
∞∑

n=1

σn〈y, vn〉un, ∀ y ∈ Y. (3.9)

Note that the sums on the right-hand side of (3.8) and (??) converge due to the square
integrability of the coefficients 〈x, un〉 (respectively 〈y, vn〉), the orthogonality of singular
vectors, and the boundedness of the singular values. E.g. for (3.8) the finite sums∥∥∥∥∥

N∑
n=1

σn〈x, un〉vn

∥∥∥∥∥
2

≤
N∑

n=1

σ2
n〈x, un〉2 ≤ σ2

1

N∑
n=1

〈x, un〉2 ≤ σ2
1‖x‖2

are uniformly bounded with respect to N , which allows to pass to the limit N →∞.
We can now derive a representation of the generalized inverse A† in terms of the singular

system. Note that A† = (A∗A)†A∗ and hence, for x† = A†y we have
∞∑

n=1

σ2
n〈x†, un〉un = A∗Ax† = A∗y =

n∑
j=1

σn〈y, vn〉un,

and hence, by comparison of the respective linearly independent components we obtain

〈x†, un〉 =
1
σn
〈y, vn〉un.

As a direct consequence we obtain the singular value decomposition of the generalized inverse
A† via

x† = A†y =
∞∑

n=1

1
σn
〈y, vn〉un. (3.10)

Again we have to check if the sum on the right-hand side of (3.10) converges. Opposed to
the case of A and A∗ this is not always true for A† and clearly reflects the unboundedness of
the generalized inverse. The convergence criteria for the sum, namely

‖A†y‖2 =
∞∑

n=1

〈y, vn〉2

σ2
n

<∞ (3.11)
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is called Picard criterion. This criterion can be interpreted as a smoothness condition on the
data y, since its coefficients with respect to the singular vectors vn must decay faster than
the singular values. The unboundedness of the generalized inverse for compact operators can
again be seen from (3.11), since for the normalized sequence vn we have ‖A†vn‖ = 1

σn
→∞.

One observes again that errors in high frequencies, i.e., in the coefficients 〈y, vn〉 corresponding
to singular vectors with large n (and small σn) are amplified much stronger than those for
low frequencies (large σn).

The way how high frequency errors are amplified depends on the operatorA, more precisely
on the decay speed of its singular values. The faster this decay happens, the more severe the
Picard criterion (3.11) becomes. This motivates the following distinction into mildly and
severely ill-posed problems:

• Mildly ill-posed linear inverse problems are problems of the form (3.4) with an operator
A, whose singular values decay at most with polynomial speed, i.e., there exist γ, C > 0
and such that σn ≥ Cn−γ for all n.

• Severely ill-posed linear inverse problems are problems of the form (3.4) with an operator
A, whose singular values decay faster than with polynomial speed, i.e., for all γ, C > 0
one has σn ≤ Cn−γ for n sufficiently large.

Example 3.7. As a simple example for the singular value decomposition, we consider again
numerical differentiation, i.e., the operator A : L2([0, 1]) → L2([0, 1]) is given by

(Ax)(t) :=
∫ t

0
x(s) ds.

From the theory of integral operators it follows that A is compact, since its integral kernel is
square-integrable (cf. [9]). For y ∈ L2([0, 1]) we have

〈Ax, y〉 =
∫ 1

0

∫ t

0
x(s) y(t) ds dt =

∫ 1

0

∫ 1

s
y(t) dt x(s) ds = 〈x,A∗y〉

and therefore, the adjoint is given by

(A∗y)(t) :=
∫ 1

t
x(s) ds.

Now assume that λ 6= 0 is an eigenvalue of A∗A with eigenvector u. Then,∫ 1

t

∫ s

0
u(τ) dτ ds = (A∗Au)(t) = λu(t).

In particular, we have u(1) = 0 and u has a derivative given by

u′(t) = − 1
λ

∫ t

0
u(τ) dτ.

Now we can conclude u′(0) = 0 and

u′′(t) = − 1
λ
u(t).
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With σ =
√
λ it thus follows that

u(t) = c1 sinσt+ c2 cosσt,

with constants c1, c2. The only nontrivial (normalized) solutions satisfying the boundary
conditions u(1) = 0 and u′(0) = 0 are

σn =
2

(2n− 1)π
, un(t) =

√
2 cos

t

σn
.

Hence, the singular values of the operator A decay like n−1 and the problem is mildly ill-posed.
For the eigensystem of AA∗ we obtain∫ t

0

∫ 1

s
v(τ) dτ ds = (A∗Av)(t) = λv(t),

and thus, v satisfies

v′′(t) = − 1
λ
v(t), v(0) = 0, v′(1) = 0

and we obtain the singular vectors

vn(t) =
√

2 sin
t

σn
.

The Picard criterion in this case becomes

∞∑
n=1

(2n− 1)2π2

2

(∫ 1

0
y(t) sin

t

σn
dt

)2

<∞,

which is just the condition for the differentiability of the Fourier series by differentiating its
components.

3.4 Regularization Methods

In this section, we shall introduce the notion of regularization in a rigorous way and discuss
some basic properties. In general, we shall describe a linear regularization method by a
family of continuous linear operators Rα : Y → X, for α ∈ I ⊂ (0, α0), where the index set I
includes at least one sequence αn → 0. Of course, the regularization operator should converge
to the generalized inverse in some sense as α → 0. This means that, as α → 0, we need the
convergence Rαy → A†y for y ∈ D(A†). If y ∈ Y \D(A†), we have to expect that ‖Rαy‖ → ∞
due to the unboundedness of the generalized inverse.

When dealing with noisy data yδ satisfying

‖y − yδ‖ ≤ δ, (3.12)

one has to choose the regularization parameter α in dependence of the noise level δ and,
possibly, in dependence of the noisy data yδ. We shall call the specific strategy of choosing α =
α(δ, yδ) parameter choice rule. Clearly, for y ∈ D(A†) we would like to obtainRα(δ,yδ)y

δ → A†y
as δ → 0. This desired convergence property leads to the following definition:
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Definition 3.8. A family {Rα}α∈I of continuous linear operators is called regularization
(or regularization operator) for A†, if for all y ∈ D(A†) there exists a parameter choice rule
α : R+ × Y → I such that

lim sup
δ→0

{‖Rα(δ,yδ)y
δ −A†y‖ | yδ ∈ Y, ‖y − yδ‖ ≤ δ} = 0 (3.13)

and
lim sup

δ→0
{α(δ, yδ) | yδ ∈ Y, ‖y − yδ‖ ≤ δ} = 0. (3.14)

For a specific y ∈ D(A†), the pair (Rα, α) is called (convergent) regularization method of (3.4)
if (3.13) and (3.14) hold.

As announced before, we will distinguish the parameter choice via the dependence on the
noisy data yδ, the rule α = α(δ, yδ) is called

• a-priori if α does not depend on yδ. We shall write α = α(δ) in this case.

• a-posteriori otherwise.

In practice, there might be a temptation to choose α in dependence of the known noisy
data yδ, but independent of the noise level δ. The following result due to Bakushinskii [2]
shows that such an approach cannot result in a convergent regularization method for an ill-
posed problems, or, in other words, such a strategy can only work for well-posed problems,
which could also be solved without regularization:

Theorem 3.9. Let A : X → Y be a bounded linear operator and let {Rα} be a regularization
for A†, such that the regularization method converges for every y ∈ D(A†) and such that
the parameter choice α depends on yδ only (and not on δ). Then A† can be extended to a
continuous operator from X to Y .

Proof. For α = α(yδ), (3.13) implies

lim sup
δ→0

{‖Rα(yδ)y
δ −A†y‖ | yδ ∈ Y, ‖y − yδ‖ ≤ δ} = 0

and in particular Rα(y)y = A†y for all y ∈ D(A†). For any sequence {yn} ⊂ D(A†) converging
to y, we obtain

A†yn = Rα(yn)yn → Rα(y)y = A†y,

and hence, A† is continuous on D(A†). Since D(A†) is dense, there exists a unique continuous
extension of A† to Y .

This result rules out error-free parameter choices α = α(δ) as convergent regularization
methods. Of course, it does not mean that such strategies (which are actually used as heuristic
approaches in practice) do not behave well for finite δ, but at least it indicates that the results
have to be considered with care in such cases.

Once we have clarified the concepts of regularization methods and parameter choice rules,
the obvious questions how to construct such regularizations and how to perform parameter
choice, arises. This questions will be considered in the next section, but before we derive
some basic properties to be satisfied by regularization methods.
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Proposition 3.10. Let A : X → Y be a continuous linear operator and Rα : Y → X be a
family of continuous operators, α ∈ R+. Then, the family {Rα} is a regularization of A† if

Rα → A† pointwise on D(A†) as α→ 0.

In particular, in this case there exists an a-priori parameter choice rule α such that (Rα, α)
is a convergent regularization method for (3.4).

Proof. Let y ∈ D(A†) be arbitrary, but fixed. Due to the pointwise convergence, we can find
a monotone function σ : R+ → R+ such that for every ε > 0

‖Rσ(ε)y −A†y‖ ≤ ε

2
.

The operator Rσ(ε) is continuous for fixed ε and hence, there exists ρ(ε) ∈ I such that

‖Rσ(ε)z −Rσ(ε)y‖ ≤
ε

2
if ‖z − y‖ ≤ ρ(ε).

Without restriction of generality, we can assume that ρ is monotone increasing, continuous,
and limε→0 ρ(ε) = 0. Hence, there exists a well-defined inverse function ρ−1 on the range of
ρ with the same properties. Now we extend ρ−1 to a continuous, strictly monotone function
on R+ and define the parameter choice rule as

α : R+ → R+, δ 7→ σ(ρ−1(δ)).

By our construction, we have for δ := ρ(ε) that

‖Rα(δ)y
δ −A†y‖ ≤ ‖Rα(δ)y

δ −Rα(δ)y‖+ ‖Rα(δ)y −A†y‖ ≤ ε,

if ‖y − yδ‖ ≤ δ, because we have α(δ) = σ(ε). Hence, (Rα, α) is a convergent regularization
method for (3.4).

We now know that any family of continuous operators that converges pointwise to the
generalized inverse defines a regularization method. Vice versa, we can conclude from (3.14)
that

lim
δ→0

Rα(δ,yδ)y = A†y, ∀ y ∈ D(A†),

and thus, if α is continuous in δ, this implies

lim
σ→0

Rσy = A†y,

i.e., a convergent regularization method with continuous parameter choice rule implies point-
wise convergence of the regularization operators.

Now we turn our attention to the behaviour of the regularization operators on Y \D(A†).
Since the generalized inverse is not defined on this set, we cannot expected that Rα remains
bounded on this set as α→ 0. This is indeed confirmed by the next result:

Proposition 3.11. Let A : X → Y be a continuous linear operator and Rα : Y → X be a
family of continuous linear regularization operators. Then, xα := Rαy converges to A†y as
α→ 0 for y ∈ D(A†). Moreover, if

sup
α>0

‖ARα‖ <∞, (3.15)

then ‖xα‖ → ∞ for y /∈ D(A†).
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Proof. The convergence of xα for y ∈ D(A†) has been verified above. Now, let y /∈ D(A†) and
assume there exists a sequence αn → 0 such that ‖xαn‖ is uniformly bounded. Then there
exists a weakly convergent subsequence (again denoted by xαn) with some limit x ∈ X, and
since continuous linear operators are weakly continuous, too, we have Axαn → Ax. On the
other hand, since ARα are uniformly bounded operators, we conclude Axαn = ARαny → Qy.
Hence, Ax = Qy and consequently y ∈ D(A†), a contradiction.

We finally consider the properties of a-priori parameter choice rules:

Proposition 3.12. Let A : X → Y be a continuous linear operator and Rα : Y → X be
a family of continuous linear regularization operators, with a-priori parameter choice rule
α = α(δ). Then, (Rα, α) is a convergent regularization method if and only if

lim
δ→0

α(δ) = 0, lim
δ→0

δ‖Rα(δ)‖ = 0. (3.16)

holds.

Proof. If (3.16) hold, then for all yδ ∈ Y with ‖y − yδ‖ ≤ δ,

‖Rα(δ)y
δ −A†y‖ ≤ ‖xα(δ) −A†y‖+ ‖xα(δ) −Rα(δ)y

δ‖
≤ ‖xα(δ) −A†y‖+ δ‖Rα(δ)‖.

Because of (3.16) and since regularization operators converge pointwise, the right-hand side
tends to zero as δ → 0, i.e., (Rα, α) is a convergent regularization method.

Assume vice versa that (Rα, α) is a convergent regularization method. Assume that there
exists a sequence δn → 0 such that δn‖Rα(δn)‖ ≥ C > 0 for some constant C. Then we can
find a sequence zn with ‖zn‖ = 1 such that δn‖Rα(δn)zn‖ ≥ C

2 . Then, for any y ∈ D(A†) and
yn := y + δnzn we obtain ‖y − yn‖ ≤ δn, but

(Rα(δn)yn −A†y) = (Rα(δn)y −A†y) + δnRα(δn)zn

does not converge, since the second term is unbounded. Hence, for δn sufficiently small, (3.14)
is not satisfied.

3.5 Construction of Regularization Methods

Now we turn our attention to the construction of regularization methods for linear ill-posed
problems. We have seen above that the first two points defining a well-posed problem, can
always be enforced by considering the generalized inverse A†. A violation of the third point,
i.e. instability, arises if the spectrum of the operator A is not bounded away from zero. Thus,
it seems natural to construct regularizing approximations via modifying the smallest singular
values.

With the singular value decomposition of the generalized inverse, we can easily realize
such a modification of small singular values and construct regularization operators of the
form

Rαy :=
∞∑

n=1

gα(σn)〈y, vn〉un, y ∈ Y, (3.17)
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with some function gα : R+ → R+ such that gα(σ) → 1
σ for σ > 0 as α→ 0. Such an operator

Rα is a regularization operator if

gα(σ) ≤ Cα <∞, ∀ σ ∈ R+. (3.18)

If (3.18) is satisfied, we can estimate

‖Rαy‖2 =
∞∑

n=1

(gα(σn))2|〈y, vn〉|2 ≤ C2
α

∞∑
n=1

|〈y, vn〉|2 ≤ C2
α‖y‖2, i.e.,

Cα is a bound for the norm of Rα.
From the pointwise convergence of gα we immediately conclude the pointwise convergence

of Rα to A†. Moreover, condition (3.16) on the choice of the regularization parameter can be
replaced by

lim
δ→0

δCα(δ) = 0. (3.19)

since ‖Rα‖ ≤ Cα. Hence, if (3.19) is satisfied, we know that (Rα, α) with Rα defined by
(3.17) is a convergent regularization method.

In order to make this construction more concrete, we consider some particular examples.

Example 3.13 (Truncated Singular Value Decomposition). The main idea of trun-
cated singular value decomposition is to ignore all singular values below a certain threshold
value, which we can identify with the regularization parameter α. Thus, the function gα is
given by

gα(σ) :=
{

1
σ if σ ≥ α
0 if σ < α

(3.20)

We obviously obtain Cα = 1
α and hence, truncated singular value decomposition is a conver-

gent regularization method if δ
α → 0.

