Übungen zur Vorlesung Numerik

Übungsblatt 4, Abgabe: Dienstag, 12.05.09, 12.00 Uhr

Aufgabe 12: (4 Punkte)

Zeigen Sie, dass die Elementaroperationen $\hat{-}$ und $\hat{\cdot}$ in Gleitkommaarithmetik nicht assoziativ sind.

Aufgabe 13: (6 Punkte)

Die p-Normen auf dem \mathbb{R}^n sind für $1 \leq p < \infty$ definiert durch

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},$$

und für $p = \infty$ durch

$$||x||_{\infty} := \max_{i=1,\dots,n} |x_i|.$$

Zeigen Sie für die zugeordneten Matrixnormen

$$||A||_p := \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$

für $A \in \mathbb{R}^{n \times n}$ die folgenden Aussagen:

a)
$$||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^n |a_{ij}|$$

b)
$$||A||_{\infty} = \max_{i=1,\dots,n} \sum_{j=1}^{n} |a_{ij}|$$

c)
$$||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$$

Aufgabe 14: (3 Punkte)

Berechnen Sie die Normen $\|\cdot\|_1$, $\|\cdot\|_{\infty}$ für die Matrix

$$A = \left(\begin{array}{ccc} 0.7 & 0.5 & 0.8 \\ 0 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 \end{array}\right),$$

und geben Sie eine Abschätzung für die Norm $\|\cdot\|_2$ an.

Aufgabe 15: (Programmieraufgabe, Abgabe: 19.05.2009, 12.00 Uhr)

Programmieren Sie das Cholesky-Verfahren zur Lösung eines linearen Gleichungssystems Ax = b in den drei Schritten:

$$A = LL^T$$
 $Lc = b$, $L^Tx = c$.

a.) Testen Sie das Programm für das Gleichungssystem Bx = b aus Aufgabe 9.

b.) Gegeben seien eine stetige Funktion $f:[a,b] \to \mathbb{R}, \ a < b \in \mathbb{R}$, und Werte $y_a, y_b \in \mathbb{R}$. Wir erhalten eine Diskretisierung des Intervalls [a, b] durch

$$a = t_0 < t_1 < t_2 < \dots < t_n < t_{n+1} = b$$
, $t_i = a + ih$, $i = 0, 1, \dots, n, n+1$,

mit der Schrittweite h = (b - a)/(n + 1).

Lösen Sie mit Hilfe des Cholesky-Verfahrens das Gleichungssystem

$$\begin{pmatrix} 2 & -1 & & & 0 \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & -1 & 2 & -1 \\ 0 & & & -1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{pmatrix} = \begin{pmatrix} -h^2 f(t_1) + y_a \\ -h^2 f(t_2) \\ \vdots \\ -h^2 f(t_{n-1}) \\ -h^2 f(t_n) + y_b \end{pmatrix}$$

auf dem Intervall [a, b] = [0, 10] für

(1)
$$f(t) \equiv 1$$
, $y_a = 0$, $y_b = 50$ mit $n = 9$,

(1)
$$f(t) \equiv 1$$
, $y_a = 0$, $y_b = 50$ mit $n = 9$,
(2) $f(t) = 3t^2$, $y_a = 0$, $y_b = 2500$ mit $n = 9, 19, 49, 99$.