Research areas
- Calculus of Variations
- Elliptic PDEs
- Gamma-convergence
- Homogenization
- Free-discontinuity problems
- Nonlinear elasticity
Publications
Selection
- Ruf, Matthias; Zeppieri, Caterina Ida. . “Stochastic homogenization of degenerate integral functionals with linear growth.” Calculus of Variations and Partial Differential Equations, № 62 (138) 138. doi: 10.1007/s00526-023-02476-9.
- Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, and Zeppieri, Caterina Ida. . “A global method for deterministic and stochastic homogenisation in BV.” Annals of PDE, № 8 (1): 8–8. doi: 10.1007/s40818-022-00119-4.
- Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Γ-convergence of free-discontinuity problems.” Annales de l'Institut Henri Poincaré C. Analyse non linéaire, № 36 (4): 1035–1079. doi: 10.1016/j.anihpc.2018.11.003.
- Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Stochastic homogenisation of free-discontinuity problems.” Archive for Rational Mechanics and Analysis, № 233 (2): 935–974. doi: 10.1007/s00205-019-01372-x.
- Barchiesi, Marco, Lazzaroni, Giuliano, and Zeppieri, Caterina Ida. . “A bridging mechanism in the homogenisation of brittle composites with soft inclusions.” SIAM Journal on Mathematical Analysis, № 48 (2): 1178–1209. doi: 10.1137/15M1007343.
- Ansini, Nadia, Dal Maso, Gianni, and Zeppieri, Caterina Ida. . “New results on Γ-limits of integral functionals.” Annales de l'Institut Henri Poincaré C. Analyse non linéaire, № 31: 185–202.
- Müller, Stefan, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.” Indiana University Mathematics Journal, № 63 (5): 1365–1396. doi: 10.1512/iumj.2014.63.5330.
- Scardia, Lucia, and Zeppieri, Caterina Ida. . “Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy.” SIAM Journal on Mathematical Analysis, № 44 (4): 2372–2400. doi: 10.1137/110824851.
- Ansini, Nadia, and Zeppieri, Caterina Ida. . “Asymptotic analysis of nonsymmetric linear operators via Γ-convergence.” SIAM Journal on Mathematical Analysis, № 44 (3): 1617–1635. doi: 10.1137/110834330.
- Cicalese, Marco, Spadaro, Emanuele Nunzio, and Zeppieri, Caterina Ida. . “Asymptotic analysis of a second-order singular perturbation model for phase transitions.” Calculus of Variations and Partial Differential Equations, № 41 (1-2): 127–150. doi: 10.1007/s00526-010-0356-9.
Complete List
Research Articles (Journals)
- Bach, A.; Marziani, R.; Zeppieri, C.I.. . “Γ-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals.” Calculus of Variations and Partial Differential Equations, № 62 (199)
- Bach, A.; Esposito, T.; Marziani, R; Zeppieri, C.I.. . “Gradient Damage Models for Heterogeneous Materials.” SIAM Journal on Mathematical Analysis, № 55 (4) doi: 10.1137/22M1499145.
- Ruf, Matthias; Zeppieri, Caterina Ida. . “Stochastic homogenization of degenerate integral functionals with linear growth.” Calculus of Variations and Partial Differential Equations, № 62 (138) 138. doi: 10.1007/s00526-023-02476-9.
- D'Onofrio, C.; Zeppieri, C.I.. . “Gamma-convergence and stochastic homogenisation of degenerate integral functionals in weighted Sobolev spaces.” Proceedings of the Royal Society of Edinburgh. Section A: Mathematics, № 153 (2)
- Pellet, X.; Scardia, L.; Zeppieri, C.I.. . “Stochastic homogenisation of free-discontinuity functionals in randomly perforated domains.” Advances in Calculus of Variations, № 17 (3) doi: 10.1515/acv-2022-0052.
- Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, and Zeppieri, Caterina Ida. . “A global method for deterministic and stochastic homogenisation in BV.” Annals of PDE, № 8 (1): 8–8. doi: 10.1007/s40818-022-00119-4.
- Cicalese, M; Focardi, M.; Zeppieri, C.I.. . “Phase-Field Approximation of Functionals Defined on Piecewise-Rigid Maps.” Journal of Nonlinear Science, № 31 (78)
- Bach, A; Braides, A.; Zeppieri, C.I.. . “Quantitative analysis of finite-difference approximations of free-discontinuity problems.” Interfaces and Free Boundaries, № 22 doi: 10.4171/IFB/443.