The representation of the regularized solution is given by

xα := Rαy =
∑

σn≥α

1
σn
〈y, vn〉un, y ∈ Y, (3.21)

which explains the name truncated singular value decomposition, since all terms in the sum
corresponding to small singular values are truncated. Note that since 0 is the only accumula-
tion point of the singular values of a compact operator, the sum in (3.21) is always finite for
α > 0. In particular, only a finite number of singular values and singular vectors has to be
computed in order to realize this method. On the other hand, for α being small, the number
of singular values that need to be computed can increase strongly.

Example 3.14 (Lavrentiev Regularization). The main idea of Lavrentiev Regularization
is to shift all singular values by α, i.e., gα(σ) = 1

σ+α and

xα := Rαy =
∞∑

n=1

1
σn + α

〈y, vn〉un, y ∈ Y. (3.22)

In this case, the sum is really infinite and the full singular system is needed in order to
compute the solution. However, if A is a positive semidefinite operator (and thus λn = σn,
un = vn), one obtains

(A+ αI)xα =
∞∑

n=1

1
σn + α

〈xα, un〉un =
∞∑

n=1

〈y, un〉un = y.
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Hence, the regularized solution can also be obtained in this case without any knowledge of
the singular system as the solution of the linear equation

(A+ αI)xα = y.

Since 1
σ+α ≤ 1

α , we again obtain Cα = 1
α and the condition to obtain a convergent

regularization method is again δ
α → 0.

Example 3.15 (Tikhonov Regularization). For Tikhonov Regularization, the function
gα is given by gα(σ) = σ

σ2+α
and the regularized solution is

xα := Rαy =
∞∑

n=1

σn

σ2
n + α

〈y, vn〉un, y ∈ Y. (3.23)

We can estimate σ2 + α ≥ 2σ
√
α and hence, gα(σ) ≤ Cα := 1

2
√

α
. Thus, the condition for a

convergent regularization method in this case becomes δ√
α
→ 0.

As in the case of Lavrentiev regularization, the we can compute xα defined by (3.23)
without knowledge of the singular system, but now for arbitrary linear operators A. It is easy
to see that

(A∗A+ αI)xα = A∗y

and hence, we can solve a well-posed linear system to obtain xα. From this representation
one also observes that Tikhonov regularization is just Lavrentiev regularization applied to the
Gaussian normal equation. We will discuss Tikhonov regularization and related approaches
in detail in the next chapter.

Example 3.16 (Asymptotic Regularization). Asymptotic regularization is usually con-
structed from the solution u of the initial value problem

u′(t) = −A∗(Au(t)− y) t ∈ R+

u(0) = 0,

as xα = u( 1
α). By representing u in terms of the singular vectors un as

u(t) =
∞∑

n=1

γn(t)un

with γn(0) = 0, we obtain from the singular value decomposition

γ′n(t) = −σ2
nγn(t) + σn〈vn, y〉.

This ordinary differential equation can be solved analytically as

γn(t) = (1− exp(−σ2
nt))

1
σn
〈vn, y〉.

Hence, the regularized solution is given by

xα =
∞∑

n=1

(1− exp(−σ
2
n

α
))

1
σn
〈y, vn〉un, y ∈ Y. (3.24)

and gα(σ) = (1− exp(−σ2
α )) 1

σ .

29



When we consider the error of the regularization in the case of noisy data yδ, we have
(with the notation xδ

α := Rαy
δ)

x† − xδ
α = (x† − xα) + (xα − xδ

α).

The first term (x† − xα) is the approximation error of the regularization method, which is
independent of the noise. The second term (xα − xδ

α) corresponds to the propagation of data
noise in the regularized case. Through the triangle inequality we can estimate

‖x† − xδ
α‖ ≤ ‖x† − xα‖+ ‖xα − xδ

α‖. (3.25)

Thus, in order to estimate the error between the regularized solution and the exact solution,
we can estimate these two error terms separately. Such an estimation can also yield some
guideline for the parameter choice, namely by choosing α such that the terms on the right-
hand side are balanced.

We start with an estimate of the approximation error, which is independent of the noise
level δ:

Theorem 3.17. Let gα : R+ → R be a piecewise continuous function satisfying the assump-
tions above and

sup
α,σ

(σgα(σ)) ≤ γ

for some constant γ > 0. Moreover, let the regularization operator be defined by (3.17). Then,
for all y ∈ D(A†),

Rαy → A†y as α→ 0.

Proof. From the singular value decomposition we have

Rαy −A†y =
∞∑

n=1

(
gα(σn)− 1

σn

)
〈y, vn〉un =

∞∑
n=1

(σngα(σn)− 1) 〈x†, un〉un.

From the assumptions on gα we obtain

|(σngα(σn)− 1)〈x†, un〉| ≤ (γ + 1)‖x†‖,

and hence, we may estimate

lim sup
α
‖Rαy −A†y‖2 ≤ lim sup

α

∞∑
n=1

(σngα(σn)− 1)2 〈x†, un〉2

≤
∞∑

n=1

(
lim
α

(σngα(σn))− 1
)2
〈x†, un〉2.

From the pointwise convergence σgα(σ) → 1, we deduce that limα(σngα(σn)) − 1 = 0 and
hence, ‖Rαy −A†y‖ → 0 as α→ 0.

From the proof we again observe the arbitrarily slow convergence of the regularized solu-
tions. In the particular case x† = un we have

lim
α→0

‖Rαy −A†y‖ = lim
α→0

|(σngα(σn))− 1|.
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The function t 7→ tgα(σ) converges pointwise to the function

g(t) =
{

0 if t > 0
1 if t = 0.

Due to the discontinuity at zero, the convergence of tgα(t) − 1 to zero is becoming slower
and slower as t decreases to zero. Since we can always find an arbitrarily small singular
value σn and the minimal norm solution x† = un, the convergence of regularized solutions is
arbitrarily slow. On the other hand, we observe from the proof that there is a possibly faster
convergence if the components 〈x†, un〉 decay sufficiently fast compared to the eigenvalues.
E.g., if we know that |〈x†, un〉| ≤ cσµ

n for some constant c > 0 and µ > 0, then we have

lim sup
α
‖Rαy −A†y‖2 ≤ lim sup

α
c2

∞∑
n=1

(σngα(σn)− 1)2 σ2µ
n ≤ c2

∞∑
n=1

lim
α

(
σ1+µ

n gα(σn)− σµ
n

)2
.

Thus, one has to consider the limit of the function t 7→ |t1+µgα(t) − tµ| as t → ∞ instead,
which is usually much faster. E.g., for truncated singular value decomposition, we obtain

|t1+µgα(t)− tµ| =
{

0 if t ≥ α
tµ if t < α.

If the singular values of the operator decay sufficiently fast (which is the typical case for
ill-posed problems), e.g.,

∑∞
n=1 σ

µ
n <∞, we obtain

‖Rαy −A†y‖2 ≤ c2
∑

σn<α

σ2µ
n ≤ c2αµ

∞∑
n=1

σµ
n,

and thus, ‖Rαy − A†y‖ is of order αµ/2. I.e., we somehow need smoothness of the solution
(in terms of the smoothing properties of the operator) in order to obtain a convergence rate
in terms of α. We shall pursue this idea by considering so-called source conditions below.

Now we consider the propagation of the data error through the regularization:

Theorem 3.18. Let gα and γ be as in Theorem 3.17, and let xα := Rαy, xδ
α := Rαy

δ. Then,

‖Axα −Axδ
α‖ ≤ γδ, (3.26)

and
‖xα − xδ

α‖ ≤ Cαδ, (3.27)

hold.

Proof. From the singular value decomposition we can directly estimate

‖Axα −Axδ
α‖2 ≤

∞∑
n=1

σ2
ngα(σn)2|〈y − yδ, vn〉|2

≤ γ2
∞∑

n=1

|〈y − yδ, vn〉|2 = γ2‖y − yδ‖2 ≤ (γδ)2,
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which yields (3.26). In the same way we estimate

‖xα − xδ
α‖2 ≤

∞∑
n=1

gα(σn)2|〈y − yδ, vn〉|2

≤
∞∑

n=1

|〈y − yδ, vn〉|2 = C2
α‖y − yδ‖2 ≤ (Cαδ)2,

implying (3.27).

Note that (3.27) estimates the norm of Rα by Cα. It is clear that Cα increases with α→ 0
and hence, we need to choose α = α(δ, xδ) such that

Cα(δ,yδ)δ → 0 as δ → 0, (3.28)

for convergence, which is equivalent to (3.16).
Combining the assertions of Theorem 3.17 and Theorem 3.18, we obtain the following

result for the convergence of the regularized solutions.

Corollary 3.19. Let the assumptions of Theorem 3.17 and Theorem 3.18 hold, as well as
(3.28). Then, xα(δ,yδ) → x† as δ → 0.

3.6 Convergence Rates

In the following we investigate the possible convergence rates of regularized solutions to inverse
problems, which can be obtained under additional smoothness assumptions on the minimal
norm solution x† (and consequently on the exact data y). Classical conditions, so-called
source-conditions are of the form

∃ w ∈ X : x† = (A∗A)µw. (3.29)

The power µ > 0 of the operator A∗A can be defined via spectral theory, i.e.,

(A∗A)µw =
∞∑

n=1

σ2µ
n 〈w, un〉un.

This corresponds to our preliminary analysis above, since in this case we have 〈x†, un〉 =
σ2µ

n 〈w, un〉, i.e., the coefficients of x† with respect to the n-th singular vector decay faster
than σ2µ

n .
The rate to be obtained depends on the regularization scheme, i.e., on the specific choice

of the function gα. We assume that

tµ|tgα(t)− 1| ≤ ωµ(α), ∀ t > 0

holds, in the typical case ωµ(α) = αµ, as e.g. seen above for truncated singular value decom-
position.
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Under this condition we can modify the estimate in the proof of 3.17 to

‖Rαy −A†y‖2 ≤
∞∑

n=1

(σngα(σn)− 1)2 〈x†, un〉2

=
∞∑

n=1

(σngα(σn)− 1)2 σ2µ
n 〈w, un〉2

≤ ωµ(α)2‖w‖2,

and hence,
‖xα − x†‖ ≤ ωµ(α)‖w‖. (3.30)

Hence, by combining this estimate with (3.27), we obtain

‖xδ
α(δ) − x†‖ ≤ ωµ(α)‖w‖+ Cαδ. (3.31)

The minimum on the right-hand side is obtained if α is chosen such that ωµ(α)
Cα

‖w‖ = δ. In

the typical case ωµ(α) = αµ and Cα = α−1/2 this implies α(δ) =
(

δ
‖w‖

)2/(2µ+1)
and finally

yields the estimate
‖xδ

α(δ) − x†‖ ≤ 2δ2µ/(2µ+1)‖w‖1/(2µ+1). (3.32)

Note that, no matter how large µ is, the rate of convergence δ2µ/(2µ+1) is always of lower
order than the order δ in the data noise. It is again a consequence of the ill-posedness of the
problem that the error in the solution cannot be decreased to the same order as the error
in the data, i.e., some information is always lost in the reconstruction. It can be shown (cf.
[10]), that an error of order δ2µ/(2µ+1) is the minimal error that can in general be obtained
under a condition like (3.29), and hence, the regularization schemes are of optimal order in
this case.

We also consider the error in the output in this case, i.e.,

‖Axα − y‖2 ≤
∞∑

n=1

σ2
n (σngα(σn)− 1)2 〈x†, un〉2

=
∞∑

n=1

(σngα(σn)− 1)2 σ2(µ+1)
n 〈w, un〉2

≤ ωµ+1(α)2‖w‖2.

Thus, in the above case of wµ(α) = αµ and α(δ) =
(

δ
‖w‖

)2/(2µ+1)
, we obtain the estimate

‖Axα − y‖ ≤ δ

and together with (3.26)
‖Axδ

α − y‖ ≤ (1 + γ)δ. (3.33)

Hence, the error in the output is always of the same order as the noise level δ.
We mention that for most standard regularization methods, there exists a µ0 > 0 such

that ωµ(α) = cαµ for µ ≤ µ0 and ωµ(α) = cαµ0 for µ > µ0. This implies that no rate
better than δ2µ0/(2µ0+1) can ever be achieved with such a method. The number µ0 is called
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qualification of the method, e.g., Tikhonov regularization has qualification µ0 = 0. We refer
to [10, Chapter 4.2] for a more detailed discussion of saturation.

The observation that the output error is always of the order δ motivates a simple, but
widely used a-posteriori stopping rule, the discrepancy principle. One the one hand we have
seen so far that the output error is of order δ, and on the other hand it is not necessary to
look for a regularized solution such that

‖Axδ
α − yδ‖ < δ,

since also the exact solution x† may have error δ in the output. Hence, the discrepancy
principle is defined as the parameter choice

α(δ, yδ) = sup{α > 0 | ‖Axδ
α − yδ‖ ≤ τδ} (3.34)

with
τ > sup

α>0,t∈[0,‖[‖A]
gα(t).

Note that this condition is satisfied in particular for τ = γ + 1. It can be shown that an
a-posteriori choice of the regularization parameter via the discrepancy principle yields indeed
a convergent regularization method of optimal order (cf. [10, Chapter 4.3]). We will meet the
discrepancy principle below in several regularization methods for nonlinear inverse problems.

34



Chapter 4

Tikhonov-type Regularization

In this section we investigate Tikhonov regularization and related schemes more closely. In
general, we shall now consider a nonlinear operator equation of the form

F (x) = y, (4.1)

where F : X → Y is a continuous nonlinear operator. The extension of the regularization
method to the nonlinear case is not obvious, since one can neither carry out a singular
value decomposition nor define an adjoint of a nonlinear operator. The generalization to
the nonlinear case therefore needs a reformulation of Tikhonov regularization, which we shall
discuss in the following.

4.1 Tikhonov Regularization

We start again from the Tikhonov regularization of a linear operator equation, which is
determined by the solution of the equation

(A∗A+ αI)xδ
α = A∗yδ.

It is easy to verify that this linear equation is the first order optimality condition of the
quadratic optimization problem

Jα(x) := ‖Ax− yδ‖2 + α‖x‖2 → min
x∈X

. (4.2)

Note that Jα is strictly convex, which follows from

J ′′(x)(ϕ,ϕ) = 2‖Aϕ‖2 + 2α‖ϕ‖2 > 0

and hence, xδ
α is the unique global minimizer of the functional Jα.

The characterization of the regularized solution as a minimizer of the functional (4.2)
offers the possibility of an immediate generalization to the nonlinear case, since we can define
a regularized solution via

xδ
α ∈ argmin

x∈X

[
‖F (x)− yδ‖2 + α‖x− x∗‖2

]
. (4.3)

Here, x∗ ∈ X is a given prior, which might represent a-priori knowledge about the solution.
Note that in the nonlinear case, the value x∗ = 0 plays no special role, so we can in principle
consider any prior x∗. Consequently, we must also adapt our definition of generalization
solution to the nonlinear case:
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Definition 4.1. We shall call x ∈ X least-squares solution of (4.1) if

‖F (x)− y‖ = inf
x∈X

‖F (x)− y‖.

