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3. Übung zur Vorlesung Räume nichtpositiver Krümmung

Please hand in your solutions on the morning of October 29 2012 before the lecture.

Aufgabe 3.1 (Simplicial complexes)

(1 mark) The n-simplex K is, by definition, the set of all subsets of {0, . . . , n}. Show that |K|
is homeomorphic to the closed n-ball and that |K(n−1)| is homeomorphic to the n− 1-sphere
Sn−1.

(1 mark) If ∆ is a simplicial complex and a ∈ ∆ is an n+ 1-simplex, then |∆(n)| ∩ |a| ∼= Sn.

(2 marks) If ∆ is a simplicial complex, then a subset U ⊆ |∆| × [0, 1] is open (in the product
topology, where |∆| carries the weak topology) if and only if U∩(|a|×[0, 1]) is open in |a|×[0, 1],
for all a ∈ ∆.

(1 mark) If ∆ is a simplicial complex and a ∈ ∆ a nonempty simplex, then its star |st(a)| =
|{b ∈ ∆ | a ∪ b ∈ ∆}| is contractible.

Aufgabe 3.2 (Contractible and n-connected spaces)

(2 marks) A contractible space is n-connected, for all n ∈ N.

(1 mark) A space is 0-connected if and only if it is path-connected.

(2 marks) If you know what the fundamental group π1(X, p) of a topological space is, show
that a 0-connected space is 1-connected if and only if π1(X, p) = 1, for some p ∈ X.

(1 mark) The Hilbert space L2(N) consists of all square summable sequences of real numbers,∑
i∈N r

2
i <∞, with norm ‖(ri)i∈N‖2 =

√∑
i∈N r

2
i . Show that the unit sphere

{x ∈ L2(N) | ‖x‖2 = 1}

is contractible.

(*) Is the unit sphere in Rn contractible, for n ≥ 1?

Aufgabe 3.3 (Paracompact spaces and partitions of unity)

(2 marks) A closed subspace of a paracompact space is paracompact.

(1 mark) Let X be a compact Hausdorff space. Suppose that every point x ∈ X has a neigh-
borhood Vx that admits a continuous embedding βx : Vx → Rnx , for some nx ∈ N. Show that
X can be continuously embedded into Rm, for some m. (A map f : P - Q is called an
embedding if it is continuous, injective, and if f is a homeomorphism between P and f(P ).)

(3 marks) Prove (without using the theorem that metric spaces are paracompact) that the
Euclidean space Rn is paracompact. (Hint: Consider compact subspaces of Rn.)