- Zeppieri, C.I.. . “Homogenisation of high-contrast brittle materials.” Mathematics in Engineering, № 2 (1)
- Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Γ-convergence of free-discontinuity problems.” Annales de l'Institut Henri Poincaré C. Analyse non linéaire, № 36 (4): 1035–1079. doi: 10.1016/j.anihpc.2018.11.003.
- Cagnetti, Filippo, Dal Maso, Gianni, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Stochastic homogenisation of free-discontinuity problems.” Archive for Rational Mechanics and Analysis, № 233 (2): 935–974. doi: 10.1007/s00205-019-01372-x.
- Pellet, X, Scardia, L, and Zeppieri, CI. . “Homogenization of high-contrast Mumford-Shah energies.” SIAM J. Math. Anal., № 51: 1696–1729.
- I., Zeppieri C. . “Stochastic homogenisation of singularly-perturbed integral functionals.” Ann. Mat. Pura Appl., № 195
- Bevan, JJ, and Zeppieri, CI. . “A simple sufficient condition for the quasiconvexity of elastic stored-energy functions in spaces which allow for cavitation.” Calc. Var. Partial Diff. Equations, № 55
- Barchiesi, Marco, Lazzaroni, Giuliano, and Zeppieri, Caterina Ida. . “A bridging mechanism in the homogenisation of brittle composites with soft inclusions.” SIAM Journal on Mathematical Analysis, № 48 (2): 1178–1209. doi: 10.1137/15M1007343.
- Burger, Martin, Esposito, Teresa, and Zeppieri, Caterina Ida. . “Second-order edge-penalization in the Ambrosio-Tortorelli functional.” Multiscale Model. Simul., № 13 (4): 1354–1389.
- Ansini, Nadia, Dal Maso, Gianni, and Zeppieri, Caterina Ida. . “New results on Γ-limits of integral functionals.” Annales de l'Institut Henri Poincaré C. Analyse non linéaire, № 31: 185–202.
- Müller, Stefan, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Geometric rigidity for incompatible fields and an application to strain-gradient plasticity.” Indiana University Mathematics Journal, № 63 (5): 1365–1396. doi: 10.1512/iumj.2014.63.5330.
- Ansini, N, Dal, Maso G, and Zeppieri, C.I. . “Γ-convergence and H-convergence of linear elliptic operators.” J. Math. Pures Appl., № 99: 321–329.
- Scardia, Lucia, and Zeppieri, Caterina Ida. . “Line-tension model for plasticity as the Γ-limit of a nonlinear dislocation energy.” SIAM Journal on Mathematical Analysis, № 44 (4): 2372–2400. doi: 10.1137/110824851.
- Ansini, Nadia, and Zeppieri, Caterina Ida. . “Asymptotic analysis of nonsymmetric linear operators via Γ-convergence.” SIAM Journal on Mathematical Analysis, № 44 (3): 1617–1635. doi: 10.1137/110834330.
- Cicalese, Marco, Spadaro, Emanuele Nunzio, and Zeppieri, Caterina Ida. . “Asymptotic analysis of a second-order singular perturbation model for phase transitions.” Calculus of Variations and Partial Differential Equations, № 41 (1-2): 127–150. doi: 10.1007/s00526-010-0356-9.
- Dal, Maso G, and Zeppieri, C.I. . “Homogenization of fiber reinforced brittle materials: The intermediate case.” Advances in Calculus of Variations, № 3 (4): 345–370. doi: 10.1515/ACV.2010.011.
- Braides, A, and Zeppieri, C.I. . “Multiscale analysis of a prototypical model for the interaction between microstructure and surface energy.” Interfaces and Free Boundaries, № 11 (1): 61–108.
- Cicalese, M, DeSimone, A, and Zeppieri, C.I. . “Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers.” Networks and Heterogeneous Media, № 4 (4): 667–708. doi: 10.3934/nhm.2009.4.667.
- Ansini, N, Babadjian, J.F., and Zeppieri, C.I. . “The Neumann sieve problem and dimensional reduction: A multiscale approach.” Mathematical Models and Methods in Applied Sciences, № 17 (5): 681–735. doi: 10.1142/S0218202507002078.
- Braides, A, and Zeppieri, C.I. . “A note on equi-integrability in dimension reduction problems.” Calculus of Variations and Partial Differential Equations, № 29 (2): 231–238. doi: 10.1007/s00526-006-0065-6.
Research Article (Book Contributions)
- Müller, Stefan, Scardia, Lucia, and Zeppieri, Caterina Ida. . “Gradient theory for geometrically nonlinear plasticity via the homogenization of dislocations.” in Analysis and Computation of Microstructure in Finite Plasticity, Vol. 78 of Lecture Notes in Applied and Computational Mechanics, edited by Hackl Klaus Conti Sergio.