A least-squares solution x† is called x∗-minimum norm solution, if

‖x† − x∗‖ = inf{ ‖x− x∗‖ | x is least squares solution of (4.1) }.

For general nonlinear operators, we cannot expect the functional

Jα(x) := ‖F (x)− yδ‖2 + α‖x− x∗‖2 (4.4)

to be convex and hence, minimizers need not be unique. Moreover, there may exist global as
well as local minimizers, but we will only consider global minimizers as regularized solutions.

We start with differentiability properties of the functional Jα:

Proposition 4.2. If F is Frechet-differentiable, then the functional Jα : X → R is is Frechet-
differentiable with derivative

J ′α(x)ϕ = 2〈F (x)− y, F ′(x)ϕ〉+ 2α〈x− x∗, ϕ〉. (4.5)

Moreover, if F is twice Frechet-differentiable, then the functional Jα : X → R is Frechet-
differentiable with second derivative

J ′α(x)(ϕ1, ϕ2) = 2〈F ′(x)ϕ1, F
′(x)ϕ2〉+ 2〈F (x)− y, F ′′(x)(ϕ1, ϕ2)〉+ 2α〈ϕ1, ϕ2〉. (4.6)

Again, we can use the first-order optimality condition to verify that a regularized solution
satisfies

F ′(xδ
α)∗(F (xδ

α)− yδ) + α(xδ
α − x∗) = 0, (4.7)

the nonlinear analogue of the original equation. On the other hand, not every solution of (4.7)
is necessarily a regularized solution, since it could as well be a local minimum, saddle-point,
or even maximum of Jα.

So far, we have not yet considered the problem of existence of regularized solutions, which
is not obvious in the nonlinear case. In order to prove existence, we need an additional
condition, namely weak sequential closedness of the operator F :

F (x) = y if F (xn) ⇀ y, xn ⇀ x. (4.8)

This assumption is no severe restriction for inverse problems, in particular every compact
nonlinear operator is weakly sequentially closed.

Theorem 4.3. Let F : X → Y be a continuous operator satisfying (4.8). Then, there exists
a minimizer xδ

α ∈ X of the functional Jα defined by (4.4).

Proof. We first consider the level sets LM := { x ∈ X | Jα(x) ≤ M }. Since Jα(x∗) =
‖F (x∗) − yδ‖2 < ∞, the set LM is nonempty for M sufficiently large. Moreover, x ∈ LM

implies α‖x− x∗‖2 ≤M and, due to the triangle inequality

‖x‖ ≤ ‖x∗‖+

√
M

α
=: R,
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i.e., LM is contained in a ball with radius R. Since balls in X are compact with respect to
the weak topology, the sets LM are weakly pre-compact.

Since Jα is bounded below by zero, its infimum is finite and thus, there exists a minimizing
sequence xn. Since xn ∈ LM for n sufficiently large, we can extract a weakly convergent
subsequence (again denoted by xn) with some limit x ∈ X. Moreover, the sequence F (xn) is
bounded due to

‖F (xn)− yδ‖2 ≤M

and hence, there exists a weakly convergent subsequence (again denoted by the subscript n)
F (xn) → z ∈ Y . Because of the weak sequential closedness, we conclude z = F (x), and thus,

Jα(x) = lim
n→∞

Jα(xn) = inf
x∈X

Jα(x),

i.e. xδ
α = x is a minimizer of Jα.

We now turn our attention to the stability properties of Tikhonov regularization for (4.1).
In the linear case, we have derived a Lipschitz estimate for the regularization operators, which
is not possible in the general nonlinear case. In the nonlinear case, we only obtain a weak
stability in a set-valued sense:

Proposition 4.4. Let F : X → Y be a continuous operator satisfying (4.8). Moreover, let
yn ∈ Y be a sequence such that yn → yδ and let xn be a corresponding sequence of minimizers
of Jα with yδ replaced by yn. Then xn has a weakly convergent subsequence and every weak
accumulation point is a minimizer of Jα.

Proof. Due to Theorem 4.3 we can find a sequence of minimizers xn corresponding to the
data yn. Since

‖xn − x2
∗‖ ≤

1
α
‖F (xn)− yn‖2 + ‖xn − x∗‖2 ≤ 1

α
‖F (x∗)− yn‖2

and since yn converges to yδ, xn is contained in a ball with radius independent of n. Due
to weak compactness we can extract a convergent subsequence. Now let x be a weak ac-
cumulation point of xn, without restriction of generality we assume that xn ⇀ x. Since
‖F (xn) − yn‖ ≤ ‖F (x∗) − yn‖ we also conclude boundedness of F (xn) and consequently
existence of a weak subsequence with limit z, and the weak sequential closedness implies
z = F (x). Finally, from the weak lower semicontinuity of the square of the norm in Hilbert
spaces we conclude

Jα(x) = ‖F (x)− yδ‖2 + α‖x− x∗‖2 ≤ lim inf
n
‖F (xn)− yn‖2 + α‖xn − x∗‖2

≤ lim inf
n
‖F (xδ

α)− yn‖2 + α‖xδ
α − x∗‖2

= ‖F (xδ
α)− yδ‖2 + α‖xδ

α − x∗‖2 = Jα(xδ
α).

Since xδ
α is a minimizer of Jα, x must be a minimizer, too.

Proposition 4.4 ensures that Tikhonov regularization has indeed a regularizing effect, i.e.,
the approximate problems are well-posed for α > 0. The obvious next question is convergence
of the regularization method with suitable choice of α in dependence on δ. Similar to stability,
this convergence appears in a set-valued sense:
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Theorem 4.5. Let y ∈ Y such that there exists a x∗-minimum norm solution x† ∈ X with
F (x†) = y. Let yδ be noisy data satisfying (3.12) and let xδ

α be a regularized solution satisfying
(4.3). If α = α(δ, yδ) is chosen such that

α→ 0,
δ2

α
→ 0 as δ → 0, (4.9)

then there exists a strongly convergent subsequence xδn
αn

(with δn → 0) and the limit of each
convergent subsequence is a x∗-minimum norm solution of (4.1).

Proof. Since xδ
α is a minimizer of Jα, we conclude

‖xδ
α − x∗‖2 ≤ 1

α
‖F (xδ

α)− yδ‖2 + ‖xδ
α − x∗‖2 =

1
α
Jα(xδ

α)

≤ 1
α
Jα(x) =

1
α
‖F (x†)− yδ‖2 + ‖x† − x∗‖2

≤ δ2

α
+ ‖x† − x∗‖2.

Since δ2

α → 0, it is bounded in particular, and hence, ‖xδ
α − x∗‖ is uniformly bounded with

respect to δ, which allows to extract a weakly convergent subsequence. For xδn
αn

being a weakly
convergent subsequence with limit x, the above estimate yields

‖x− x∗‖2 ≤ lim sup
n
‖xδn

αn
− x∗‖2 ≤ lim sup

n

δ2n
αn

+ ‖x† − x∗‖2 = ‖x† − x∗‖2

and
‖F (x− y‖2 ≤ lim sup

n
‖F (xδn

αn
)− yδn‖2 ≤ lim sup

n
(δ2n + αn‖x† − x∗‖2) = 0.

Hence, x satisfies F (x) = y and, by the definition of the minimum norm solution

‖x− x∗‖ ≤ ‖x† − x∗‖ = inf{ ‖x− x∗‖ | x is least squares solution of (4.1) },

which implies that x is a minimum norm solution of (4.1).
It remains to verify strong convergence of xδn

αn
. For this sake we expand

‖xδn
αn
− x‖2 = ‖xδn

αn
− x∗‖2 + ‖x− x∗‖2 − 2〈xδn

αn
− x∗, x− x∗〉.

Due to the weak convergence we know that

−2〈xδn
αn
− x∗, x− x∗〉 → −2‖x− x∗‖2.

Moreover, we have concluded above that

lim sup
n
‖xδn

αn
− x∗‖2 ≤ ‖x− x∗‖2,

and thus,
lim sup

n
‖xδn

αn
− x‖2 ≤ ‖x− x∗‖2 + ‖x− x∗‖2 − 2‖x− x∗‖2 = 0,

which implies the strong convergence.
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Note that the convergence proof applies only to situations where the data y are attainable,
i.e., F (x†) = y. If ‖F (x†)− y‖ > 0 a slightly different proof under changed conditions on the
parameter choice has to be carried out, we refer to [4] for further details.

We finally consider convergence rates in the nonlinear setting. For the sake of simplicity
we restrict our attention to the case corresponding to µ = 1

2 for the linear problem. In this
case, the source condition x† = (A∗A)1/2w is equivalent to x† = A∗p for

p =
∞∑

n=1

〈w, un〉vn ∈ Y.

The condition x† = A∗p is easier to interpret from an optimization point of view. A mininum
norm solution x† is determined as a minimizer of the constrained problem

1
2
‖x‖2 → min

x∈X
, subject to Ax = y,

and it is natural to consider the associated Lagrangian

L(x; p) :=
1
2
‖x‖2 − 〈Ax, y〉.

It is easy to see that for (x†, p) being a stationary point of the Lagrangian, x† is a solution
of the above constrained problem, i.e., a minimum norm solution. In the case of an ill-
posed operator equation, the converse does not hold, since the constraint operator A∗ is not
surjective. Hence, the existence of a Lagrange multiplier is an additional smoothness condition
on the exact solution x†. Since we always have ∂

∂pL(x†; p) = Ax† − y = 0, it is clear that a
stationary point p exists if and only if

0 =
∂

∂x
L(x†; p) = x−A∗p,

i.e., if and only if the source condition is satisfied.
Again, the optimization viewpoint allows an immediate generalization to the nonlinear

case, where the Lagrangian is given by

L(x; p) =
1
2
‖x− x∗‖2 − 〈F (x)− y, p〉.

Thus, the source condition becomes

0 =
∂

∂x
L(x†; p) = x† − x∗ − F ′(x†)∗p,

i.e.,
∃ p ∈ Y : x† − x∗ = F ′(x†)∗p. (4.10)

In order to prove a convergence rate we also assume that F ′ is Lipschitz continuous with
module L and that the smallness condition

L‖p‖ < 1 (4.11)

holds.
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Theorem 4.6. In addition to the assumptions of Theorem 4.5 assume that (4.10) and (4.11)
hold. Moreover, if α(δ, yδ) ∼ δ, there exists δ0 > 0, such that for all δ < δ0 the estimate

‖xδ
α − x†‖ ≤ c

√
δ (4.12)

holds for some constant c > 0.

Proof. Since xδ
α minimizes Jα we obtain

‖F (xδ
α)− yδ‖2 + α‖xδ

α − x∗‖2 ≤ δ2 + α‖x† − x∗‖2

and after a simple calculation, this inequality can be rewritten as

‖F (xδ
α)− yδ‖2 + α‖xδ

α − x†‖2 ≤ δ2 + 2α〈x† − x∗, x† − xδ
α〉. (4.13)

Now we insert the source condition (4.10) into the last term on the right-hand side to obtain

−2α〈x† − x∗, x† − xδ
α〉 = 2α〈p, F ′(x†)(xδ

α − x†)〉.

From a Taylor-expansion we obtain that

F ′(x†)(xδ
α − x†)〉 = F (xδ

α)− F (x†) + rδ
α,

and due to the Lipschitz continuity of F ′ we have

‖rδ
α‖ ≤

L

2
‖xδ

α − x†‖2.

Hence, we may estimate

2α‖〈p, F ′(x†)(xδ
α − x†)〉‖ ≤ 2α‖p‖‖F (xδ

α)− F (x†)‖+ αL‖p‖‖xδ
α − x†‖2.

Combining this estimate with (4.13) we deduce

‖F (xδ
α)−yδ)‖2+α(1−L‖p‖)‖xδ

α−x†‖2 ≤ δ2+2α‖p‖‖F (xδ
α)−y‖ ≤ δ2+2α‖p‖(‖F (xδ

α)−yδ‖+δ),

or, rewritten

1
α

(‖F (xδ
α)− yδ)‖ − α‖p‖)2 + (1− L‖p‖)‖xδ

α − x†‖2 ≤ δ2

α
+ α‖p‖2 + 2δ‖p‖.

If c1δ ≤ α ≤ c2δ, we obtain (using nonnegativity of the first term on the left-hand side)

(1− L‖p‖)‖xδ
α − x†‖2 ≤ δ

c1
+ c2δ‖p‖2 + 2δ‖p‖,

and hence, (4.12) holds with

c =

√
1 + c1c2‖p‖2 + 2c1‖p‖

c1(1− L‖p‖)
.

We finally mention that a general source condition can be generalized to

∃ p ∈ Y : x† − x∗ = (F ′(x†)∗F ′(x†))µp, (4.14)

and analogous convergence rate results to the linear case can be shown for µ > 1
2 .
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4.2 Construction of Tikhonov-type Regularization Methods

The idea of Tikhonov regularization can easily be generalized with respect to the choice of a
regularization functional. With a nonnegative functional JR : X → R one could consider a
“Tikhonov-type” regularization via

xδ
α ∈ argmin

x∈X

[
‖F (x)− yδ‖2 + αJR(x)

]
. (4.15)

Such a method is a regularization if the regularization functional JR has a suitable properties.
In particular, if JR is weakly lower semicontinuous in some topology T , i.e.,

JR(x) ≤ lim inf
n
JR(xn) ∀ xn →T x,

and if the sub level sets of JR are precompact in the topology T , the results on existence,
stability, and convergence for Tikhonov regularization can be carried over to (4.15) with minor
modifications of the proofs, when convergence is considered with respect to the topology T .
Since the topology T need not correspond to the strong or weak topology in a Hilbert space,
one can carry out regularization via (4.15) also if X is a metric space. We shall meet this
situation for two Banach spaces in the Sections below and for a metric space of shapes in the
last chapter.

From this generalization one observes that the main regularizing effect of Tikhonov regu-
larization comes from the fact that the sub level sets of the functional

Jα(x) = ‖F (x)− yδ‖2 + αJR(x)

are precompact in the topology T , i.e., the regularization acts by compactification. In the case
of a Hilbert space, the natural choice for the topology T is the weak topology, the fact that
one finally even obtains strong convergence is a particularity. In a similar setup for Banach
spaces one cannot expect strong convergence, as we shall see for total variation regularization
below.

4.3 Maximum-Entropy Regularization

Maximum entropy regularization is a method of particular interest for the reconstruction of
probability density functions, i.e., functions in the space

PDF (Ω) := {x ∈ L1(Ω) | x ≥ 0,
∫

Ω
x(t) dt = 1}.

The (negative) entropy borrowed from physics and information theory is defined as the func-
tional

E(x) :=
∫

Ω
x(t) log x(t) dt, ∀x ∈ L1(Ω), x ≥ 0,

∫
Ω
x(t) dt = 1. (4.16)

For a continuous operator F : L1(Ω) → Y with Y being some Hilbert space, we can consider
the regularized problem

‖F (x)− y‖2 + αE(x) → min
x∈PDF (Ω)

. (4.17)
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The convergence analysis of maximum entropy regularization (cf. [8, 11]) can be related
to the one for Tihonov regularization in Hilbert space with a simple trick: one can find a
monotone function ψ : R+ → R such that

E(x) =
∫

Ω
x(t) log x(t) dt =

∫
Ω
ψ(x(t))2 dx.

