Aufgabe 4.1. Sei G eine Gruppe und $S \subseteq G$ eine Menge, die G erzeugt. Sei $l_S: G \to \mathbb{N}$ die in der Vorlesung definierte Wortlängenfunktion bezüglich S. Zeige:

- a) Es gilt $l_S(g) = l_S(g^{-1})$ für alle $g \in G$.
- b) Für alle $g, h \in G$ gilt $l_S(g) \leq l_S(g) + l_S(h)$.
- c) Für alle $g, h \in G$ gilt $l_S(g) \ge l_S(g) l_S(h)$.
- d) Ist W eine Coxetergruppe mit Coxetersystem (W, I), so gilt

$$l_I(wi) \in \{l_I(w) - 1, l_I(w) + 1\}$$

 $f\ddot{u}r \ alle \ w \in W, i \in I.$

Beweis. a) Sei $g \in G \setminus \{1\}$ beliebig. Da S die Gruppe G erzeugt, können wir annehmen, dass $l_S(g) = k$ für ein $k \in \mathbb{N}$ existiert. Es gibt also $s_1, s_2, ..., s_k \in S \cup S^{-1}$ derart, dass $g = s_1 s_2 ... s_k$ gilt. Es folgt nun, dass $g^{-1} = s_k^{-1} s_{k-1}^{-1} ... s_1^{-1}$ gilt und offensichtlich $s_1^{-1}, s_2^{-1}, ..., s_k^{-1} \in S \cup S^{-1}$. Nun folgt direkt nach Definition der Längenfunktion, dass $l_S(g) \geq l_S(g^{-1})$ gilt. Da $g \in G$ beliebig ist, gilt diese Aussage auch für g^{-1} , also erhalten wir insgesamt:

$$l_S(g) \ge l_S(g^{-1}) \ge l_S((g^{-1})^{-1}) = l_S(g)$$

Daher muss überall Gleichheit gelten und damit folgt die Behauptung von Teil a) für alle Elemente $g \neq 1$. Die Behauptung für 1 folgt sofort, da $1^{-1} = 1$ ist.

b) Seien $g, h \in G \setminus \{1\}$ beliebig. Analog zu a) können wir g und h durch Elemente aus $S \cup S^{-1}$ darstellen. Wir schreiben also $g = s_1 s_2 ... s_k$ und $h = r_1 r_2 ... r_n$ für $s_1, s_2, ..., s_k, r_1, r_2, ..., r_n \in S \cup S^{-1}$ und $k, n \in \mathbb{N}$, wobei natürlich $l_S(g) = k$ und $l_S(h) = n$ gelten soll. Dann haben wir $gh = s_1 s_2 ... s_k r_1 r_2 ... r_n$ und damit die folgende Ungleichungskette für die Länge:

$$l_S(gh) \le l(s_1s_2...s_kr_1r_2...r_n) \le k + n = l_S(g) + l_S(h)$$

Ist nun g = 1, so gilt $l_S(1h) = 0 + l_S(h)$ und bei h = 1 ist $l_S(g1) = 0 + l_S(g)$. Dies komplettiert den Beweis von Teil b).

c) Um diese Aussage zu beweisen, nutzen wir Teil a und b. Es gilt:

$$l_S(g) = l_S(ghh^{-1}) \stackrel{b)}{\leq} l_S(gh) + l_S(h^{-1}) \stackrel{a)}{=} l_S(gh) + l_S(h).$$

Umstellen der Ungleichung liefert:

$$l_S(gh) \ge l_S(g) - l_S(h)$$
.

d) Nun kommen wir zum wirklich interessanten Teil der Aufgabe. Seien $w \in W$ und $i \in I$ beliebig. Zunächst zeigen wir, dass $l_I(wi) \in \{l_I(w), l_I(w) + 1, l_I(w) - 1\}$ gilt. Das folgt aber aus Teil b) und c), denn l(i) = 1, da $i \in I$. Also ist mit b) $l_I(wi) \leq l_I(w) + l_I(i) = l_I(w) + 1$ und $l_I(wi) \geq l_I(w) - l_I(i) = l_I(w) - 1$ wegen c). Zu zeigen bleibt also, dass $l_I(wi) \neq l_I(w)$ gilt. Falls w = 1, so ist $l_I(wi) = l_I(i) = 1$. Also können wir annehmen, dass $w \neq 1$ gilt. Sei nun $l_I(w) = m$, nun gibt es $i_1, i_2, ... i_m \in I$ mit $w = i_1 i_2 ... i_m$. Wäre nun $l_I(wi) = m$, so gäbe es $j_1, j_2, ..., j_m \in I$ mit $w = j_1 j_2 ... j_m$. Wir erhalten also folgende Gleichung:

