next up previous
Next: About this document Up: Algorithms in Tomography Previous: Algorithm for more general

References

1
Aben, H.K.: Integrated Photoelasticity, Valgus, Talin 1975 (Russian).
2
Allesandrini, G.: Stable Determination of Conductivity by Boundary Mesurements, Appl. Analysis, 27, 153-172, (1988).
3
Anikonov, D.S. - Prokhorov, I.V. - Kovtanyuk, E.E.: Investigation of Scattering and Absorbing Media by the Methods of X-ray Tomography, J. Inv. Ill-Posed Problems, 1, 259-281; (1993).
4
Anikonov, D.S.: Uniqueness of Simultaneous Determination of two Coefficients of the Transport Equation, Soviet Math. Dokl. 30, 149-151, (1984).
5
Arridge, S.R. - Van der Zee, P. - Cope, M. - Delpy, D.T.: Reconstruction Methods for Infrared Absorption Imaging, Poc. SPIE 1431, 204-215, (1991).
6
Barrett, H.H. - Swindell, S.: Radiological Imaging, Vol. I, II, Academic Press 1981.
7
Bondarenko, A.- Antyufeev, V.: X-Ray Tomography in Scattering Media, Institute of Mathematics, Novosibirsk, Russia (1990).
8
Bronnikov, A.V.: Degration Transform in Tomography, Pattern Recognition Letters 15, 527-592, (1994).
9
Bui, H.D.: Inverse Problems in the Mechanics of Materials. CRC Press 1994.
10
Censor, Y.: Finite Series-Expansion Reconstruction Methods, Proc. IEEE 71, 409-419, (1983).
11
Defrise, M. et.al.:Performance Study of 3D Reconstruction Algorithms for Positron Emission Tomography, International Meeting on Fully Three-Dimensional Image Reconstsruction in Radiology and Nuclear Medicine, June 23-25, 1993, Snowbird, Utah, USA.
12
Defrise, M. - Clack, R.: A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection, IEEE Transactions on Medical Imaging 13, 186-195 (1995).
13
Devaney, A.J.: A Filtered Backpropagation algorithm for Diffraction Tomography, Ultrasonic Imaging, 4, 336-350, (1982).
14
Elving, T.: Block-iterative methods for consistent and inconsistent linear equations, Numer. Math. 35, 1-12 (1980).
15
Faridani, A.: Reconstructing From Efficiently Sampled Data in Parallel-Beam Computed Tomography, in: Inverse Problems and Imaging, G.F. Roach, ed., Pitman Res. Notes Math. Ser. 245, 68-102, (1991).
16
Finch, D.V.: Cone Beam Reconstruction with Sources on a Curve. SIAM J. Appl. Math., 45, 665-673,(1985).
17
Gelfand, I.M. - Goncharov, A.B.: Recovery of a Compactly Supported Function Starting from Its Integrals over Lines Intersecting a Given Set of Points in Space, Doklady 290 (1986), English Translation in Soviet Math.. Doklady 34, 373-376 (1987).
18
Geman, S. - McClure, D.: Statistical Methods for Tomographic Image Reconstruction, ISI Tokio session, Bull. Int. Statist. Inst., LII(4), 5-21, 1987.
19
Grangeat, P.: Mathematical Framework of Cone Beam 3D Reconstruction via the First Derivative of Radon Transform, in: Herman et al. (eds.): Mathematical methods in tomography, Springer 1991.
20
Gratton, E. et al.: A novel approach to laser tomography, Bioimaging, 1, 40-46 (1993).
21
Green, P.J.: Bayesian Reconstructions from Emission Tomography Data Using a Modified EM Algorithm, IEEE Transactions on Medical Imaging, 9(1), 84-93, März 1990.
22
Grünbaum, F.A. - Kohn, P.D. - Latham, G.A. - Singer, J.R. - Zubelli, J.P.: Diffuse Tomography, Proc. SPIE, 1431, 232-238 (1991).
23
Gutman, S. - Klibanov, M.V.: Regularized Quasi-Newton Method for Inverse Scattering Problems, Mathl. Comput. Modelling 18, No. 1, 5-31, Pergamon Press Ltd. (1993).
24
Herman, G.T. - Lent, A.: Iterative Reconstruction Algorithms, Comput. Biol. Med. 6, 273-294, (1976).
25
Herman, G.: Image Reconstruction From Projections. The Fundamentals of Computerized Tomography. Academic Press 1980.
26
Hertle, A.: The Identification Problem for the Constantly Attenuation Radon Transform, Math. Z. 197, 13-9, (1988).
27