Hence, with the operator

Ψ : L2(Ω) → L1(Ω), z 7→ ψ−1(z),

can be rewritten as
‖F (Ψ(z))− y‖2 + α

∫
Ω
z(t)2 dt→ min

z∈L2(Ω)
.

With suitable assumptions on the solution and the admissible set, one can verify that the
new nonlinear operator F ◦ Φ : L2(Ω) → Y satisfies all needed properties for Tikhonov
regularization and thus, the convergence (rate) analysis can be carried over, we refer to [11]
for further details.

If a prior x∗ ∈ PDF (Ω) is available, then one often uses the relative entropy (or Kullback-
Leibler divergence)

E∗(x) :=
∫

Ω
x(t) log

x(t)
x∗(t)

dt, ∀x ∈ L1(Ω), x ≥ 0,
∫

Ω
x(t) dt = 1, (4.18)

the convergence analysis in this case is similar.

4.4 Total Variation Regularization

Total variation regularization is an approach originally introduced for image restoration (cf.
[21]) with the aim of preserving edges in the image, i.e., discontinuities in the solution. For-
mally the total variation functional can be defined as

|u|TV =
∫

Ω
|∇u| dt, u ∈ C1(Ω).

A more rigorous definition is based on the dual form

|u|TV := sup
g∈C∞0 (Ω)d

∫
Ω
u div g dt. (4.19)

The general definition of the space of functions of bounded variation BV (Ω) is

BV (Ω) := { u ∈ L1(Ω) | |u|TV <∞ }.

With this definition, the space BV (Ω) includes also discontinuous functions. Consider e.g.
Ω = [−1, 1] and, for R < 1,

uR(x) =
{

1 if |x| ≤ R
0 else.

Then, ∫
Ω
u div g dt =

∫ R

−R

dg

dt
dt = g(R)− g(−R).
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For ‖g‖∞ ≤ 1, we have g(R)−g(−R) ≤ 2 and it is easy to construct a function g ∈ C∞0 ([−1, 1])
such that g(R) = 1, g(−R) = −1 and ‖g‖∞ ≤ 1. Hence,

|u|TV := sup
g∈C∞0 ([−1,1])

[g(R)− g(−R)] = 2.

In general, for a function u being equal to 1 in D ⊂⊂ Ω and u = 0 else, the total variation
|u|TV equals the surface area (or curve length) of ∂D.

Total variation regularization is defined via the minimization problem

‖F (u)− y‖2 + α|u|TV → min
u∈BV (Ω)

.

The convergence analysis (cf. [1]) is based on the compact embedding BV (Ω) ↪→ Lp(Ω),
where p > 1 depends on the spatial dimension d. One can use this property to deduce that
sub level sets of the regularized functional are compact in the strong topology of Lp(Ω), and if
F is weakly sequentially closed in this topology, one can carry out an analogous convergence
proof as for Tikhonov regularization.

In order to obtain further insight, we consider the formal optimality condition in the
case F = Id : BV (Ω) → L2(Ω), i.e., the classical case of denoising considered in [21]. By
differentiating formally, we have

u− yδ = αdiv
(
∇u
|∇u|

)
.

If u is a continuously differentiable function, the term div
(
∇u
|∇u|

)
is equal to the mean cur-

vature of the level sets {u = σ}, σ ∈ R. Hence, the optimality condition is a condition on the
smoothness of the level sets only, there is no condition on the size of |∇u|.

Again by formal arguments, we can derive a dual problem for total variation minimization.
Consider again the denoising case F = Id : BV (Ω) → L2(Ω), then the minimization problem
to solve is

inf
u

[∫
Ω
(u− yδ)2 dt+ α|u|TV

]
= inf

u
sup
g

[∫
Ω
(u− yδ)2 dt+ 2α

∫
Ω
u div g dt.

]
Under the assumption that we can exchange the inf and sup (in a suitable function space
setting), we obtain

sup
g

inf
u

[∫
Ω
(u− yδ)2 dt+ 2α

∫
Ω
u div g dt.

]
The minimization over u is a strictly convex problem and its unique minimizer can be com-
puted from the first-order optimality conditon as

u = yδ − α div g.

Hence, after eliminating u we end up with the maximization problem

sup
g

[
α2

∫
Ω
( div g)2 dt+ 2α

∫
Ω
(yδ − α div g) div g dt

]
Since we can add constant terms without changing the maximizer, the problem is equivalent
to

−
∫

Ω
(α div g − yδ)2 dx→ max

|g|∞≤1
.
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Now let p := αg, then we end up with (using the fact that maximization of a functional is
equivalent to minimization of the negative functional)∫

Ω
( div p− yδ)2 dt→ min

|p|∞≤α
. (4.20)

The minimization problem (4.20) is the dual problem of the total variation regularization, if
we have computed a solution p, then the primal solution can be computed as u = yδ − div p.

Motivated from the dual problem we can also consider the dual space of BV, namely

BV ∗ := { q = div p | p ∈ L∞(Ω) }

with the dual norm
‖q‖BV ∗ := inf{‖p‖∞ | q = div p}.

Note that (4.20) has the structure of a projection, namely it projects yδ to the ball of radius
α in the dual space BV ∗.

The dual problem also allows further insight into the so-called stair-casing phenomenon,
i.e., the fact that the total variation regularization favours piecewise constant regularized
solutions. Consider for simplicity the one-dimensional case and let df

dx = yδ. Then, with
q = p− f , the dual problem can be rewritten as∫

Ω

(
dq

dt

)2

dt→ min subject to − α ≤ q + f ≤ +α. (4.21)

Consider formally the associated Lagrangian

L(q;λ, µ) =
∫

Ω

[(
dq

dt

)2

+ λ(q + f − α)− µ(q + f + α)

]
dt

for positive functions λ and µ. Then the optimality condition becomes

−2
d2q

dt2
+ λ− µ = 0

and moreover, the constraints

λ ≥ 0, µ ≥ 0, −α ≤ q + f ≤ α

and the complementarity conditions

λ(q + f − α) = 0, µ(q + f + α) = 0

hold. Thus, we have three cases:

1. q(t) + f(t) = α, which implies that µ(t) = 0 and 2d2q
dt2

= λ(t) ≥ 0.

2. q(t) + f(t) = −α, which implies that λ(t) = 0 and 2d2q
dt2

= −µ(t) ≤ 0.

3. q(t) + f(t) /∈ {α,−α}, which implies λ(t) = µ(t) = 0, and hence, d2q
dt2

(t) = 0.
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Note that the third case shows that q is linear in regions where q + f /∈ {α,−α} and hence,
u = −dq

dt is constant.
If yδ is a piecewise constant function, then f is piecewise linear and thus, the cases 1. and

2. imply that q = ±α− f is piecewise linear in the respective subregions, and thus, u = −dq
dt

is piecewise constant. This means that, together with case 3., u must (locally) either be
piecewise constant or exactly equal to the image f . If f is very noise (ans includes fine scale
oscillations), then it is very unlikely that u follows f , since the total variation of the noise is
usually high. Hence, one has to expect a piecewise constant solution, which is confirmed by
various numerical results. Consider for example the special case

yδ(x) =
{

1 if |x| ≤ R
0 else.

with 0 < α < R < 1. By a simple integration we obtain the anti-derivative

f(x) =


−R if x ≤ −R
x if −R ≤ x ≤ R
R if x ≥ R

Thus, the dual problem becomes ∫
Ω

(
dq

dt

)2

dt→ min

subject to
−α ≤ q −R ≤ α if x ≤ −R
−α ≤ q + x ≤ α if −R ≤ x ≤ R
−α ≤ q +R ≤ α if x ≥ R

.

Now let

q(x) =


R− α if x ≤ −R
α−R

R x if −R ≤ x ≤ R
α−R if x ≥ R

,

Then q satisfies the constraints and∫
Ω

(
dq

dt

)2

dt =
2(R− α)2

R
.

Moreover, for arbitrary q satisfying the constraints we obtain

(R− α)− (α−R) ≤ q(−R)− q(R) = −
∫ R

−R

dq

dt
dt

Hence, from the Cauchy-Schwarz inequality we deduce∫
Ω

(
dq

dt

)2

dt ≥
∫ R

−R

(
dq

dt

)2

dt ≥ 1
2R

(∫ R

−R

(
dq

dt

)
dt

)2

≥ 2(R− α)2

2R
.

This shows that q is a minimizer of the dual problem and consequently, the regularized solution
is given by

u(x) = −dq
dx

=


0 if x ≤ −R
1− α

R if −R ≤ x ≤ R
0 if x ≥ R
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Thus, the regularized solution is discontinuous and even has the same discontinuity set as
the data, but shrinks the height (in a monotone way with α). It is easy to see by analogous
reasoning that for R < α, the regularized solution is u ≡ 0, i.e., α marks a critical size
below which features in the solution will be eliminated. Such small features are usually due
to noise, so the regularization eliminates really parts that one would consider to be noise,
while it maintains important discontinuities. A nice detailed discussion of the properties of
solutions in total variation regularization can be found in the book by Meyer [19].
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Chapter 5

Iterative Regularization

In the following we discuss the basic principles of iterative regularization. We shall carry
out a detailed analysis for the possibly simplest method, namely Landweber iteration, which
allows to present the main ideas and properties avoiding technical details. We will then
discuss some speficic properties of more advanced iteration methods like conjugate gradients
and Newton-type methods.

5.1 Landweber Iteration

We start again from the linear operator equation (3.4), respectively from the associated
Gaussian normal equation, which can be rewritten equivalently as

x = x− τA∗(Ax− y)

for any τ ∈ R. This form motivates a simple fixed-point iteration, namely

xk+1 = xk − τA∗(Axk − y) = (I − τA∗A)xk + τA∗y, (5.1)

which is called Landweber iteration. In the linear case, the standard choice of the initial value
is x0 = 0.

Note that the Landweber iteration is equivalently a gradient method for the least-squares
problem

1
2
‖Ax− y‖2 → min

x∈X
,

and from well-known results on gradient methods one can conclude that the least-squares
functional is decreasing during the iteration if τ is sufficiently small.

Exact Data

We can again employ the singular value decomposition to obtain an equivalent form of (5.1)
as

∞∑
n=1

〈xk+1, un〉un =
∞∑

n=1

(1− τσ2
n)〈xk, un〉un + τσn〈y, vn〉un.

Due to linear independence, this yields the recursion

〈xk+1, un〉 = (1− τσ2
n)〈xk, un〉+ τσn〈y, vn〉
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for the n-th coefficient. This recursion can be solved to obtain

〈xk, un〉 = τσn〈y, vn〉
k∑

j=1

(1− τσ2
n)k−j =

(
1− (1− τσ2

n)k−1
)

τσ2
n

τσn〈y, vn〉

=
(
1− (1− τσ2

n)k−1
) 1
σn
〈y, vn〉.

If |1− τσ2
n| < 1, then (1− τσ2

n)k−1 → 0 and hence,

〈xk, un〉 →
1
σn
〈y, vn〉 = 〈x†, un〉.

Hence, we need that 0 < τσ2
n < 2 for all n in order obtain convergence of the coefficients

in the singular value expansion. Since σ1 = maxn σn = ‖A‖, this means we have to choose
0 < τ < 2

‖A‖2 .
Note that under this condition on τ we can also guarantee the decay of the least-squares

functional, since

‖Axk+1 − y‖2 = ‖Axk − y‖2 + τ2‖AA∗(Axk − y)‖2 − 2τ〈Axk − y,AA∗(Axk − y)〉

= ‖Axk − y‖2 + τ
(
τ‖AA∗(Axk − y)‖2 − ‖A∗(Axk − y)‖2

)
≤ ‖Axk − y‖2 + τ‖A∗(Axk − y)‖2

(
τ‖A‖2 − 1

)︸ ︷︷ ︸
≤0

≤ ‖Axk − y‖2.

If we interpret α := 1
k as the regularization parameter, then we have

gα(σ) =
(
1− (1− τσ2)1/(α−1)

) 1
σ
.

Clearly, for τσ2 < 1, gα(σ) converges to σ as α = 1
k → 0, and hence, from the results of Chap-

ter 3 we conclude that xk → x† as k →∞. We have also seen that the speed of convergence
is arbitrarily slow unless the exact data satisfy additional smoothness assumptions.

In order to obtain a speed of convergence, we assume that the solution satisfies the source
condition x† = A∗p for p ∈ Y . In this case we have

〈xk − x†, un〉 = (1− τσ2
n)k−1〈x†, un〉 = σn(1− τσ2

n)k−1〈p, vn〉.

The positive function r(σ) := σ(1 − τσ2)k−1 has a unique maximum in the interval (0,
√

2
τ )

at σ = 1√
τ(2k−1)

with and hence,

|〈xk − x†, un〉| ≤ r(σ)‖p‖ ≤ 1√
τ(2k − 1)

‖p‖.

This implies that the error decays as

‖xk − x†‖ = O(
1√
k
).
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Noisy Data

In the case of noisy data, we can of course carry out the same iteration procedure, in order
to clarify the dependence of the iterates upon the noise we shall write xk

δ in the following

xk+1
δ = xk

δ − τA∗(Axk
δ − yδ) = (I − τA∗A)xk

δ + τA∗yδ. (5.2)

Since one only has to apply the continuous operators A and A∗, this method is well-defined
and one could in principle iterate until k → ∞. However, we have interpreted α = 1

k as the
regularization parameter, and since α should be positive (i.e., k finite) in the case of noisy
data, one should terminate the iteration procedure by a stopping rule involving the noise and
noise level. This means we only carry out (5.2) as long as k < k∗(δ, yδ). The regularized
solution is then just xk∗

δ .
Once again, we use the singular value decomposition to write the error as

〈xk
δ − x†, un〉 =

(
1− (1− τσ2

n)k−1
) 1
σn
〈yδ, vn〉 −

1
σn
〈y, vn〉

=
(
1− (1− τσ2

n)k−1
) 1
σn
〈yδ − y, vn〉+ (1− τσ2

n)k−1 1
σn
〈y, vn〉.

The second term in the sum decays exponentially to zero as k →∞, we have

(1− τσ2
n)k−1 1

σn
〈y, vn〉 = (1− τσ2

n)k−1〈x†, vn〉.

For k > 1, the absolute value of the first term can be estimated by

(
1− (1− τσ2

n)k−1
) 1
σn
|〈yδ − y, vn〉| = τσn

k−2∑
j=0

(1− τσ2
n)j |〈yδ − y, vn〉| ≤ τσnkδ.

Now we can take a closer look at the error between the exact and regularized solutions, whose
components in the singular value decomposition can be estimated using the above arguments
as

|〈xk∗(δ)
δ − x†, un〉| ≤ τσnk∗δ + (1− τσ2

n)k−1‖x†‖.

