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Setting

•A spherical droplet of radius r0 immersed into a
nematic liquid crystal
•A homogeneous external magnetic field H = he3
•Transition between singularities of Saturn ring or
dipole type depending on h and r0

H

Figure 1: Shrinking of a Saturn ring defect to a dipole by
changing the applied field. Figure from [5].

•Rescaled Landau-de Gennes model on R3 \B1(0)
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3) for Q uniaxial
•Parameters ξ ∼ r−1

0 and η ∼ (r0h)−1, see [4].

Main result

•Regime η| ln(ξ)| → β ∈ (0,∞) for η, ξ → 0 (large particles and weak field)
•Boundary condition: strong radial anchoring
•Rotational equivariance of Q around the e3−axis

Theorem [2]. The energy η Eη,ξ converges to E0 in a variational sense, where

E0(F ) = 2s∗c∗
∫
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∫
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for a set F ⊂ S2 and θ is the angle between the normal ν on S2 and e3.
• Compactness: ∀ Qη,ξ with η Eη,ξ(Qη,ξ) ≤ C ∃ nη,ξ : Ω→ S2 and F ⊂ S2 of finite perimeter

such that Qη,ξ − s∗(nη,ξ ⊗ nη,ξ − 1
3Id)→ 0 in L2

loc and {ν(ω) · nη,ξ = 1} → F in BV.
• Γ−liminf: ∀ Qη,ξ ∃ F ⊂ S2 with lim inf

η,ξ→0
η Eη,ξ(Qη,ξ) ≥ E0(F ).

• Γ−limsup: ∀ F ⊂ S2 ∃ Qη,ξ such that lim sup
η,ξ→0

η Eη,ξ(Qη,ξ) ≤ E0(F ).

Limit model

•Minimizer of E0: circle on S2 at angle θd
•Derived numerically in [6, Fig. 11]
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Lower bound

• Introduce an approximative sequence Q
minimizing Eη,ξ(Q) + ξ−α‖Q−Qη,ξ‖2

L2.
•Establish upper bounds on the size of
singularities of Q where f is large.
•Use methods from [3] to derive a lower bound in
regions where η|∇Q|2 + ηξ−2f (Q) dominates.
•Conclude that if f is small, there exists a lifting n
of Q with values in S2.
•Prove that n turns to e3 at infinity, define
approximations of F and F c using n|∂Ω.
•A radial auxiliary problem as in [1] determines
the contribution from η|∇Q|2 + η−1g(Q) in
terms of n.

Upper bound

•Use the uniaxial optimal profile of the radial
auxiliary problem in the interior of F .
•Place singularities of degree ±1

2 and size ξ at
distance η of ∂Ω to create ∂F .
• Interpolate in the regions between the
singularities, the optimal profile and infinity.
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Hysteresis

•Predicted in [6]
•Not yet observed experimentally
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