$$j_1 j_2 ... j_m = i_1 i_2 ... i_m i$$

oder äquivalent:

$$1 = i_1 i_2 ... i_m i j_m j_{m-1} ... j_1$$

Hierauf wenden wir nun die Vorzeichenabbildung $\varepsilon: W \to \{\pm 1\}$ mit $\varepsilon(s) = -1$ für alle $s \in I$ an. Es gilt:

$$1 = \varepsilon(1) = \varepsilon(i_1 i_2 ... i_m i j_m j_{m-1} ... j_1) = \varepsilon(i_1) ... \varepsilon(i_m) \varepsilon(i) \varepsilon(j_m) ... \varepsilon(j_1) = (-1)^{2m+i} = -1$$

Damit führt die Annahme, dass $l_I(w) = l_I(wi)$ gilt auf einen Widerspruch. Dies impliziert mit dem zuerst gezeigten Resultat die Behauptung.

Aufgabe 4.2. Seien G und H Gruppen mit Präsentierungen

$$G = \langle X|R\rangle$$
, $H = \langle Y|S\rangle$

 $mit\ X\cap Y=\emptyset\ und\ \phi: H\to Aut(G)\ ein\ Gruppenhomomorphismus.\ Setze$

$$T := R \cup S \cup \{yxy^{-1}(\phi(y)(x))^{-1} | y \in Y, \ x \in X\}$$

Dann gilt: $G \rtimes_{\phi} H \cong \langle X \cup Y | T \rangle$

Beweis. Zunächst definieren wir eine Abbildung $\lambda: X \cup Y \to G \rtimes_{\phi} H$ durch $x \mapsto (x,1)$ und $y \mapsto (1,y)$ für alle $x \in X$ und $y \in Y$.

Nach der universellen Eigenschaft der freien Gruppe $F(X \cup Y)$ gibt es genau einen Gruppenhomomorphismus $F(\lambda): F(X \cup Y) \to G \rtimes_{\phi} H$, der λ fortsetzt. Wir möchten gerne die universelle Eigenschaft der Präsentierung $\langle X \cup Y | T \rangle$ bezüglich dieses Homomorphismus benutzen. Dafür müssen wir zunächst zeigen, dass alle Elemente aus T schon auf das Neutralelement abgebildet werden.

Sei also $r \in T$ beliebig.

Gilt schon $r \in R$, so gilt schon $F(\lambda)(r) = (r, 1) = (1, 1)$, da $R \subseteq T$.

Analog folgt, dass $F(\lambda)(r) = (1,1)$ gilt, falls $r \in S$.

Sei also $r \in \{yxy^{-1}(\phi(y)(x))^{-1}|y \in Y, x \in X\}$. Das heißt es gibt $x \in X$ und $y \in Y$ derart, dass $r = yxy^{-1}(\phi(y)(x))^{-1}$. Nun werten wir den Homomorphismus aus:

$$\begin{split} F(\lambda) \left(yxy^{-1}(\phi(y)(x))^{-1} \right) &= \lambda(y)\lambda(x)\lambda \left(y^{-1} \right) (\phi(y)(x), 1)^{-1} \\ &= (\phi(y(x), y)(1, y^{-1})(\phi(y)(x), 1)^{-1} \\ &= (\phi(y)(x)\phi(y)(1), yy^{-1})(\phi(y)(x), 1)^{-1} \\ &= (\phi(y)(x), 1)(\phi(y)(x), 1)^{-1} = (1, 1) \end{split}$$

Nun liefert uns die universelle Eigenschaft der Präsentierung $\langle X \cup Y | T \rangle$ die Existenz genau eines Gruppenhomomorphismus $f : \langle X \cup Y | T \rangle \to G \rtimes_{\phi} H$ derart, dass das folgende Diagramm kommutiert:

Wir möchten nun zeigen, dass f eine Isomorphismus ist.

f ist surjektiv, da das obige Diagramm kommutiert und bereits die Abbildung λ die Erzeugermengen X und Y von $G \rtimes_{\phi} H$ in der Bildmenge hat.

