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The spherical version of Liouville’s theorem

(i) Let n ≥ 2 and 1 ≤ p ≤ ∞. A G.O.P. (\-R.) u ∈W 1,p(Sn−1; Sn−1) is
isometric iff ∃ O ∈ O(n) so that ∀ x ∈ Sn−1,

u(x) = Ox .

(ii) Let n ≥ 3. A G.O.P. (\-R.) u ∈W 1,n−1(Sn−1; Sn−1) of degree 1 (\ -1) is
conformal iff ∃ O ∈ O(n), ξ ∈ Sn−1 and λ > 0 so that ∀ x ∈ Sn−1,

u(x) = Oφξ,λ(x).

Here, φξ,λ := σ−1
ξ ◦ iλ ◦ σξ, where σξ is the stereographic projection of Sn−1

onto TξSn−1 and iλ : TξSn−1 7→ TξSn−1 is the dilation in TξSn−1 by factor
λ > 0.

� New short ‘intrinsic” proof available that can also be perturbed to give



A qualitative analogue for degree (±)1 maps on Sn−1

Proposition

Let n ≥ 3 and (uj)j∈N ∈W 1,n−1(Sn−1; Sn−1) be a sequence of G.O.P. maps of
degree 1, such that
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Then there exist (φj)j∈N ∈ Conf+(Sn−1) and R ∈ SO(n) so that up to a
non-relabeled subsequence

uj ◦ φj → RidSn−1 strongly in W 1,n−1(Sn−1; Sn−1).



A sharp quantitative analogue for degree (±)1 maps on S2

Theorem [A.B. Mantel-C.B. Muratov-T.M. Simon, Hirsch-Z., Topping]

There exists c > 0 so that for every

u ∈ AS2 :=
{

v ∈W 1,2(S2, S2) : degv := −
ˆ
S2

〈
v , ∂τ1v ∧ ∂τ2v

〉
= 1
}

there exists φ ∈ Conf+(S2) such that

−
ˆ
S2
|∇Tu −∇Tφ|2 ≤ c

(
1

2
−
ˆ
S2
|∇Tu|2 − 1

)
.

� Question\ Work in progress: What happens in the class of maps of degree
k ≥ 2 (bubbling phenomena for almost energy minimizers of higher degree)?



Flexibility (vs Rigidity) of Isometric and Conformal maps from Sn−1 to Rn

� Wide variety of such maps from Sn−1 into Rn.

� Classical rigidity in the Weyl problem for isometric embeddings (C 2 or even
C 1,α for α > 2

3
).

� Flexibility via the celebrated Nash-Kuiper theorem.

� For conformal maps from Sn−1 to Rn, other examples that are not Möbius
transformations are also (at least when n = 3) used in cartography, others
(for n = 3) are provided by the Uniformization theorem, ...

� Liouville’s rigidity theorem on Sn−1 on the one hand, and the above flexibility
phenomena on the other, indicate that an extra (isoperimetric-like) deficit
measuring the deviation of u(Sn−1) from being a round sphere is necessary
when one seeks stability of the isometry (resp. conformal) group of Sn−1

among low regularity (say Sobolev) maps from Sn−1 into Rn.



Stability in the isometric case, n ≥ 2

Theorem [Luckhaus-Z.]

Let n = 2, 3. There exists cn > 0 so that for every u ∈W 1,2(Sn−1;Rn) there exists
O ∈ O(n) such that

−
ˆ
Sn−1

|∇Tu − OPT |2 ≤ cn
(
δ(u) + ε(u)

)
.

Here,
δ(u) := ‖(σn−1 − 1)+‖L2

(where 0 ≤ σ1 ≤ · · · ≤ σn−1 are the eigenvalues of
√
∇Tut∇Tu) is the

L2-isometric deficit of u (penalizing stretches) and

ε(u) := (1− |Vn(u)|)+ :=

(
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+

is (the positive part of) the generalized isoperimetric deficit (or excess in volume)
of u.



� For n ≥ 4 and M > 0 given, the previous estimate holds true as well for
u : Sn−1 7→ Rn for which ‖∇Tu‖L2(n−2) ≤ M. The constant in this case will
depend both on n and (possibly on) M.

� Notice that
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∥∥
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∥∥∥
L2
≤
√
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∥∥
L2
,

so δ(u) is sharper than the full L2-isometric deficit δisom(u), since it only
penalizes stretches under u.

� The previous estimate is optimal in its setting, in the sense that the
exponents with which the two deficits appear cannot generically be improved,
as can be checked even by one-dimensional examples.



Stability in the conformal case, n ≥ 3: If u ∈W 1,n−1(Sn−1;Rn) then

−
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,

or equivalently,

[Dn−1(u)]
n

n−1 ≥ [Pn−1(u)]
n

n−1 ≥ |Vn(u)|.