Hinshaw, W.S. - Lent, A.H.: An Introduction to NMR Imaging: From the Bloch Equation to the Imaging Equation, Proc. IEEE 71, 338-350 (1983).
28
Kak, A.C. - Slaney, M.: Principle of Computerized Tomography Imaging. IEEE Press 1987.
29
Kaltenbach, J.-M. - Kaschke, M.: Frequency- and time-domain modelling of light transport in random media, Technical Report, Carl Zeiss, PF 1980, Oberkochen, Germany, 1992.
30
Kleinman, R.E. - van den Berg, P.M.: A Modified Gradient Method for Two-Dimensional Problems in Tomography, J. Comp. Appl. Math., 42, 17-35, (1992).
31
Klibanov, M.V. - Gutman, S. - Barbour, R. - Chang, J. - Malinsky, J. - Alfano, R.R.: Consideration of Solutions to the Inverse Scattering Problem for Biomedical Applications, Proc. SPIE 1887, (1993).
32
Krestel, E. (ed.): Imaging Systems for Medical Diagonostics, Siemens Aktiengesellschaft, 1990.
33
Lai, C-M.: Reconstructing NMR Images from Projections Under Inhomogeneous Magnetic Field and Non-Linear Field Gradient, Phys. Med. Biol. 8, 925-938, (1983).
34
Liang, Z.-P. - Boada, F.E. - Constable, R.T. - Haacke, E.M. - Lauterbur, P.C. - Smith, M.R.: Constrained Reconstruction Methods in MR Imaging, Rev Magn. Reson. Med. 4, 67-185, (1992).
35
Louis, A.K.: Medical Imaging: State of the Art and Future Development, Inverse Problems 8, 709-738 (1992).
36
Nachman, A.I.: Global Uniqueness for a Two-Dimensional Inverse Boundary Value Problem, Department of Mathematics, Preprint Series, Number 19, University of Rochester (1993).
37
Natterer, F.: Determination of Tissue Attenuation in Emission Tomography of Optically Dense Media, Inverse Problems 9, 731-736 (1993).
38
Natterer, F.: Sampling in Fan Beam Tomography, SIAM J. Appl. Mathematics 53, 358-380 (1993).
39
Natterer, F.: The Mathematics of Computerized Tomography. Wiley-Teubner 1986.
40
Natterer, F. - Wübbeling, F.: A propagation-backpropapagation method for ultrasound tomography, Inverse Problems 11, 1225-1232 (1995).
41
Orlov, S.S.: Theory of Three Dimensional Reconstruction. II. The Recovery Operator, Sov. Phys. Crystallogr. 20, 429-433 (1976).
42
Palamodov, V.: An Inversion Method for Attenuated X-Ray Transform in Space, submitted to SIAM J. Appl. Math..
43
Romanov, V.G.: Conditional Stability Estimates for the Problem of Recovering of Absorption Coefficients and Right Hand Side of Transport Equations (Russian), to appear in Siberia Math. J.
44
Sanchez, R. - McCormick, N.J.: General Solutions to Inverse Transport Problems, J. Math. Phys. 22, 847-855, (1981).
45
Schomberg, H. - Timmer, J.: The Gridding Method for Image Reconstruction by Fourier Transformation, IEEE Transactions on Medical Imaging 14, 596-607 (1995).
46
Setzepfandt, B.: ESNM: Ein rauschunterdrückendes EM - Verfahren für die Emissionstomographie. Thesis, Fachbereich Mathematik der Universität Münster, Germany 1992.
47
Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. Nauka, Novosibirsk 1993 (Russian).
48
Shepp, L.A. - Vardi, Y.: Maximum Liklihood Reconstruction for Emission Tomography, IEEE Trans. Med. Imag. 1, 113-121, (1982).
49
Smith, K.T. - Solmon, D.C. - Wagner, S.L.: Practical and Mathematical Aspects of the Problem of Reconstructing Objects From Radiographs, Bull AMS 83, 1227-1270 (1977).
50
Smith, B.D.: Image Reconstruction from Cone-Beam Projections: Necessary and Sufficient Conditions and Reconstruction Methods, IEEE Transactions on Medical Imaging 4, 14-25 (1985).
51
Sparr, G. - Stråklén, K. - Lindström, K. - Persson, W.: Doppler tomography for vector fields, Inverse Problems, 11, 1051-1061 (1995). 1, 113-121, (1982).
52
Tretiak, O.J. - Metz, C.: The Exponential Radon Transform, SIAM J. Appl. Math., 39, 341-354, (1980).
53
Tuy, H.K.: An Inversion Formula for Cone-Beam reconstruction, SIAM J. Appl. Math. 43, 546-552 (1983).


Frank Wuebbeling
Fri Jun 28 16:25:38 MET DST 1996