Next: About this document
Up: Numerical Methods in Tomography
Previous: Outlook
References
- 1
- M. Abramowitz and I.A. Stegun (1970), Handbook of
Mathematical Functions. Dover.
- 2
- Y. Censor (1981),`Row-action methods for huge and sparce
systems and their applications', SIAM Review 23, 444-466.
- 3
- Y. Censor, P.B. Eggermont and D. Gordon (1983),
`Strong underrelaxation in Karczmarz's method for inconsistent
systems', Numer. Math. 41, 83-92.
- 4
- Y. Censor and S.A. Zenios (1997), Parallel Optimization.
Oxford University Press.
- 5
- L.T. Chang and G.T. Herman (1980), `A scientific study of filter
selection for a fan-beam convolution algorithm`, SIAM J. Appl.
Math. 39, 83-105.
- 6
- C.H. Chapman and P.W. Cary (1986), `The circular harmonic Radon
transform', Inverse Problems 2, 23-49.
- 7
- J.G. Colsher (1980), `Fully three-diemnsional emission
tomography', Phys. Med. Biol. 25, 103-115.
- 8
- A.M. Cormack (1963), `Representation of a function by
its line integrals, with some radiological applications I',
J. Appl. Physics 34, 2722-2727.
- 9
- A.M. Cormack (1964), `Representation of a function by
its line integrals, with some radiological applications II',
J. Appl. Physics 35, 195-207.
- 10
- S.R. Deans (1983), The Radon Transform and some of its Applications.
Wiley.
- 11
- M. Defrise, D.W. Townsend and R. Clack (1989),
`Three-dimensional image reconstruction from complete projections',
Phys. Med. Biol. 34, 573-587.
- 12
- M. Defrise and R. Clack (1995), `A Cone-Beam Reconstruction
Algorithm Using Shift-Variant Filtering and Cone-Beam
Backprojection',
IEEE Transactions on Medical Imaging 13, 186-195.
- 13
- A.P. Dempster, N.M. Laird and D.B. Rubin (1977), `Maximum
likelihood from incomplete data
via the EM algorithm', J.R. Statist. Soc. B 39, 1-38.
- 14
- P. Edholm and G.T. Herman (1987), `Linograms in image
reconstruction from projections', IEEE Trans. Med. Imag.
6, 301-307.
- 15
- A. Faridani, D.V. Finch, E.L. Ritman and
K.T. Smith (1997), `Local tomography II', SIAM J. Appl. Math.
57, 1095-1127.
- 16
- J. Frank (ed.) (1992), Electron Tomography. Plenum Press.
- 17
- I.M. Gelfand and A.B. Goncharov (1987),
`Recovery of a compactly supported function starting from its
integrals over lines intersecting a given set of points in space',
Doklady 290 (1986), English Translation in Soviet Math. Dokl.
34, 373-376.
- 18
- I.M. Gelfand and A.B. Goncharov (1990), `Spatial rotational
alignment of identical particles given their projections: Theory and
practice', Translation of Mathematical Monographs 81, 97-122.
- 19
- R. Gordon, R. Bender, G.T. Herman (1970), `Algebra
reconstruction techniques (ART) for three-dimensional electron
microscopy and X-ray photography', J. Theor. Biol. 29,
471-481.
- 20
- P. Grangeat (1991), `Mathematical framework
of cone-beam reconstruction
via the first derivative of the Radon transform', in:
Herman, G.T. - Louis, A.K. - Natterer, F. (eds.): Lecture Notes
in Mathematics 1497, 66-97.
- 21
- P.J. Green (1990), `Baysian reconstruction from emission tomography
data using a modified EM algorithm', IEEE Trans. Med. Imag. 9,
84-93.
- 22
- C. Hamaker and D.C. Solmon (1978), `The angles between the null
spaces of X-rays', J. Math. Anal. Appl. 62, 1-23.
- 23
- E. W. Hansen (1981), `Circular harmonic image reconstruction',
Applied Optics 20, 2266-2274.
- 24
- W.G. Hawkins and H.H. Barrett (1986), `A numerically stable
circular harmonic reconstruction algorithm',
SIAM J. Numer. Anal. 23, 873-890.
- 25
- G.T. Herman (1980), Image Reconstruction from Projection.
The Fundamentals of Computerized Tomography. Academic Press.
- 26
- G.T. Herman and L. Meyer (1993), `Algebraic reconstruction
techniques can be made computationally efficient',
IEEE Trans. Med. Imag. 12, 600-609.
- 27
- H.M. Hudson, B.F. Hutton and R. Larkin (1992), `Accelerated
EM reconstruction using ordered subsets', J. Nucl. Med.
33, 960-968.
- 28
- A.J. Jerry (1977), `The Shannon sampling theorem-its various
extensions and applications: a tutorial review',
Proc. IEEE 65, 1565-1596.
- 29
- S. Kaczmarz (1937), `Angenäherte Auflösung von
Systemen linearer Gleichungen', Bulletin de l'Académie
Polonaise des Sciences et des Lettres A35, 355-357.
- 30
- A.C. Kak and M. Slaney (1987), Principles of
Computerized Tomography Imaging.
IEEE Press, New York.
