6. Übungszettel zur Vorlesung "Räume nichtpositiver Krümmung"

WiSe 2020/21 WWU Münster Prof. Dr. Linus Kramer Dr. Bakul Sathaye Philip Möller

Each question is worth 4 points.

Aufgabe 6.1 (Isometries of the Euclidean space)

Show that every isometry of the Euclidean *n*-space \mathbb{R}^n is of the form $v \mapsto Av + b$, where *b* is a vector in \mathbb{R}^n and *A* is an $n \times n$ orthogonal matrix.

Hint: It suffices to show that an isometry that fixes the origin is a linear map.

Aufgabe 6.2 (Isometries of L^2)

In the Hilbert space $L^2(\mathbb{Z})$, let a be the shift operator given by a(f)(i) = f(i-1), where $f \in L^2(\mathbb{Z})$ and $i \in \mathbb{Z}$. Let $t \in L^2(\mathbb{Z})$ be the vector with the only entry 1 at i = 0. Then show that $f \mapsto a(f) + t$ is a parabolic isometry.

Aufgabe 6.3 (Parabolic isometries of \mathbb{H}^n)

a) Let $\widehat{\mathbb{R}^m} := \mathbb{R}^m \cup \{\infty\}$.

Consider the stereographic projection $s: S^{n-1} \to \widehat{\mathbb{R}^{n-1}}$ from the south pole $P = (0, \dots, 0, -1)$.

- i) Show that s is the restriction of the inversion map $\iota : \widehat{\mathbb{R}^n} \to \widehat{\mathbb{R}^n}$ in the sphere with center P and radius $\sqrt{2}$.
- ii) Find an expression for this inversion map ι .
- iii) Show that the restriction of ι to B^n is a homeomorphism $c: B^n \to H^n$ called the *Cayley transform*, where $B^n = \{x \in \mathbb{R}^n \mid ||x||_2 < 1\}$ is the unit ball in \mathbb{R}^n and $H^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_n > 0\}$ is the upper half space.

Let (B^n, d) be the Poincaré ball model (Exercise 4.4) of the hyperbolic n-space. We put a metric \tilde{d} on H^n so that c becomes an isometry. Then (H^n, \tilde{d}) is called the *Poincaré Half space model* of the hyperbolic n-space \mathbb{H}^n .

b) Use the half space model to give an example of a parabolic isometry of the hyperbolic space \mathbb{H}^m , $m \geq 2$.

Aufgabe 6.4 (Homogeneity of \mathbb{H}^n)

Prove that \mathbb{H}^n is 2-point homogeneous, that is, given two pairs of points (x_1, x_2)

and (y_1, y_2) in \mathbb{H}^m such that $d(x_1, x_2) = d(y_1, y_2)$, there is an isometry mapping one pair (x_1, x_2) to the other, (y_1, y_2) .

6.*-Aufgabe (Bounded convex functions) A bounded convex function $f: \mathbb{R} \to \mathbb{R}$ is constant.

 $\bf Abgabe \ bis:$ Donnerstag, den 17.12.2020, 8 Uhr online im Learnwebkurs.