Next: About this document
Up: Algorithms in Tomography
Previous: Algorithm for more general
- 1
- Aben, H.K.: Integrated Photoelasticity, Valgus,
Talin 1975 (Russian).
- 2
- Allesandrini, G.: Stable Determination of
Conductivity by Boundary Mesurements, Appl. Analysis,
27, 153-172, (1988).
- 3
- Anikonov, D.S. - Prokhorov, I.V. - Kovtanyuk,
E.E.:
Investigation of Scattering and Absorbing Media by the Methods of
X-ray Tomography, J. Inv. Ill-Posed Problems, 1,
259-281; (1993).
- 4
- Anikonov, D.S.: Uniqueness of Simultaneous Determination
of two Coefficients of the Transport Equation, Soviet Math.
Dokl. 30, 149-151, (1984).
- 5
- Arridge, S.R. - Van der Zee, P. - Cope,
M. - Delpy,
D.T.:
Reconstruction Methods for Infrared Absorption Imaging, Poc.
SPIE 1431, 204-215, (1991).
- 6
- Barrett, H.H. - Swindell, S.:
Radiological Imaging, Vol. I, II,
Academic Press 1981.
- 7
- Bondarenko, A.- Antyufeev, V.: X-Ray
Tomography in Scattering Media, Institute of Mathematics,
Novosibirsk, Russia (1990).
- 8
- Bronnikov, A.V.: Degration Transform in Tomography,
Pattern Recognition Letters 15, 527-592, (1994).
- 9
- Bui, H.D.: Inverse Problems in the Mechanics of Materials.
CRC Press 1994.
- 10
- Censor, Y.: Finite Series-Expansion Reconstruction
Methods, Proc. IEEE 71, 409-419, (1983).
- 11
- Defrise, M. et.al.:Performance Study of 3D Reconstruction
Algorithms for Positron Emission Tomography, International Meeting
on Fully Three-Dimensional Image Reconstsruction in Radiology
and Nuclear Medicine, June 23-25, 1993, Snowbird, Utah, USA.
- 12
- Defrise, M. - Clack, R.: A Cone-Beam Reconstruction
Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,
IEEE Transactions on Medical Imaging 13, 186-195 (1995).
- 13
- Devaney, A.J.: A Filtered Backpropagation algorithm for
Diffraction Tomography, Ultrasonic Imaging, 4, 336-350,
(1982).
- 14
- Elving, T.: Block-iterative methods for consistent and
inconsistent linear equations, Numer. Math. 35, 1-12 (1980).
- 15
- Faridani, A.: Reconstructing From Efficiently Sampled
Data in Parallel-Beam Computed Tomography, in: Inverse Problems and
Imaging,
G.F. Roach, ed., Pitman Res. Notes Math. Ser. 245,
68-102,
(1991).
- 16
- Finch, D.V.: Cone Beam Reconstruction with Sources on a
Curve. SIAM J. Appl. Math., 45, 665-673,(1985).
- 17
- Gelfand, I.M. - Goncharov, A.B.: Recovery of a
Compactly Supported Function Starting from Its Integrals over Lines
Intersecting a Given Set of Points in Space, Doklady 290
(1986), English Translation in Soviet Math.. Doklady 34,
373-376 (1987).
- 18
- Geman, S. - McClure, D.: Statistical Methods for
Tomographic Image Reconstruction, ISI Tokio session, Bull. Int.
Statist. Inst., LII(4), 5-21, 1987.
- 19
- Grangeat, P.: Mathematical Framework of Cone Beam 3D
Reconstruction via the First Derivative of Radon Transform, in:
Herman et al. (eds.): Mathematical methods in tomography,
Springer 1991.
- 20
- Gratton, E. et al.: A novel approach to laser tomography,
Bioimaging, 1, 40-46 (1993).
- 21
- Green, P.J.: Bayesian Reconstructions from Emission
Tomography Data Using a Modified EM Algorithm, IEEE
Transactions on Medical Imaging, 9(1), 84-93, März 1990.
- 22
- Grünbaum, F.A. - Kohn, P.D. -
Latham, G.A. - Singer, J.R. - Zubelli, J.P.: Diffuse Tomography,
Proc. SPIE, 1431, 232-238 (1991).
- 23
- Gutman, S. - Klibanov, M.V.: Regularized
Quasi-Newton Method for Inverse Scattering Problems, Mathl.
Comput. Modelling 18, No. 1, 5-31, Pergamon Press Ltd.
(1993).
- 24
- Herman, G.T. - Lent, A.: Iterative Reconstruction
Algorithms, Comput. Biol. Med. 6, 273-294, (1976).
- 25
- Herman, G.: Image Reconstruction From Projections.
The Fundamentals of Computerized Tomography.
Academic Press 1980.
- 26
- Hertle, A.: The Identification Problem for the Constantly
Attenuation Radon Transform, Math. Z. 197, 13-9, (1988).
- 27
- Hinshaw, W.S. - Lent, A.H.: An Introduction
to NMR Imaging: From the Bloch Equation to the
Imaging Equation, Proc. IEEE 71, 338-350 (1983).