If, as δ → 0, we choose the stopping index such that k∗(δ) → ∞ and k∗(δ)δ → 0, then
all components converge to zero and hence, xk∗(δ)

δ → x†, i.e., the Landweber iteration is a
convergent regularization method.

For iterative methods such as the Landweber iteration it is easy to use a-posteriori stopping
rules such as the discrepancy principle,

k∗(δ, yδ) := inf{k ∈ N | ‖Axδ
k − yδ‖ < ηδ},

with η ≥ 2
2−τ‖A‖ . Roughly speaking, this means that we stop the iteration the first time

the error reaches the same size as the noise level. Thus, in order to implement this stopping
rule one just has to monitor the residual Axδ

k − yδ (which is computed anyway during the
Landweber iteration) and compare its norm with the noise level. In order to understand how
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the discrepancy principle works, we again look at the error during the iteration

‖xk+1
δ − x†‖2 − ‖xk

δ − x†‖2 = τ2‖A∗(Axk
δ − yδ)‖2 − 2τ〈xk

δ − x†, A∗(Axk
δ − yδ)〉

= τ2‖A∗(Axk
δ − yδ)‖2 − 2τ〈Axk

δ − y,Axk
δ − yδ〉

≤ τ2‖A‖‖Axk
δ − yδ‖2 − 2τ‖Axk

δ − yδ‖2 − 2τ〈yδ − y,Axk
δ − yδ〉

≤ −τ‖Axk
δ − yδ‖

(
(2− τ‖A‖)‖Axk

δ − yδ‖ − 2δ
)

≤ −τ
η
‖Axk

δ − yδ‖
(
‖Axk

δ − yδ‖ − ηδ
)
.

Note that as long as k < k∗ one can guarantee that the right-hand side is negative and hence,

‖xk+1
δ − x†‖2 < ‖xk

δ − x†‖2,

i.e. the error is decreased at least until the stopping index is reached. This is another good
motivation for the use of the discrepancy principle as a stopping criterion for the Landweber
iteration. One can indeed show (cf. [10]) that the discrepancy principle is a convergent
regularization method. In the case of x† satisfying the source condition x† = A∗p for p ∈ Y ,
one can even show

‖xk∗
δ − x†‖ = O(

√
δ),

an analogous result as for the continuous regularization methods.

Nonlinear Problems

We now discuss the generalization of the Landweber iteration for nonlinear problems of the
form (4.1). The key observation is that the Landweber iteration in the nonlinear case is just
a gradient descent method for the associated least-squares functional 1

2‖Ax− y‖
2. Hence, we

consider the least-squares functional

J(x) :=
1
2
‖F (x)− yδ‖2

for the nonlinear problem. Its derivative is given by

J ′(x) = F ′(x)∗(F (x)− y)

and hence, the Landweber iteration in the nonlinear case can be obtained as

xk+1
δ = xk

δ − τF ′(xk
δ )
∗(F (xk

δ )− y). (5.3)

In the nonlinear case the choice of the initial value is of particular importance, x0 plays the
same role as the prior x∗ in Tikhonov regularization and can (in the case of multiple solutions)
also determine the particular solution to which the algorithm converges.

A detailed convergence analysis of the nonlinear Landweber iteration can be found in [10],
here we shall take closer look on the behaviour of the error. Similar to the linear case we have

‖xk+1
δ − x†‖2 − ‖xk

δ − x†‖2

= τ2‖F ′(xk
δ )
∗(F (xk

δ )− yδ)‖2 − 2τ〈xk
δ − x†, F ′(xk

δ )
∗(F (xk

δ )− yδ)〉
≤ τ2‖F ′(xk

δ )‖2(F (xk
δ )− yδ)2 − 2τ〈F (xk

δ )− y, F (xk
δ )− yδ〉

+2τ〈F (xk
δ ) + F ′(xk

δ )(x
k
δ − x†)− F (x†), F (xk

δ )− yδ〉
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Note that the first two terms are analogous to those appearing in the linear case, while the
additional third term reflects the nonlinearity of the problem. Note that F (xk

δ )+F ′(xk
δ )(x

k
δ −

x†) − F (x†) is a Taylor-expansion of first order, and therefore, one can expect an estimate
(locally around the solution) of the form

‖F (xk
δ ) + F ′(xk

δ )(x
k
δ − x†)− F (x†)‖ ≤ c‖xk

δ − x†‖2.

As we have seen several times before, the error ‖xk
δ −x†‖2 can be much larger than ‖F (xk

δ )−
F (x†)‖ and consequently such an estimate cannot help to obtain the decrease of the error
from the above estimate. For the convergence analysis it turns out that a condition of the
form

‖F (xk
δ ) + F ′(xk

δ )(x
k
δ − x†)− F (x†)‖ ≤ c‖F (xk

δ )− F (x†)‖ (5.4)

with c < 1
2 is sufficient, at least locally around the solution. Condition 5.4 restricts the nonlin-

earity of the operator F , it is called tangential cone condition. Such a nonlinearity condition
somehow replaces the continuous invertibility of F ′(x†), which is a fundamental ingredient in
the convergence analysis of iterative methods in the case of well-posed problems. Conditions
on the nonlinearity are not just artificial inventions, it can be shown that a slightly weaker
condition than (5.4) is actually necessary for the convergence of the Landweber iteration (cf.
[22]).

5.2 Conjugate Gradient Methods

The conjugate gradient method is probably the most popular iteration scheme for linear
equations involving symmetric positive definite linear operators. Therefore it seems tempting
to consider the conjugate gradient method as an iterative regularization method. Without
assuming that A is symmetric and positive definite, one can apply the conjugate gradient
method only to the normal equation (CGNE)

A∗Ax = A∗y. (5.5)

The most important property of conjugate gradient methods is that the residual is min-
imized in a Krylov subspace (shifted by x0 in the case of non-homogeneous initial values),
i.e.

‖Axk − y‖ = min{‖Ax− y‖ | x− x0 ∈ Kk(A∗(y −Ax0), A∗A)},

with
Kk(z,B) := { Bjz | j = 0, 1, 2, . . . , k }.

Note that the minimization of ‖Axk−y‖ is an ill-posed problem in general, but it is regularized
by a restriction to the compact finite-dimensional subspace Kk(A∗(y −Ax0), A∗A).

The full algorithm reads as follows:

• Initialize x0, d0 = y −Ax0, p1 = s0 = A∗d0.
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• For k = 1, 2, . . . and while sk−1 6= 0 compute

qk = Apk

αk = ‖sk−1‖2/‖qk‖2

xk = xk−1 + αkpk,

dk = dk−1 − αkqk,

sk = A∗dk,

βk = ‖sk‖2/‖sk−1‖2,

pk+1 = sk + βkpk.

From the iteration procedure one observes that the conjugate gradient method is a nonlin-
ear iteration scheme, which is the most fundamental difference to all regularization methods
considered above. This means that the conjugate gradient method (even for linear ill-posed
problems) is a nonlinear regularization method. The convergence analysis can therefore not
be based on general results obtain for linear regularization methods as above, but has to
be carried out by other means. Fortunately, the nonlinearity is not too strong to destroy
the possibility of using the singular value decomposition for most parts of the analysis (cf.
[10, 13]).

5.3 Newton-type Methods

The basic idea of the Newton method for a nonlinear equation like (4.1) is a local linearization.
One step of the Newton method would involve the solution of the linear equation

F ′(xk)(xk+1 − xk) = −(F (xk)− y). (5.6)

Since F ′(xk) is not a regular linear operator in the case of an ill-posed problem, the equation
for the update in the Newton method is a linear ill-posed problem itself and consequently
xk+1 might not be well-defined.

A common approach to the construction of Newton-type methods for nonlinear ill-posed
problems is to regularize (5.6) using a regularization method for linear ill-posed problems. For
example we can apply linear Tikhonov-regularization (interpreting xk+1−xk as the unknown),
which yields

(F ′(xk)∗F ′(xk) + αkI)(xk+1 − xk) = −F ′(xk)∗(F (xk)− y), (5.7)

the so-called Levenberg-Marquardt method. As an alternative one can also apply Tikhonov-
regularization with a different prior, the most common form is to use the initial value x0 as
a prior throughout the whole iteration, which yields

(F ′(xk)∗F ′(xk) + αkI)(xk+1 − xk) = −F ′(xk)∗(F (xk)− y) + αk(x0 − xk), (5.8)

called iteratively regularized Gauss-Newton method. The additional term on the right-hand
side improves the stability of the method in some cases.

Note that in both methods αk is not the regularization parameter of the iterative method,
which is again the stopping index. The parameters αk can be chosen to decay to zero as
k → ∞ in order to avoid overdamping of the Newton-type method. In the case of the
iteratively regularized Gauss-Newton method, αk → 0 is even necessary for the convergence
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of the method, since for αk → α∞ > 0 one would approximate the solution of a Tikhonov-
regularized problem instead of the solution of (4.1).

The convergence analysis of Newton-type method is rather involved and shall therefore
be omitted here, we only mention that similar (sometimes weaker) nonlinearity conditions as
for the nonlinear Landweber iteration are used.

We finally mention that any suitable linear regularization method can be applied to the
Newton step, in particular also linear iterative methods such as Landweber iteration or con-
jugate gradient methods, leading to methods called Newton-Landweber or Newton-CG. The
above decay of αk to zero corresponds to an increase of the inner iteration number in such
cases.

5.4 Iterative Methods as Time-Discrete Flows

We finally discuss an interpretation of iterative regularization methods as time discretizations
of a gradient flow. We start again from the Landweber iteration, which can be rewritten as

xk+1 − xk

τ
= −F ′(xk)(F (xk)− y).

If we interpret τ as a step size parameters and xk = x(kτ) as time steps of some flow, the
Landweber iteration corresponds to an explicit time discretization (forward Euler) of the flow

dx

dt
(t) = −F ′(x(t))∗(F (x(t))− y), (5.9)

i.e., asymptotical regularization.
From this correspondance to the flow (5.9) it seems natural to try other time discretiza-

tions. The implicit time discretization (backward Euler) yields the nonlinear equation

xk+1 − xk

τ
= −F ′(xk+1)(F (xk+1)− y),

which is the optimality condition of the optimization problem

‖F (x)− y‖2 +
1
τ
‖xk+1 − xk‖2 → min

x∈X
,

well-known from Tikhonov regularization. The corresponding iterative procedure is therefore
called iterated Tikhonov regularization. If we perform a semi-implicit time discretization, i.e.,
approximating F ′(x)∗ explicitely and F (x) by a first-order Taylor expansion around the last
time step xk we end up with the Levenberg-Marquardt method. The iteratively regularized
Gauss-Newton method corresponds to a non-consistent semi-implicit time discretization.

From this motivation it is not surprising that general Runge-Kutta methods (even non-
consistent ones) applied to the flow (5.9) yield convergent iterative regularization methods,
as recently shown by Rieder [20].
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Chapter 6

Discretization

In the following we turn our attention to the discretization of inverse problems. The mo-
tivation for considering discretization can be twofold. First of all one has to discretize the
problem in any case in order to perform a computational scheme. On the other hand, the
discretization acts as a regularization itself. We have already seen an example of regulariza-
tion by discretization in Chapter 3, namely the truncated singular value decomposition. In
this case the discretization is caused by the fact that we only use the singular values larger
than some threshold, which is always a finite number for an ill-posed problem. Here we focus
on a discussion of regularization by projection and then discuss some aspects related to the
numerical solution of regularized problems.

6.1 Regularization by Projection

We start by considering a simple least-squares approximation strategy for the linear problem
(3.4), by choosing a sequence of finite dimensional subspaces X1 ⊂ X2 ⊂ . . . ⊂ X, whose
union is dense is X. Now we consider the problem of computing a least-squares solution
of minimal norm in the finite-dimensional space Xk. Such a solution xk is in particular a
solution of

‖Ax− y‖2 → min
x∈Xk

. (6.1)

Thus, for all h ∈ Xk we have

0 ≤ ‖A(xk + h)− y‖2 − ‖Axk − y‖2 = ‖Ah‖2 + 2〈Ah,Axk − y〉.

Since h is arbitrary (and in particular its norm can be arbitrarily small), this identity can be
satisfied only if

〈h,A∗(Axk − y)〉 = 〈Ah,Axk − y〉 = 0

for all h ∈ Xh. With the projection operator Pk : X → Xk we can rewrite the identity as

PkA
∗(Axk − y) = P ∗kA

∗(APkxk − y) = A∗k(Akxk − y) = 0,

where Ak := APk. We look for the discrete least-squares solution of minimal norm, and it is
easy (by arguments similar to those of Section 3) to show that that xk = A†ky. Note that the
range of the operator Ak is equal to the finite-dimensional space A(Xk) and hence R(Ak) is
closed, which implies the existence of a continuous inverse. For general choices of subspaces
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Xk, this simple least-squares projection is not a convergent regularization method, since the
norm of xk can increase with k (i.e., ‖xk‖ is not uniformly bounded, cf. [10] ). In general, it
seems favourable to choose ”smooth” basis functions in Xk, e.g., such that Xk ⊂ R(A∗), we
refer to [10] for a detailed discussion.

So far we have discussed a projection method in the space X, but there is no reason
why one should not investigate projection in the image space Y . For this sake we choose a
sequence of finite-dimensional subspaces Y1 ⊂ Y2 ⊂ . . . ⊂ Y , whose union is dense is Y . The
so-called dual projection method seeks a minimum-norm solution xk ∈ X of

〈Axk − y, z〉 = 0 ∀ z ∈ Yk, (6.2)

or equivalently, with the projector Qk : Y → Yk,

QkAxk = Qky. (6.3)

The convergence analysis in the case of exact data is provided by the following result:

Theorem 6.1. Let y ∈ D(A†), then there exists a unique solution xk of minimal norm of the
equation (6.2). Moreover, xk := Pkx

†, where Pk is the orthogonal projector onto the subspace
Xk := T ∗Yk. Consequently, if

⋃
k Yk = Y , then xk → x† as k →∞.

Proof. Let xk := Pkx
†, then 〈xk − x†, A∗z〉 = 0 for all z ∈ Yk due to the properties of

orthogonal projections. Because of

〈xk − x†, A∗z〉 = 〈Axk −Ax†, z〉 = 〈Axk − y, z〉,

xk is a solution of (6.2). Let x ∈ X be any other solution of (6.2), then

0 = 〈Ax− y, z〉 = 〈APkx− y, z〉+ 〈x− Pkx,A
∗z〉

for all y ∈ Yk. Since x − Pkx is orthogonal to Xk, the second term vanishes, and hence Pkx
is also a solution of (6.2) and ‖Pkx‖ ≤ ‖x‖. Thus, we may assume that x ∈ Xk. Then

0 = 〈Ax− y, z〉 − 〈Axk − y, z〉 = 〈x− xk, A
∗z〉

for all z ∈ Yk. Hence, x−xk ∈ Xk is orthogonal toXk, which implies x = xk, and consequently
xk is the solution of minimal norm.