- 31
- M. Kaveh - Soumekh, M. (1987), Computer assisted
diffraction tomography,
in: Image Recovery: Theory and Application, H. Stark (ed.),
Academic Press.
- 32
- H. Kruse (1989), `Resolution of reconstruction methods in computerized
tomography', SIAM J. Sci. Stat. Comput. 10, 447-474.
- 33
- E. Levitan and G.T. Herman (1987), `A maximum a
posteriori probability
expection maximation algorithm for image reconstruction
in emission tomography',
IEEE Trans. Med. Imag. 6, 185-192.
- 34
- R.M. Lewitt (1992), `Alternatives to voxels for image representations in
iterative reconstruction algorithms', Phys. Med. Biol. 37,
705-716.
- 35
- A.K. Louis (1980), `Picture reconstruction from projections in
restricted range', Math. Meth. Appl. Sci. 2, 109-220.
- 36
- R. Marabini, G.T. Herman and J.M. Carazo (1998),
`Fully Three-dimensional reconstruction in electron microscopy',
in: Borgers, C. - Natterer, F. (eds.): Computational
Radiology and Imaging: Therapy and Diagnostics, IMA Volumes in
Mathematics and its Applications 110, Springer 1998.
- 37
- R.B. Marr, C.N. Chen and P.C. Lauterbur (1981), `On
two approaches to 3D reconstruction in NMR zeugmatography',
in: Herman, G.T.
and Natterer, F. (eds.): Mathematical Aspects of Computerized
Tomography, Proceedings, Oberwolfach 1980, Springer.
- 38
- F. Natterer (1986), The Mathematics of
Computerized Tomography.
John Wiley & Sons and B.G. Teubner.
- 39
- F. Natterer (1993), `Sampling in fan beam tomography',
SIAM J. Appl. Math. 53, 358-380.
- 40
- F. Natterer and A. Faridani (1990), `Basic algorithms
in tomography',
in: Grünbaum, F.A. et al. (eds.): Signal Processing Part II:
Control Theory and Applications, 321-334. Springer.
- 41
- S. Nilsson (1997), `Application of fast backprojection techniques
for some inverse problems of integral geometry',
Linköping Studies in Science and Technology.
Dissertation, No. 499. Department of Mathematics, Linköping
University, Linköping Sweden.
- 42
- H.J. Nussbaumer (1982), Fast Fourier Transform and Convolution
Algorithm. Springer.
- 43
- S.S. Orlov (1976), `Theory of three dimensional reconstruction II.
The recovery operator', Sov. Phys. Crystallogr. 20, 429-433.
- 44
- J.D. O'Sullivan (1985), `A fast sinc function
gridding algorithm for Fourier inversion in computer
tomography', IEEE Trans. Med. Imag. 4, 200-207.
- 45
- A.R. De Pierro (1990), `Multiplicative interative
methods in computed tomography',
in: Herman, G.T. - Louis, A.K. - Natterer, F. (eds.),
Mathematical
Methods in Tomography, 167-186, Springer.
- 46
- J. Radon (1917), `Über die Bestimmung von Funktionen
durch ihre Integralwerte längs gewisser Mannigfaltigkeiten',
Berichte Sächsische Akademie der Wissenschaften,
Math.-Phys. Kl., 69, 262-267, Leipzig.
- 47
- A. Ramm and A. Katsevich (1996), The Radon Transform and
Local Tomography. CRC Press.
- 48
- H. Schomberg and J. Timmer (1995), `The gridding
method for image reconstruction bx Fourier transformation',
IEEE Trans. Med. Imag. 14, (596-607).
- 49
- L.A. Shepp and B.F. Logan (1974), `The Fourier
reconstruction of a head section',
IEEE Trans. Trans. Nucl. Sci. NS-21, 21-43.
- 50
- L.A. Shepp and Y. Vardi (1982), `Maximum
likelihood reconstruction for emission tomography',
IEEE Trans. Med. Imag. 1, 113-122.
- 51
- B. Setzepfand (1992), `ESNM: Ein rauschunterdrückendes
EM-Verfahren für die
Emissionstomographie'. Dissertation, Fachbereich Mathematik,
Universität Münster.
- 52
- H. Sielschott and W. Derichs (1995), `Use of collocation
methods under inclusion of a priori information in acoustic pyrometry',
Proc. European Concerted Action on Process Tomography,
Bergen, Norway, 110-117.
- 53
- B.W. Silverman, M.C. Jones, D.W. Nychka and
J.D. Wilson (1990), `A smoothed EM approach to indirect estimation
problems, with particular reference to stereology and emission
tomography', J. R. Statist. Soc. B 52, 271-324.
- 54
- H.K. Tuy (1983), `An inversion formula for cone-beam reconstruction',
SIAM J. Appl. Math. 43, 546-552.
- 55
- A. Welch, R. Clack, F. Natterer and G.T. Gullberg (1997),
`Towards accurate attenuation correction in SPECT', IEEE Trans.
Med. Imag. 16, 532-541.
- 56
- K. Wuschke (1990), `Die Rekonstruktion von Orientierungen aus
Projektionen'. Diplomarbeit, Institut für Numerische und
instrumentelle Mathematik, Universität Münster.
Frank Wuebbeling
Thu Sep 10 10:51:17 MET DST 1998