- 28
- Kak, A.C. - Slaney, M.: Principle of Computerized
Tomography Imaging. IEEE Press 1987.
- 29
- Kaltenbach, J.-M. - Kaschke, M.: Frequency- and time-domain
modelling of light transport in random media, Technical Report, Carl Zeiss, PF
1980, Oberkochen, Germany, 1992.
- 30
- Kleinman, R.E. - van den Berg, P.M.: A
Modified Gradient Method for Two-Dimensional Problems in Tomography,
J. Comp. Appl. Math., 42, 17-35, (1992).
- 31
- Klibanov, M.V. - Gutman,
S. - Barbour, R. - Chang, J. - Malinsky, J. - Alfano, R.R.:
Consideration of Solutions to the Inverse Scattering Problem for
Biomedical Applications, Proc. SPIE 1887, (1993).
- 32
- Krestel, E. (ed.): Imaging Systems for Medical
Diagonostics, Siemens Aktiengesellschaft, 1990.
- 33
- Lai, C-M.: Reconstructing NMR Images from Projections Under
Inhomogeneous Magnetic Field and Non-Linear Field Gradient,
Phys. Med. Biol. 8, 925-938, (1983).
- 34
- Liang, Z.-P. - Boada,
F.E. - Constable, R.T. - Haacke, E.M. - Lauterbur, P.C. - Smith,
M.R.: Constrained Reconstruction Methods in MR Imaging, Rev Magn.
Reson. Med. 4, 67-185, (1992).
- 35
- Louis, A.K.: Medical Imaging: State of the Art and
Future Development, Inverse Problems
8, 709-738 (1992).
- 36
- Nachman, A.I.: Global Uniqueness for a Two-Dimensional
Inverse Boundary Value Problem, Department of Mathematics,
Preprint Series, Number 19, University of Rochester (1993).
- 37
- Natterer, F.: Determination of Tissue Attenuation in
Emission Tomography of Optically Dense Media, Inverse Problems
9, 731-736 (1993).
- 38
- Natterer, F.: Sampling in Fan Beam Tomography, SIAM J. Appl.
Mathematics 53, 358-380 (1993).
- 39
- Natterer, F.: The Mathematics of Computerized Tomography.
Wiley-Teubner 1986.
- 40
- Natterer, F. - Wübbeling, F.: A
propagation-backpropapagation method for ultrasound tomography,
Inverse Problems 11, 1225-1232 (1995).
- 41
- Orlov, S.S.: Theory of Three Dimensional Reconstruction. II.
The Recovery Operator, Sov. Phys. Crystallogr. 20, 429-433 (1976).
- 42
- Palamodov, V.: An Inversion Method for Attenuated
X-Ray Transform in Space, submitted to SIAM J. Appl. Math..
- 43
- Romanov, V.G.: Conditional Stability Estimates for the
Problem of Recovering of Absorption Coefficients and Right Hand Side
of Transport Equations (Russian), to appear in Siberia Math. J.
- 44
- Sanchez, R. - McCormick, N.J.: General Solutions
to Inverse Transport Problems, J. Math. Phys. 22,
847-855, (1981).
- 45
- Schomberg, H. - Timmer, J.: The Gridding Method for
Image Reconstruction by Fourier Transformation, IEEE Transactions
on Medical Imaging 14, 596-607 (1995).
- 46
- Setzepfandt, B.: ESNM: Ein rauschunterdrückendes
EM - Verfahren für die Emissionstomographie. Thesis, Fachbereich
Mathematik der Universität Münster, Germany 1992.
- 47
- Sharafutdinov, V.A.: Integral Geometry of Tensor
Fields. Nauka, Novosibirsk 1993 (Russian).
- 48
- Shepp, L.A. - Vardi, Y.: Maximum Liklihood
Reconstruction for Emission Tomography, IEEE Trans. Med. Imag.
1, 113-121, (1982).
- 49
- Smith, K.T. - Solmon, D.C. - Wagner, S.L.:
Practical and Mathematical Aspects of the Problem
of Reconstructing Objects From Radiographs, Bull AMS 83, 1227-1270 (1977).
- 50
- Smith, B.D.: Image Reconstruction from Cone-Beam Projections:
Necessary and Sufficient Conditions and Reconstruction Methods,
IEEE Transactions on Medical Imaging 4, 14-25 (1985).
- 51
- Sparr, G. - Stråklén, K. - Lindström, K. - Persson, W.:
Doppler tomography for vector fields, Inverse Problems,
11, 1051-1061 (1995).
1, 113-121, (1982).
- 52
- Tretiak, O.J. - Metz, C.: The Exponential Radon
Transform, SIAM J. Appl. Math., 39, 341-354, (1980).
- 53
- Tuy, H.K.: An Inversion Formula for Cone-Beam reconstruction,
SIAM J. Appl. Math. 43, 546-552 (1983).
Frank Wuebbeling
Fri Jun 28 16:25:38 MET DST 1996