We now turn our attention to the convergence analysis in the case of noisy data. So far, we
have not introduced an explicit regularization parameter for regularization by discretization,
it is hidden in the dimension of the subspace Xk. The actual regularization parameter is µk,
the smallest singular value of the operator Ak := QkA. If the subspaces are chosen such that
Yk ⊂ N (A)⊥, then we always have µk > 0. This allows to perform the following stability
analysis:

Theorem 6.2. Let y ∈ D(A†) and let yδ be perturbed data satisfying ‖y−yδ‖ ≤ δ. Moreover,
let xδ

k denote the minimum norm solution of (6.2). If δ
µk
→ 0 as δ → 0 and k →∞ (µk → 0),

then xδ
k → x†.
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Proof. As usual we use the triangle inequality to obtain

‖xδ
k − x†‖ ≤ ‖xδ

k − xk‖+ ‖Pkx
† − x†‖.

Theorem 6.1 guarantees the convergence of the second term ‖Pkx
† − x†‖ to zero. The first

term can be estimated via

‖xδ
k − xk‖ = ‖A†kQk(yδ − y)‖ ≤ ‖A†k‖‖Qk(yδ − y)‖ ≤ ‖yδ − y‖

µk
=

δ

µk
,

and thus, it also converges to zero if δ
µk
→ 0.

The optimal choice of the subspaces Yk is given as the span of the singular vectors
{v1, . . . , vk}, in this case we obtain the truncated singular value decomposition. Finally,
we mention that the method of least-squares collocation for integral equations is a prominent
example of the dual projection method.

6.2 Discretization of Regularized Problems

If one wants to solve inverse problems numerically, one always has to perform some discretiza-
tion. The discretization can be a regularization itself, as considered in the previous section,
or one can also consider a discretization of previously regularized problems. Here we consider
the discretization of a problem with Tikhonov-regularization as an example.

The standard Galerkin approximation of Tikhonov-regularization consists in minimizing

‖Ax− yδ‖2 + α‖x‖2 → min
x∈Xk

for a finite-dimensional subspace Xk ⊂ X. As usual for Galerkin approximations, the regu-
larized solution xδ

α,k ∈ Xk is characterized by the variational equations

〈Axδ
α,k − y,Az〉+ α〈xδ

α,k, z〉 = 0 ∀ z ∈ Xk

or, equivalently, as
xδ

α,k = (A∗kAk + αI)−1A∗ky
δ,

where Ak := APk, Pk being the projector onto Xk.
The convergence of xδ

α,k could be carried out in two steps: First of all, convergence of
k → ∞ would yield convergence of xδ

α,k to xδ
α due to the well-posedness of the regularized

problem. As a second step one can then use the previous results on the convergence as
α, δ → 0. In practice, one is rather choosing α and k simultaneously, so that one is interested
in conditions on α and k in dependence on δ. A general statement is that the discretization
size k should not converge to infinity too slow compared to the convergence of α to zero,
since otherwise the regularizing effect by projection dominates the Tikhonov regularization
and the Galerkin approximation is not a regularization in general. We refer to [12] for a
detailed discussion. Similary, one could use a dual projection method (as discussed in the
previous section) for the regularized problem and analogous reasoning is possible (cf. [10] for
a detailed discussion).
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6.3 Numerical Solution of Discretized Problems

After discretizing the problem (either directly or after regularization), we end up with a
system of the form

Kz = b, K ∈ Rn×n, b ∈ Rn (6.4)

to be solved for a coefficient vector z ∈ Rn. For standard discretizations the matrix K is a
discretization of an operator like A∗A or A∗A+ αI and therefore one may assume that K is
symmetric and positive definite. The scaling can be chosen such that the largest eigenvalue
of K is related to the norm of A, i.e., of order one, and the smallest eigenvalue is related to
the regularization parameter α (penalty parameter for Tikhonov regularization, truncation
level for TSVD, ...). Thus, the condition number of K is proportional to 1

α and since we
are interested in situations α → 0 (as δ → 0), this condition number will be rather high in
general.

Due to the ill-conditioning of the problem, standard Gauss elimination or factorization
should not be the method of choice for the solution of (6.4). For problems of moderate size
a possibility for a robust direct solution is a generalized Cholesky factorization in the form

K = LDLT ,

where L is a lower triangular matrix with diagonal entries Lii = 1 and D is a diagonal matrix.
In the generalized Cholesky factorization, the ill-conditioning only affects the matrix D, which
can be inverted reasonably due to its diagonal structure.

For problems of large scale, a direct solution of (6.4) is not possible due to restrictions
of memory and computation time. The alternative is an iterative solution, usually with the
conjugate gradient method being the method of choice. Clearly, the high condition number
and complicated eigenvalue pattern of the matrix K will cause an undesirably high number
of CG iterations, and therefore one should find an appropriate preconditioner B and apply
the CG method to

B−1Kx = B−1b.

As usual, the preconditioner should satisfy two main properties: B−1 should be easy to
evaluate and B should approximate K. On the other hand, if B approximates K too well,
then it will be ill-conditioned itself. Therefore it seems unlikely to find B such that all
eigenvalues of B−1K cluster around 1, one expects at least two clusters, one around one and
the other around the value of the regularization parameter.

Consider for example the case of Tikhonov regularization for a severly ill-posed problem.
Under appropriate approximation we may expect that also the eigenvalues of the discretization
of A∗A decay to zero exponentially and therefore only few of them will be large compared to
the regularization parameter α. Since K corresponds to the discretization of A∗A + αI one
may therefore expect an eigenvalue cluster at α and some larger eigenvalues. A simple idea
for constructing a preconditioner is to act only on the large eigenvalues: Let (λi, ui) be the
eigensystem of K and let m << n be the maximal index such that λi is significantly larger
than α. Then we could choose

B =
m∑

j=1

λjuju
T
j +

∑
j>m

uju
T
j .
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Note that
∑

j<m uju
T
j is just the projector on the subspace orthogonal to the span of {u1, . . . , um}

and we need not know the uj to construct it. Since the spectral decomposition of K is

K =
m∑

j=1

λjuju
T
j +

∑
j>m

λjuju
T
j

we obtain

B−1K =
m∑

j=1

uju
T
j +

∑
j>m

λjuju
T
j ,

i.e., the preconditioned matrix has m eigenvalues equal to one and n−m eigenvalues clustering
at α. Once we have computed the eigenvalues and eigenvectors up to j = m, the evaluation
of B−1 is cheap. The main computational effort is the construction of the first m eigenvalues
and eigenvectors, but the exponential decay helps in this respect, since it ensures that m is
very large. In this sense the preconditioning of severely ill-posed problems is even easier than
the preconditioning of mildly ill-posed problems. Appropriate preconditioning techniques are
often very problem-specific and are still subject of intense research, examples can be found
in [5, 15, 16].
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Chapter 7

Parameter Identification

In the following we discuss parameter identification problems in further detail, in particular
their numerical solution. In the introductory examples of parameter identification we have
observed a particular property of such problems, namely two types of unknowns, the param-
eter a and the state u. Parameter and state are linked via an equation, which we formally
write as

e(u; a) = 0, e : X ×Q→ Z, (7.1)

for Hilbert spaces X, Q, and Z. The equation (7.1), which usually represents a system of
partial differential equations, is called state equation. The solution of the state equation for
given a can be interpreted as the direct problem. In typical examples it is reasonable to
assume that e is continuously Frechet differentiable and ∂e

∂u(u; a) : X → Z is a continuous
linear operator with continuous inverse. Hence, by the implicit function theorem we can
conclude that (7.1) has a unique solution u = u(a). It is therefore possible to introduce a
well-defined operator

Φ : Q→ X, a 7→ u(a) solving (7.1).

Φ is called parameter-to-solution map. The data are related to the state in most examples
via a linear observation operator B : X → Y , such that y = Bu. The observation operator
could either be the identity (distributed measurement), a restriction operator to part of
the domain (partial distributed measurements), a trace operator to boundary values of the
solution (boundary measurements), or a trace operator to final values of a solution in a
time-dependent problem. By employing the parameter-to-solution map, we can also define a
nonlinear operator F := B ◦ Φ : Q → Y and formulate the parameter-identification problem
in a standard way as the nonlinear operator equation

F (a) = y. (7.2)

If the operator F is injective, then the parameter a is identifiable. In the case of noisy
data, one has several possibilities of a least-squares formulation for the problem. The most
frequently used one is the output least-squares formulation

‖F (a)− yδ‖2 → min
a∈Q

(7.3)

This formulation is equivalent to the constrained problem

‖Bu− yδ‖2 → min
(u;a)∈X×Q

subject to e(u; a) = 0. (7.4)
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If we interpret the parameter identification problem as the coupled system

Bu = y, e(u; a) = 0 (7.5)

instead, we could also consider the total least-squares formulation

‖Bu− yδ‖2 + ‖e(u; a)‖2 → min
(u,a)∈X×Q

. (7.6)

The nonlinear operator used in the total least-squares approach is defined on the product
space as F̃ := (B, e) : X ×Q→ Y × Z and it corresponds to the equation

F̃ (u, a) = (Bu, e(u; a)) = (yδ, 0). (7.7)

7.1 Derivatives and the Adjoint Method

For typical numerical solution methods one always needs to compute derivatives of the non-
linear operator F or F̃ and the associated least-squares functionals, respectively. Using the
chain rule and the linearity of the observation operator we obtain that

F ′(a) = B ◦ Φ′(a),

and since e(Φ(a); a) = 0 we have

∂e

∂u
(Φ(a); a)Φ′(a) +

∂e

∂a
(Φ(a); a) = 0.

i.e., since we have assumed that ∂e
∂u is regular,

Φ′(a) = − ∂e
∂u

(Φ(a); a)−1 ∂e

∂a
(Φ(a); a).

Altogether, the derivative of the operator F is given by

F ′(a) = −B ◦ ∂e
∂u

(Φ(a); a)−1 ◦ ∂e
∂a

(Φ(a); a).

Hence, in order to evaluate the directional derivative F ′(a)h, we have to solve the linearized
problem

∂e

∂u
(Φ(a); a)[Φ′(a)h] +

∂e

∂a
(Φ(a); a)h = 0, (7.8)

and then apply the observation operator to the solution. Note that the linearized problem
(7.8) is a system of (linear) differential equations. Consider for example X = H1

0 (Ω), Z =
H−1(Ω) and

e(u; a) := − div (a∇u)− f, B = Id : H1
0 (Ω) → L2(Ω), (7.9)

then the derivatives are given by

∂e

∂u
(u; a)v = − div (a∇v), ∂e

∂a
(u; a)v = − div (h∇u).

Hence, the linearized problem is the solution of the linear partial differential equation

− div (a∇v) = div (h∇u),
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and its solution equals Φ′(a)h = v. Thus, in order to compute a directional derivative, one has
to solve a linear partial differential equation. In order to compute the full Frechet derivative
F ′(a) one has to solve an equation for each h. With the formula for F ′(a) it is easy to compute
the derivative of the output least-squares functional

JO(a) := ‖F (a)− yδ‖2, (7.10)

as

J ′O(a)h = 2〈F (a)− yδ, F ′(a)h〉 = 2〈F ′(a)∗(F (a)− yδ), h〉

= −2〈∂e
∂a

(Φ(a); a)∗(
∂e

∂u
(Φ(a); a)∗)−1B∗(F (a)− yδ), h〉.

Hence,

J ′O(a)h = −2
∂e

∂a
(Φ(a); a)∗(

∂e

∂u
(Φ(a); a)∗)−1B∗(F (a)− yδ).

Using this formula involving the adjoints of the derivatives of e, we can directly compute the
gradient of the functional JO as J ′O(a) = −2 ∂e

∂a(Φ(a); a)∗w, where w is the solution of the
adjoint equation

∂e

∂u
(Φ(a); a)∗w = B∗(F (a)− yδ). (7.11)

In example (7.9) we can compute the adjoint via

〈 ∂e
∂u

(u; a)v, w〉 = −
∫

Ω
div (a∇v) w dx =

∫
Ω
a∇v · ∇w dx

= −
∫

Ω
div (a∇w) v dx = 〈v, ∂e

∂u
(u; a)∗w〉.

Thus, the adjoint equation is the linear partial differential equation

− div (a∇w) = u− yδ. (7.12)

For complicated parameter identification problems, the direct computation of the adjoint
is rather involved. An attractive alternative is a computation via the derivatives of the
Lagrangian

L(u, a, w) := ‖Bu− yδ‖2 + 〈e(u; a), w〉. (7.13)

It is easy to see that

∂L

∂u
(u, a, w) = 2B∗(Bu− yδ) +

∂e

∂u
(u; a)∗w

∂L

∂a
(u, a, w) =

∂e

∂a
(u; a)∗w

∂L

∂w
(u, a, w) = e(u; a).

Thus, for given a ∈ Q, the solution u ∈ X of ∂L
∂w (u, a, w) = 0 equals Φ(a). Let, for given u

and a, w be the solution of ∂L
∂u (u, a, w) = 0, then

∂L

∂a
(u, a, w) =

∂e

∂a
(Φ(a); a)∗w

= −2
∂e

∂a
(Φ(a); a)∗(

∂e

∂u
(Φ(a); a)∗)−1B∗(BΦ(a)− yδ)

= F ′(a)∗(F (a)− yδ).
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Hence, we can compute the derivative of the least-squares functional directly from the La-
grangian by subsequently solving the equations ∂L

∂w = 0, ∂L
∂u = 0 and evaluating ∂L

∂a .
In an analogous way we can compute derivatives of the operator F̃ as

∂F̃

∂u
(u; a) = (B,

∂e

∂u
(u; a)),

∂F̃

∂a
(u; a) = (0,

∂e

∂a
(u; a)).

The derivative of the total least-squares functional

JT (u, a) = ‖F̃ (u, a)− (yδ, 0)‖2 = ‖Bu− yδ‖2 + ‖e(u; a)‖2

is given by

J ′T (u, a)(v, h) = 2〈Bv,Bu− yδ〉+ 2〈 ∂e
∂u

(u, a)v, e(u, a)〉+ 2〈∂e
∂a

(u; a)v, e(u; a)〉.

The terms involved in the computation of the derivative J ′T are again the same as appearing
in the derivative of J ′O .

7.2 Regularization

Under usual assumptions, one has to expect that a parameter identification problem is ill-
posed (and most parameter identification problems are actually ill-posed). Therefore it is a
natural first step to investigate the regularization of parameter identification problems. For
this sake one needs to understand on which variable the regularization should act. From the
viewpoint of (7.2) and (7.3) it seems clear that any regularization method for nonlinear ill-
posed problems can be applied directly, with regularization acting on the only variable a ∈ Q.
For the formulation (7.6) or (7.7) it is not obvious whether one should also incorporate
regularization on u. However, it can be shown that such an additional regularization is not
necessary due to the inherent well-posedness of the problem (respectively equation (7.1)) with
respect to the state u.

