Seminar Quasikonforme Geometrie

07. Juli 2011

Inhaltsverzeichnis

1	Uniforme Räume und Abbildungsklassen	1
2	Quasihyperbolische Metriken und Geodäten	2
3	Gromov hyperbolische Räume	2
4	Ränder Gromov hyperbolischer und uniformer Räume	2
5	Das Gehring-Hayman-Theorem für Gromov-hyperbolische Räume	2
6	konforme Deformationen und Uniformisierung I	3
7	konforme Deformationen und Uniformisierung il	3
8	Loewner Räume	3
9	Gromov hyperbolische sphärische Gebiete I	3
10	Gromov hyperbolische sphärische Gebiete II	3
11	Martin-Ränder von Gromov hyperbolischen Gebieten I	3
12	Martin-Ränder von Gromov hyperbolischen Gebieten I	4
13	Konforme Abbildungen zwischen Gromov hyperbolischen Räumen	4

1 Uniforme Räume und Abbildungsklassen

[MB01, Chapter I]

- $\bullet\,$ Riemannscher Abbildungssatz
- Def Gromov hyperbolische Räume

- uniforme Räume
- innere uniforme Räume
- Alle erwähnten Abbildungsklassen definieren
- Thm 1.1; Thm 1.12; Thm 1.13 angeben.

2 Quasihyperbolische Metriken und Geodäten

[MB01, Chapter II]

- Def. quasihyperbolische Metrik, Längenmetrik
- Satz 2.8
- Theorem 2.10

3 Gromov hyperbolische Räume

[BS07, I, II bis Ende II.2.]

- Def. Gromov-hypbolischer Raum (Rips Definietion)
- Ãquivalente Charakterisierung mit Gromov Produkt
- Rand eines Gromov-hyperbolischen Raumes (siehe auch [BH99, II.H 3.])
- (Wenn Zeit da ist vielleicht noch Fortsetzungssätze)

4 Ränder Gromov hyperbolischer und uniformer Räume

[MB01, Chapter III]

- Quasisymmetrischer Maßstab
- Theorem 3.6 + Beweis
- Bezug zu Thm 1.11.

5 Das Gehring-Hayman-Theorem für Gromov-hyperbolische Räume

[MB01, Chapter V]

• Theorem 5.1 beweisen.

6 konforme Deformationen und Uniformisierung I

[MB01, Chapter IV bis Ende Bem. 4.14]

- konforme Deformationen, Uniformisierung
- quasisymmetrische identification der Raender. (4.13)

7 konforme Deformationen und Uniformisierung il

[MB01, Chapter IV ab 4.15]

• Beendigung des Theorems 1.1

8 Loewner Räume

[MB01, Chapter VI], [Hei01, Chapter VIII]

9 Gromov hyperbolische sphärische Gebiete I

[MB01, Chapter VII bis 7.14.]

- λ -Bogen- und λ -annulierende Punkte,
- linear lokal zusammenhängende Räume
- Beweis von Satz 7.14. auch angeben.

10 Gromov hyperbolische sphärische Gebiete II

[MB01, Chapter VII von 7.13 an]

- Beweis von Theorem 1.11. beenden
- Beweis von Theorem 1.12. beenden

11 Martin-Ränder von Gromov hyperbolischen Gebieten I

[MB01, Chapter VIII bis einschl. zum Beweis von Satz 8.10]

- Theorem 1.14. formulieren.
- Beweis der Existenz einer geeigneten Umgebungsbasis für Punkte auf einem Gromov-Rand.

12 Martin-Ränder von Gromov hyperbolischen Gebieten I

[MB01, Chapter VIII nach dem Bew. von 8.10]

- Martin-Rand
- Beweis von Theorem 8.15.

13 Konforme Abbildungen zwischen Gromov hyperbolischen Räumen

[MB01, Chapter IX]

Literatur

- [BH99] M. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Grundlehren der mathematischen Wissenschaften. Springer Verlag Berlin Heidelberg, 1999.
- [BS07] S. Buyalo and V. Schroeder. *Elements of asymptotic geometry*. Monographs in mathematics. European mathematical society, 2007.
- [Hei01] J. Heinonen. Lectures on analysis on metric spaces. Springer Verlag New York, 2001.
- [MB01] P. Koskela M. Bonk, J. Heinonen. Uniformizing gromov hyperbolic spaces. Asterisque, $270:1-99,\ 2001.$