� Thus, the combined deficit

En−1(u) :=
[Dn−1(u)]

n
n−1

|Vn(u)| − 1

provides the correct notion of deficit when one seeks stability of the
conformal group of Sn−1 among maps from Sn−1 to Rn.

� En−1 is translation, rotation and scaling invariant, as well as invariant under
precompositions with conformal diffeomorphisms of Sn−1.

� En−1(u) is nonnegative and vanishes iff u is a degree ±1 Möbius
transformations of Sn−1, up to a translation vector and a scaling factor.



Theorem [L.-Z.]

(i) There exists c > 0 such that ∀u ∈W 1,2(S2;R3) with V3(u) 6= 0 ∃ a Möbius
transformation φ of S2 and λ > 0 such that

−
ˆ
S2

∣∣∣ 1

λ
∇Tu −∇Tφ

∣∣∣2 ≤ cE2(u).

(ii) Let n ≥ 4. There exist constants θ ∈ (0, 1) (sufficiently small) and cn−1 > 0
such that ∀ u ∈W 1,∞(Sn−1;Rn) with ‖∇Tu − PT‖L∞ ≤ θ, ∃ a Möbius
transformation φ of Sn−1 and λ > 0 such that

−
ˆ
Sn−1

∣∣∣ 1

λ
∇Tu −∇Tφ

∣∣∣2 ≤ cn−1En−1(u).

� The estimate is again optimal in its framework (consider
uσ(x) := Aσx : Sn−1 7→ Rn, where Aσ := diag(1, . . . , 1 + σ) ∈ Rn×n as
σ → 0+).

� Can the local result in (ii) be generalized to a more global one, possibly via a
PDE approach?



Linear stability in the conformal case; n ≥ 3

If u = idSn−1 + w , then a formal Taylor expansion gives

En−1(u) = Qn(w) + (higher order terms in ∇Tw),

where

Qn(w) :=
n

2(n − 1)
−
ˆ
Sn−1

(
|∇Tw |2 +

n − 3

n − 1
(divSn−1w)2

)
− n

2
−
ˆ
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〈
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〉
;

A(w) := (divSn−1w)x −
n∑

j=1

xj∇Tw j ,

defined on the space

Hn :=

{
w ∈W 1,2(Sn−1;Rn) : −

ˆ
Sn−1

w = 0 , −
ˆ
Sn−1

〈w , x〉 = 0

}
.

The associated Euler-Lagrange operator is

L(w) := − 1

n − 1
∆Sn−1w − n − 3

(n − 1)2
(
∇TdivSn−1w − (n− 1)(divSn−1w)x

)
−A(w).

Via a decomposition of the subspaces of (k-th order) spherical harmonics into
eigenspaces of A, we obtain



Theorem [L.-Z.]

Let n ≥ 3. There exists a constant Cn > 0 such that for every w ∈ Hn,

Qn(w) ≥ Cn−
ˆ
Sn−1

∣∣∇Tw −∇T (Πn,0w)
∣∣2,

where Πn,0 : Hn 7→ Hn,0 is the W 1,2-orthogonal projection on the kernel Hn,0 of Qn

in Hn. Actually Hn,0
∼= moeb(n − 1) (of dimension n(n+1)

2
).

� When n = 3, the optimal constant can be calculated explicitely, when n ≥ 4
one can give an explicit lower bound on it.

� Note that Qn = Qn,conf + Qn,isop. Both Qn,conf and Qn,isop have
infinite-dimensional kernels, but what the previous Theorem says (in a
quantitative fashion) is that the intersection of both is finite-dimensional and
actually isomorphic to the Lie algebra of infinitesimal Möbius transformations
of Sn−1.



Linear stability in the isometric case, n ≥ 2

Theorem [L.-Z.]

Let n ≥ 2. For every α > 0 ∃ a constant Cn,α > 0 such that
∀ w ∈W 1,2(Sn−1;Rn),

αQn,isom(w) + Qn,isop(w) ≥ Cn,α−
ˆ
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∣∣∇Tw − [∇wh(0)]skewPT

∣∣2,

Qn,isom(w) := −
ˆ
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2

∣∣∣∣2
is the quadratic form associated to the (full) isometric deficit δ2isom(u) and

Qn,isop(w) :=
n

n − 1

[
−
ˆ
Sn−1

|∇Tw |2 + (divSn−1w)2

2
−
∣∣(P t

T∇Tw)s
∣∣2]− QVn (w).

is the one with respect to [Pn−1(u)]
n

n−1 − Vn(u) ≥ 0, i.e. to the isoperimetric
deficit.

Although (for n ≥ 3) kerQn,isom(w) ∼= so(n), an estimate of the previous type
cannot hold for Qn,isom alone, as can be easily seen by considering purely normal
test vector fields.