Tikhonov Regularization

We start with the investigation of Tikhonov regularization. From (7.3), we arrive at the
regularized problem

‖F (a)− yδ‖2 + α‖a− a∗‖2 → min
a∈Q

(7.14)

or, equivalently,

‖Bu− yδ‖2 + α‖a− a∗‖2 → min
(u;a)∈X×Q

subject to e(u; a) = 0 (7.15)

The condition of weak sequential closedness of the operator F needed for the analysis of
Tikhonov regularization is equivalent to the weak sequential closedness of the parameter-to-
solution map Φ, because the continuous linear observation operator will preserve this property.

The Tikhonov regularization of the total least-squares formulation (7.6) is

‖Bu− yδ‖2 + ‖e(u; a)‖2 + α‖a− a∗‖2 → min
(u;a)∈X×Q

. (7.16)
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The condition of weak sequential closedness of the operator F̃ := (B, e) : X × Q → Y × Z
is equivalent to weak sequential closedness of the equation operator e. A possible advantage
of the output least-squares formulation is a natural way of dealing with perturbations in the
equation. If, instead of e(u; a), a perturbation e(u; a) + f δ with ‖f δ‖ ≤ δ is given, we can
analyze convergence in the same way as for standard regularization.

In order to gain some insight into the structure of the regularized problem, we consider
the example (7.9). For simplicity we consider a−a∗ ∈ H1

0 (Ω) (which is indeed a regularization
for d = 1) with the norm

‖b‖H1
0

:=

√∫
Ω
|∇b|2dt.

The output least-squares formulation is equivalent to∫
Ω(u− yδ)2dt+ α

∫
Ω |∇(a− a∗|2dt→ min

(u;a)∈H1
0 (Ω)×H1

0 (Ω)

subject to − div(a∇u) = f in Ω.

Every global minimizer of the Tikhonov functional is also a saddle-point of the Lagrangian

Lα(u, a, w) =
∫

Ω
(u− yδ)2dt+ α

∫
Ω
|∇(a− a∗|2dt+

∫
Ω
(a∇u · ∇w − fw)dt, (7.17)

where we have used Gauss’ Theorem to convert the state equation to its weak form. Thus,
the optimality condition becomes

0 =
∂Lα

∂a
(u, a, w) = −2α div(∇(a− a∗)) +∇u · ∇w,

0 =
∂Lα

∂u
(u, a, w) = −div(a∇w) + 2(u− yδ),

0 =
∂Lα

∂u
(u, a, w) = −div(a∇u)− f.

Thus, the regularized solution can (at least in principle) be computed as the solution of a
system of partial differential equations.

Total Variation Regularization

In several applications, the unknown parameter can be modeled as a piecewise constant func-
tion, but with unkown function values and unknown discontinuity sets. An example is the
reconstruction of material parameters on domains that consist of a mixture of different mate-
rials (and each material is characterized by a specific scalar value). Under these conditions it
is natural to use total variation regularization for the parameter identification problem, i.e.,
to minimize,

‖F (a)− yδ‖2 + αTV (a) → min
a∈Q⊂BV (Ω)

. (7.18)

As we have seen above, the total variation functional favours piecewise constant solutions and
the discontinuity set of the exact parameter is approximated well by the regularized solution.
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Iterative Regularization by the Landweber Method

The simplest iterative regularization method, namely Landweber iteration, is given in the
abstract setting as

ak+1 = ak − τkF ′(ak)∗(F (ak)− yδ).

In terms of the funcional JO and the associated Lagrangian we can rewrite the iteration as

ak+1 = ak − τkJ ′O(ak) = ak − τk ∂L
∂a

(uk, ak, wk)

for a suitable damping parameter τk > 0, where uk = Φ(ak) is determined as the solution of

∂L
∂w

(uk, ak, wk) = e(uk; ak)

and subsequently wk as the solution of

∂L
∂u

(uk, ak, wk) = 2B∗(Buk − yδ) +
∂e

∂u
(uk; ak)∗wk = 0

Hence, the computation of one iteration step of the Landweber iteration consists of three
parts: First of all, given ak the state equation is solved to compute uk, then the adjoint
equation is solved to compute wk and finally, ∂L

∂a (uk, ak, wk) = ∂e
∂a

(
uk, ak)∗wk is evaluated to

determine the update in the iteration procedure. We again take a closer look at the iteration
procedure for (7.9). The Lagrangian is given by

L(u, a, w) =
∫

Ω
(u− yδ)2dt+

∫
Ω
(a∇u · ∇v − vf) dx

and hence, in order to compute the update we have to solve the partial differential equations

0 =
∂L
∂w

(uk, ak, wk) = − div(ak∇uk)− f

0 =
∂L
∂u

(uk, ak, wk) = − div(ak∇wk) + 2(uk − yδ).

The update formula has to be carried out in the Hilbert space H1
0 (Ω), i.e., in weak form we

have

〈ak+1 − ak, ϕ〉 = −τ
k

2
J ′O(ak)ϕ, ∀ ϕ ∈ H1

0 (Ω).

If we choose the same scalar product as above, then

〈ak+1 − ak, ϕ〉 ==
∫

Ω
∇(ak+1 − ak) · ∇ϕdt = −

∫
Ω

div ∇(ak+1 − ak)dt

Hence, the update involves the solution of another partial differential equation of the form

− div ∇(ak+1 − ak) = −τk∇uk · ∇wk

Note that once the gradient is known, it is also easy to use a quasi-Newton approach such
as BFGS with little extra effort in order to obtain faster convergence.
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7.2.1 Iterative Regularization by the Levenberg-Marquardt Method

The last regularization approach we discuss is the Levenberg-Marquardt method, where the
iterates are computed from

(F ′(ak)∗F ′(ak) + αkI)(ak+1 − ak) = −F ′(ak)∗(F (ak)− yδ),

which is equivalent to the minimization problem

Jk(a) := ‖F (ak)− yδ + F ′(ak)(a− ak)‖2 + αk‖a− ak‖2 → min
a∈Q

This minimization is equivalent to

‖Buk − yδ +Bv‖2 + αk‖a− ak‖2 min
(u,a)∈X×Q

subject to
∂e

∂u
(uk, ak)v +

∂e

∂a
(uk, ak)(a− ak) = 0,

where uk = Φ(ak) The optimality condition for this constrained problem are given by the
system

0 = 2αk(ak+1 − ak) +
∂e

∂a
(uk, ak)∗wk

0 = 2B∗(Buk − yδ +Bvk) +
∂e

∂a
(uk, ak)∗wk

0 =
∂e

∂u
(uk, ak)vk +

∂e

∂a
(uk, ak)(ak+1 − ak)

to be solved for ak+1 ∈ Q, vk ∈ X, wk ∈ Z. Hence, the realization of the Levenberg-
Marquardt method enforces the solution of a linear system of differential equations, which is
close to the linearization of the optimality conditions for Tikhonov regularization.

7.3 Large Scale Problems

We finally discuss the solution of large scale problems such as the examples of electrical
impedance tomography and inverse scattering discussed before. In theory, one assumes to
measure the full Dirichlet-to-Neumann map or the full far-field pattern, but in practice one
clearly can measure only a finite number of evaluations of the maps. E.g., in impedance
tomography, it is reasonable to measure Λa(fj) for j = 1, . . . , N , and N being a very large
number. This means we have to solve N state equations

div(a∇uj) = 0

with boundary values uj = fj . The general form corresponding to such a case is a state
u = (u1, . . . , uN ) with state equation

e(u; a) = (e1(u1; a), . . . , eN (uN ; a)) = 0 (7.19)

and observation operator
Bu = (B1u

1, . . . , BNu
N ). (7.20)
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The derivative of the associated output least-squares functional in this case can be computed
again by the adjoint method, but since uj only appears in the j-th equation we obtain a very
peculiar structure. It is easy to see that

F ′(a)∗(F (a)− yδ) =
N∑

j=1

∂ej
∂a

(uj ; a)∗wj

where the adjoint state is the solution of

∂ej
∂u

(uj ; a)∗wj +B∗j (Bju
j − yδ

j ) = 0.

and the state is just determined from ej(uj ; a) = 0.
The special structure of the derivative can be used to compute gradients with reasonable

memory consumption. Note that if N is large and the discretization is reasonably fine, the
degrees of freedom for the state variables uj and the adjoint states wj may produce a very
high number of unknowns to be saved.Therefore, it seems advantageous not to compute and
store all of them at the same time, but to compute them in a sequential way (or separately
distributed on several processors). Such a computation is easy from the above form of the
gradient, we start with g0 := 0 and then use the recursion

gj := gj−1 +
∂ej
∂a

(uj ; a)∗wj , j = 1, . . . , N

with states uj and adjoint states wj as above. In this way we only need the memory for u1

and w1, which can later be used for uj and wj subsequently.
With this way of computing the gradient it is straight-forward to realize the Landweber

iteration, with the setting ak,0 = ak we compute

ak,j = ak,j−1 − τ j ∂ej
∂a

(uk,j ; ak)∗wk,j , j = 1, . . . , N

to obtain the new iterate ak+1 = ak,N . Here uk,j and wk,j are the solutions of

ej(uk,j ; ak) = 0,
∂ej
∂u

(uk,j ; ak)∗wk,j +B∗j (Bju
k,j − yδ

j ) = 0.

Instead of the additive splitting in the computation of the update ak+1 one could also use a
multiplicative splitting, i.e.,

ak,j = ak,j−1 − τ j ∂ej
∂a

(uj ; ak,j−1)∗wj , j = 1, . . . , N

now with uk,j and wk,j being the solutions of

e(uk,j ; ak,j−1) = 0,
∂ej
∂u

(uk,j ; ak,j−1)∗wk,j +B∗j (Bju
k,j − yδ

j ) = 0.

This approach is called Landweber-Kaczmarz method (cf. [18]), for some practical problems
one observes even better convergence properties for this method than for the simple Landwe-
ber iteration. We mention that the relation between Landweber and Landweber-Kaczmarz
is of the same type as between Jacobi and Gauss-Seidel iteration for linear systems. The
Kaczmarz-type approach also offers the possibility to perform Newton-type methods with
reasonable memory consumption, for example one can perform a Levenberg-Marquardt type
approach by freezing uk,m for m 6= j and coupling the iterations in a cyclic way (cf. [6]).
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Chapter 8

Shape Reconstruction Problems

In this section we shall deal with the solution of parameter identification problems, where the
unknown variable is a shape or geometry in Rd. Shapes can be considered as sets with regular
boundary and therefore we may perform standard set operations like unions or intersections.
However, there is no way to make a class of shapes into a linear space in general, but only
with severe restrictions. An obvious way of solving a problem in a linear space instead of a
problem on a class of shapes is to use parametrization (e.g. as piecewise graphs, by polar
coordinates, or locally around a given shape). Since the parametrization is usually represented
by a function on a fixed set, one can just minimize over all such functions in an appropriate
Hilbert or Banach space. This allows to use standard methods as discussed above, but strongly
limits the class of admissible shapes.

8.1 Shape Sensitivity Analysis

The main idea of shape sensitivity analysis is to consider ”natural deformations” of shapes
and inspect the corresponding variations of the objective functional. The general setup in the
following is the minimization of

J(Ω) → min
Ω∈K

,

where K is a suitable class of compact subsets of Rd, with regular boundary.
There are two different ways of deriving shape sensitivities (both leading to the same

result), namely via ”direct deformations” or via the ”speed method”. We shall follow the
latter, since this approach fits very well to the level set method, which we will discuss below
as a possible solution method for shape optimization problems.

Before considering shapes we illustrate the idea of the speed method when applied to
Gateaux-derivatives in linear spaces. In order to compute the directional derivative of a
functional J : U → R, we have so far considered the variation between the values of J at
u ∈ U and at its local deformation u+ tv. Alternatively, we could define u(t) = u+ tv by

du

dt
= v, u(0) = u,

which is an initial value problem for an ordinary differential equation in U . Using the chain
rule, we can then compute

d

dt
J(u(t)) = J ′(u(t))

du

dt
= J ′(u(t))v.

67



In particular,
d

dt
J(u(t))

∣∣∣
t=0

= J ′(u)v,

i.e., we obtain the directional derivative at u by evaluating the time derivative of J(u(t)) at
time t = 0.

In a similar way, we can define derivatives of shapes. Let V : Rd → Rd be a given velocity
field and define x(t) via

dx

dt
(t) = V (x(t)), x(0) = x, (8.1)

for each x ∈ Rd. We can then define the shape sensitivity

dJ(Ω;V ) :=
(
d

dt
J(Ω(t))

) ∣∣∣
t=0

,

where
Ω(t) = {x(t) | x(0) ∈ Ω}.

Note that the main difference to derivatives in linear spaces is that the deformation defined
by the ODE (8.1) is nonlinear, since V depends on x itself.

We start with some examples. Let g : Rd → R be a continuously differentiable function
and define

J(Ω) :=
∫

Ω
g(x) dx.

Then, by change of variables

J(Ω(t)) =
∫

Ω(t)
g(x) dx

=
∫

Ω
g(xy(t))|My| dy

where xy(t) is defined by

dxy

dt
(t) = V (xy, t), xy(0) = y ∈ Ω

and My = det ∂xy

∂y . Hence, the time derivative can be computed as

d

dt
J(Ω(t)) =

∫
Ω
v∇g(xy)

∂xy

∂t
|My| dy +

∫
Ω
g(xy)

∂My

∂t My

|My|
dy.

For the derivative of the determinant we have

∂My

∂t
=

∂

∂t

 ∑
(i1,...id)∈Π(d)

(−1)i1+...+id

d∏
k=1

∂(xy)k

∂yik


=

 ∑
(ik)∈Π(d)

(−1)
∑

ik
∑

j

∂2(xy)j

∂yij∂t

d∏
l 6=j

∂(xy)l

∂yil


=

∑
(ik)∈Π(d)

(−1)
∑

ik
∑

j

∂Vj

∂yij

d∏
l 6=j

∂(xy)l

∂yil
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For t = 0, we have ∂xy

∂y = I,My = 1, and this implies

∂My

∂t
=
∑

j

∂Vj

∂yj
= div(V )

As a consequence, we have

d

dt
J(Ω(t))

∣∣∣
t=0

=
∫

Ω

(
∇g(xy)

∂xy

∂t

) ∣∣∣
t=0

dy +
∫

Ω

(
g(xy) div V (xy)

)∣∣∣
t=0

dy

=
∫

Ω

(
∇g(y)V (y) + g(y) div V (y)

)
dy

=
∫

Ω
div
(
g(y)V (y)

)
dy

=
∫

∂Ω
g(y)V (y).n ds,

where n denotes the unit outer normal on ∂Ω. I.e., the shape sensitivity is a linear functional
fo V concentrated on ∂Ω. Another key oberservation is that the shape sensitivity J ′(Ω)V :=
d
dtJ(Ω(t))|t=0 depends on V.n|∂Ω only, while it is completely independent of the values for V
inside Ω and of its tangential component. Consequently, we may directly consider variations
of ∂Ω with a velocity V = Vn.n, where Vn is a scalar speed function. The shape sensitivity
then becomes

J ′(Ω)Vn =
∫

∂Ω
g.Vn ds.

