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9. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of December 10 2012 before the lecture.

Aufgabe 9.1 (Finitely generated abelian groups)

Let A be a finitely generated abelian group, and let B ⊆ A be a subgroup.

(a) (1 mark) Show that the torsion group T (A) = {a ∈ A | a has finite order} is a subgroup.
(Where do you need that A is abelian? Do you need that A is finitely generated?)

(b) (1 mark) Show that A/T (A) has no torsion. (Where do you need that A is abelian? Do
you need that A is finitely generated?)

(c) (2 marks) Show that B is finitely generated.

(d) (3 marks) Show that
rkQA = rkQB + rkQ(A/B).

Hint: Show that Hom(A,Q) is a vector space over Q of dimension rkQA.

Aufgabe 9.2 (Isometric actions on R-trees)

(a) (2 marks) Every isometry g of an R-tree is semisimple.
Hint: consider the midpoint of {x, g(x)}.
We call a point x in an R-tree a branch point if there are three distinct nonconstant geodesics
starting at x having pairwise only the point x in common. We call an R-tree a Z-tree if the
distance between any two branch points is a natural number.

(b) (3 marks) Suppose that (Q,+) acts isometrically on a Z-tree having a nonempty set of
branch points.. Show that every t ∈ Q is elliptic.

Aufgabe 9.3 (Euclidean space)

(a) (1 mark) Let u, u′, v ∈ R2 be nonzero vectors, with ‖u‖2 = ‖u′‖2. Show that the following
are equivalent.
(1) ‖u− v‖2 < ‖u′ − v‖2.
(2) ]0(u, v) < ]0(u′, v).
Hint: what is the relation between the inner product and the cosine?

(b) (2 marks) Let A be a group and let τ : A - (Rm,+) be a homomorphism. Suppose
that there is a compact subset K ⊆ Rm such that

⋃
a∈A(τ(a) + K) = Rm. Show that τ(A)

generates Rm as a vector space.

(c) (2 marks) Assume that A and τ are as in part (b). Then A acts isometrically as a group of
translations on Rm, via a : x 7→ x + τ(a). Suppose that the isometry g ∈ Iso(Rm) commutes
with this action, i.e. that g(x + τ(a)) = g(x) + τ(a) holds for all a ∈ A. Show that g is a
translation.