The statement that the shape sensitivity is a linear functional of V.n only holds for very
general classes of objective functionals, it is usually known as the ”Hadamard-Zolésio Struc-
ture Theorem”. The independence of the shape sensitivity on tangential components is clear
from geometric intuition, since those components correspond to a change of parametrization
only. The independence on values of V in the interior of Ω seems obvious, too, since they do
not change the domain of integration in the objective functional.

In most typical applications of shape optimization, the objective functional depends on a
state variable u that satisfies a partial differential equation related to Ω. This relation can
arise in several ways, e.g.

1. u solves a partial differential equation in a domain Ω ⊂⊂ D, and ∂Ω is the discontinuity
set for some of the parameters. A simple example is the optimal design of two conductive
materials, where the conductivity a takes two different values, i.e.,

a(x) =
{
a1 x ∈ Ω
a2 x ∈ D\Ω.

A typical shape optimization problem consists in the optimization of some functional
J(Ω) = J̃(uΩ), where uΩ solves

−div (a∇uΩ) = 0.

2. u solves a partial differential equation in Ω and satisfies a boundary condition on ∂Ω.

3. u solves a partial differential equation on the surface of ∂Ω.
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The general structure fo such problems is

J(Ω) = J̃(uΩ,Ω) → min
Ω

subject to
e(uΩ,Ω) = 0,

where e denotes the partial differential equation. In this case we have to use the chain rule
and an implicit function theorem to compute the shape sensitivity. Let Ω(t) be as above and
let u(t) denote the solution of

e(u(t),Ω(t)) = 0

with Ω(t) given. Then the shape sensitivity of J is given by

J ′(Ω)V =
d

dt
J(Ω(t))

∣∣∣
t=0

=
d

dt

(
J̃(u(t),Ω(t))

)∣∣∣
t=0

=
∂J̃

∂u
(u(0),Ω(0))u′(0) +

∂J̃

∂Ω
(u(0),Ω(0))V.

Here ∂J̃
∂u denotes the (Gateaux-)derivative of J̃ with respect to u (for Ω fixed) and ∂J̃

∂Ω denotes
the shape sensitivity of J̃ with respect to Ω (for u fixed). Due to the chain rule we obtain for
u′(0) = d

dtu(t)|t=0 the equation

0 =
d

dt
e(u(t),Ω(t)) =

∂e

∂u
(u(t),Ω(t))u′(t) +

∂e

∂Ω
(u(t),Ω(t))V.

Here, ∂e
∂Ω(u,Ω(t))V = d

dte(u,Ω(t)), for u fixed, i.e., it means a generalization of shape sen-
sitivities from functionals to operators. The function u′ = u′(0) is usually called ”shape
derivative”.

We shall discuss the computation of shape derivatives for two examples. First, consider
the maximization of current for a conductive material. The objective is given by

J(Ω) = −
∫

Γ
a
∂uΩ

∂n
ds,

where Γ ⊂ D,Ω ⊂⊂ D and u solves

−div (a∇u) = f, in D

with homogeneous boundary values u = 0 on ∂D. Here, f is a given function and a is defined
as above, i.e.

a(x) =
{
a1 x ∈ Ω
a2 x ∈ D\Ω.

The shape sensitivity is then given by (note that Ω ⊂⊂ D and thus a = a2 on ∂D)

J ′(Ω)V = −
∫

Γ
a2
∂u′

∂n
ds,
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where u′ is the shape derivative corresponding to the above state equation. In order to
compute the shape derivative u′, we consider the state equation in its weak form, i.e. we seek
u ∈ H1

0 (D) satisfying ∫
D
a∇u∇v dx =

∫
D
fv dx ∀v ∈ H1

0 (D)

We can write the left-hand side as

< v, e(u,Ω) >=
∫

D
a2∇u∇v dx+

∫
Ω
(a1 − a2)∇u∇v dx.

The derivative with respect to u is given by

∂e

∂u
(u,Ω)u′ =

∫
D
a2∇u′∇v dx+

∫
Ω
(a1 − a2)∇u′∇v dx =

∫
D
a∇u′∇v dx.

In order to compute the derivative with respect to Ω, we can use the above results on shape
sensitivities for the functional

∫
Ω g dx, now with g = (a1 − a2)∇u.∇v. Thus,

∂e

∂Ω
(u,Ω)V =

∫
∂Ω

(
(a1 − a2)∇u.∇v

)
V.n ds ∀v ∈ H1

0 (D).

As for standard optimal design problems, we can also employ the adjoint method to compute
the shape sensitivity. For this sake, let u∗ ∈ H1

0 (D) be the unique weak solution of∫
Γ
a2
∂w

∂n
dx =

∫
D
a∇w∇u∗ dx ∀w ∈ H1

0 (D).

Then we obtain

−
∫

Γ
a2
∂u′

∂n
ds = −

∫
D
a∇u′∇u∗ dx =

∫
∂Ω

(
(a1 − a2)∇u.∇u∗

)
V.n ds,

i.e., the shape sensitivity is again a functional of V.n concentrated on ∂Ω.
Our second example is the shape derivative for a state equation with Dirichlet boundary

condition, i.e.

∆u = f in Ω
u = 0 on ∂Ω.

It is easy to show that
∆u′ = 0 in Ω.

For the boundary condition, let y ∈ ∂Ω and let dx
dt (t) = V (x(t)), x(0) = y. Then u(x(t)) = 0

for all t and thus
d

dt
u(x(t)) = u′(x(t)) +∇u(x(t)).V (x(t)) = 0.

Hence, u′ satisfies
u′ = −∇u.V on ∂Ω.

We finally notice that second derivatives, so-called shape Hessians can be computed by
applying the same technique as for shape sensitivities to J ′(Ω)V , now with a second velocity
W .
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8.2 Level Set Methods

Level set methods recently received growing attention in shape optimization due to their
capabilities of solving shape optimization problems without parametrizations. The main idea
of the level set method is to represent a shape as

Ω(t) = {φ(., t) < 0},

where φ : Rd×R+ → R is a suitable continuous function, ideally the signed distance function
to ∂Ω (i.e., equal to the distance between x and ∂Ω if x ∈ Rd\Ω, and equal to the negative
distance if x ∈ Ω). For an appropriate φ we have that

∂Ω(t) = {φ(., t) = 0}.

Now consider the motion of points in Ω(t) by dx
dt = V (x). Then we obtain from the chain rule

for x(t) ∈ ∂Ω(t)

0 =
d

dt
φ(x(t), t) =

∂φ

∂t
+ V.∇φ = 0,

i.e., φ can be determined by solving a transport equation. As we have seen above, the most
interesting case is the one of a motion in normal direction on ∂Ω(t), i.e., V = Vn.n. In order
to use such a velocity in the level set method, we have to express the normal in terms of the
level set function φ. Assume that {x̃(s, t)|s ∈ (−ε, ε)} is an arc on ∂Ω(t), locally parametrized
by s around x(t) = x̃(0, t). Then

0 =
d

ds
φ(x̃(s, t), t) = ∇φ(x̃(s, t), t)

∂x̃

∂s
.

Since ∂x̃
∂s can be any tangential direction, we obtain that ∇φ is a normal direction, and one

obtains the unit normal as
n(s, t) =

∇φ
|∇φ|

(x̃(s, t), t).

Using these formulas together with the transport equation for φ, we obtain the Hamilton-
Jacobi equation

∂φ

∂t
+ Vn|∇φ| = 0 (8.2)

for φ. One can show that the motion of Ω(t) is determined by

Ω(t) = {φ(., t) < 0}

if φ is a solution of (8.2) in Rd ×R+ where Vn is an arbitrary extension from {φ(., 0) < 0} to
Rd.

For further details and applications of the level set method we refer to the monograph by
Osher and Fedkiw.

8.3 Computing Shape Sensitivities by Level Set Methods

Using the level set method, we can formally compute shape sensitivities in a simple way.
Consider again the functional

J(Ω) =
∫

Ω
g(x) dx
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and let ∂Ω(t) move with normal speed Vn. Then we obtain

J(Ω(t)) =
∫
{φ(.,t)<0}

g(x) dx

=
∫

Rd

H(−φ(x, t))g(x) dx,

where H denotes the Heaviside function

H(p) =
{

1 if p > 0
0 else.

Since the derivative of the Heaviside function is the Dirac-delta-distribution, we obtain for-
mally

d

dt
J(Ω(t)) =

∫
Rd

−H ′(−φ(x, t))
∂φ

∂t
(x, t) g(x) dx

=
∫

Rd

δ(φ(x, t))|∇φ(x, t)| Vn g(x) dx

Now we apply the co-area formula, i.e.∫
Rd

A(φ(x)) B(x) |∇φ(x)| dx =
∫

R
A(p)

∫
{φ=p}

B(x) ds(x) dp.

This implies

d

dt
J(Ω(t))

∣∣∣
t=0

=
∫

Rd

δ(φ(x, 0)) g(x) Vn(x) |∇φ(x, 0)| dx

=
∫

R
δ(p)

∫
{φ=p}

g(x) Vn(x) ds dp

=
∫
{φ=0}

g(x) Vn(x) ds(x)

=
∫

∂Ω
g Vn ds,

i.e., we recover the above formula for the shape sensitivity.
In a similar way we can compute the shape sensitivity of the functional

J(Ω) =
∫

∂Ω
g ds

For this sake we use again the δ-distribution and the coarea formula to deduce

J(Ω(t)) =
∫
{φ(.,t)=0}

g(x) ds(x)

=
∫

R
δ(p)

∫
{φ(.,t)=p}

g(x) ds(x) dp

=
∫

Rd

δ(φ(x, t)) g(x) |∇φ(x, t)| dx
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Thus, we can try to compute the time derivative as

d

dt
J(Ω(t)) =

∫
Rd

g

(
δ′(φ)|∇φ|φt + δ(φ)

∇φ∇φt

|∇φ|

)
dx

=
∫

Rd

g

(
∇δ(φ)∇φ
|∇φ|

φt + δ(φ)
∇φ∇φt

|∇φ|

)
dx

=
∫

Rd

δ(φ)
(
−div

(
g
∇φ
|∇φ|

φt

)
+ g

∇φ∇φt

|∇φ|

)
dx

= −
∫

Rd

δ(φ)
(
∇g.∇φ
|∇φ|

.φt + g div

(
∇φ
|∇φ|

)
φt

)
dx

=
∫

Rd

δ(φ)|∇φ| Vn

(
∇g ∇φ

|∇φ|
+ g div

(
∇φ
|∇φ|

))
dx

=
∫
{φ=0}

Vn

(
∇g ∇φ

|∇φ|
+ g div

(
∇φ
|∇φ|

))
ds

One observes that on ∂Ω = {φ = 0} we have

u =
∇φ
|∇φ|

, κ = div n = div

(
∇φ
|∇φ|

)
,

where n is the unit normal and κ is the mean curvature. Thus,

J ′(Ω)Vn =
∫

Γ
Vn

(
∂g

∂n
+ g κ

)
ds.

We finally notice that the above strategy of removing the term δ′(φ) by rewriting

δ′(φ)|∇φ| = ∇δ(φ)
∇φ
|∇φ|

and applying Gauss’ Theorem can be used for general functionals (e.g. for second derivatives
of the functional J above). In this way, we always obtain a term of the form

−δ(φ) div
(
∇φ
|∇φ|

)
,

i.e., the mean curvature on {φ = 0} = ∂Ω. In particular, we can rewrite all derivatives as
surface integrals on ∂Ω, involving only natural geometric quantities like the normal n or the
curvature κ, its normal derivative ∂κ

∂n , etc. It is a good advice to check all quantities that one
obtains by computing shape sensitivities in this way with respect to their geometric meaning.
If some terms do not have a geometric interpretation, then most likely the calculation was
wrong.

8.4 Numerical Solution

In order to obtain computational methods for shape optimization problems we can again
employ the level set method. In principle, we can apply any of the optimization methods
discussed in chapter 4, once we know how to compute derivatives. The major difference is the
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way we update the design variable. In the setting of chapter 4, we have computed a search
direction s to obtain

uk+1 = uj + τks.

Obviously, we cannot use the same strategy in shape optimization, since a formula like

Ωk+1 = Ωk + τks

does not make sense for shapes Ωk. However, there is a natural update offered by the speed
method. First we notice that the update for a design variable u in a Hilbert space can be
rewritten as

uk+1 = u(τk),
du

dt
= s, u(0) = uk.

As in the context of shape derivatives, the corresponding speed method for shapes gives

Ωk+1 =
{
x(tk)

∣∣∣ dx
dt

= s, x(0) ∈ Ωk

}
.

Since the motion depends only on the normal velocity on ∂Ω, we can define the update also
via the level set method as

Ωk+1 = {φ(., τk) < 0}
∂φ

∂t
+ sn|∇φ| = 0 in (0, τk)

{φ(., 0} = Ωk,

where sn is the normal component of the update s. Hence, the iterative method is charac-
terized by choosing a normal update. Below, we shall detail some possible ways for choosing
this update.

We start with a gradient-type method. One observes that for optimization in Hilbert
spaces, the gradient method is characterized by choosing the update s via

< s, v >= −J ′(u)v ∀v ∈ U .

We can now write an analogous formula for the update sn, namely

< sn, Vn >= −J ′(Ω)Vn ∀Vn ∈ U ,

where U is a suitable Hilbert space for which we have several possibilities. We start with the
simple choice U = L2(∂Ω), i.e.,

< Sn, Vn >=
∫

∂Ω
SnVn ds.

As we have seen above, one can usually write the shape sensitivity in the form

J ′(Ω)Vn =
∫

∂Ω
h.Vn ds

(with h = g for J(Ω) =
∫
Ω g dx, and h = ∂g

∂n + gκ for J(Ω) =
∫
∂Ω g ds). Thus, the equation

for Sn becomes∫
∂Ω
SnVn ds =< Sn, Vn > = −J ′(Ω)Vn

= −
∫

∂Ω
h Vn ds ∀Vn ∈ L2(∂Ω)
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which is equivalent to choosing Sn = −h.
Another interesting Hilbert space is H1(∂Ω). The scalar product in this space is given by

< Sn, Vn > =
∫

∂Ω
(∇sSn∇s Vn + SnVn) ds

=
∫

∂Ω
Vn(−∆sSn + Sn) ds,

where ∆s denotes the gradient with respect to the surface variable S on ∂Ω and ∆s is the
surface Laplacian. Consequently, the update Sn can be computed by solving the Laplace-
Beltrami equation

−∆sSn − Sn = h

on ∂Ω (note that we do not need a boundary condition, since the boundary of the surface ∂Ω
is empty).

In general, we can write a Hilbert space scalar product as

< Sn, Vn >=
∫

∂Ω
(ASn)Vn ds,

where A is a positive definite operator. Thus, we may choose any search direction of the form

Sn = −A−1h,

where A is a positive definite operator. Since

J ′(Ω)Sn = − < Sn, Sn >= −‖Sn‖2,

this yields a descent direction and we can use line search techniques to find a reasonable τk.
In a similar way to gradient methods we can derive Newton-type methods, for which Sn

is choosen solving
J ′′(Ω)(Sn, Vn) = −J ′(Ω)Vn, ∀Vn ∈ U .
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