Zu zeigen bleibt die Injektivität von f. Sei hierzu $w \in \ker f$ beliebig. Wir können nun annehmen, dass sich w wie folgt schreiben lässt: $w = x_1y_1x_2y_2...x_ny_n$ für $n \in \mathbb{N}$ und $x_i \in G$, $y_i \in H$ für alle $i \in \{1, 2, ..., n\}$, sonst verknüpfen wir gegebenenfalls Elemente oder ergänzen die 1. Damit erhalten wir folgende Gleichungen:

$$(1,1) = f(x_1y_1...x_ny_n) = f(x_1y_1)...f(x_ny_n)$$

$$= (x_1, y_1)...(x_n, y_n) = (x_1\phi(y_1)(x_2), y_1y_2)(x_3, y_3)...(x_n, y_n)$$

$$= (x_1\phi(y_1)(x_2)\phi(y_1y_2)(x_3)...\phi(y_1y_2...y_{n-1}(x_n), y_1y_2...y_n)$$

Wir erhalten also $y_1y_2...y_n \in \ll S \gg \text{und } x_1\phi(y_1)(x_2)...\phi(y_1y_2...y_{n-1}(x_n)) \in \ll R \gg$. Diese Elemente liegen natürlich auch in T. Daraus ergibt sich nun die folgende Gleichungskette:

$$1 = x_1 \phi(y_1)(x_2)...\phi(y_1 y_2...y_{n-1}(x_n))$$

$$= x_1 y_1 x_2 y_1^{-1} (y_1 y_2) x_3 (y_1 y_2)^{-1} (y_1 y_2 y_3) x_4 (y_1 y_2 y_3)^{-1} ... (y_1 y_2...y_{n-1}) x_n (y_1 y_2...y_{n-1})^{-1}$$

$$= x_1 y_1 ... x_n y_n = w$$

Wobei bei der letzten Gleichung die Identität $(y_1...y_{n-1})^{-1} = y_n$ benutzt wurde. Diese folgt direkt aus der Tatsache, dass $y_1y_2...y_n \in \ll S \gg$ gilt und somit $y_1y_2...y_n = 1_H$. Damit ist der Kern des Homomorphismus f trivial und der Homomorphismus injektiv. Da die Surjektivität bereits gezeigt wurde, folgt jetzt die behauptete Isomorphie!

Aufgabe 4.3. Sei K ein Körper und V ein endlich-dimensionaler K-Vektorraum. Weiter sei $\rho: G \to GL(V)$ eine lineare Darstellung einer Gruppe G. Zeige die Äquivalenz der folgenden zwei Aussagen:

- i) $Jeder\ G-invariante\ Untervektorraum\ U\ von\ V\ besitzt\ ein\ G-invariantes\ Komplement\ W$.
- ii) V ist ein halbeinfacher G-Modul, d.h. V ist eine direkte Summe von G-invarianten Unterräumen $U_1, ..., U_k$, sodass die induzierten Darstellungen $G \to GL(U_i)$ irreduzibel sind.

Beweis. $\underline{\text{zu }}, \Leftarrow : \underline{\text{Sei }} V = \bigoplus_{i=1}^k U_i \text{ derart, dass } \rho_i : G \to GL(U_i) \text{ irreduzibel ist. Sei nun } U \subseteq V \text{ irreduzibel.}$

Nun definieren wir für $J \subseteq \{1, 2, ..., k\}$ den Vektorraum $V_J := \bigoplus_{i \in J} U_i$. Wir wählen an dieser Stelle $J \subseteq \{1, 2, ..., k\}$ maximal (im Sinne der Inklusion) so, dass $U \cap V_J = \{0\}$, das heißt für jedes $i \in \{1, 2, ..., k\} \setminus J$ gilt $U \cap V_{J \cup \{i\}} \neq \{0\}$

Behauptung: Es gilt $U \bigoplus V_J = V$. Insbesondere ist V_J also G-invariantes Komplement zu U. Es reicht zu zeigen, dass die Summe den gesamten Raum V enthält, da der Schnitt nach Konstruktion trivial ist! Hierzu reicht es zu zeigen, dass $U_i \subseteq U \cap V_J$ für alle $i \in \{1, 2, ..., k\}$ ist.

Falls $i \in J$, so gilt $U_i \subseteq V_J$ und wir sind fertig.

Sei also $i \in \{1, 2, ..., k\} \setminus J$. Dann gilt $U \cap V_{J \cup \{i\}} \neq \{0\}$. Es gibt also ein $x \in U \cap V_{J \cup \{i\}}$ mit $x \neq 0$.

Da $x \in V_{J \cup \{i\}}$ gilt schon $x = v_J + u_i$ mit $v_J \in V_J$ und $u_i \in U_i$. Weiter muss $u_i \neq 0$ gelten, da $U \cap V_J = \{0\}$. Umstellen liefert nun $u_i = x + (-v_J) \in U \bigoplus V_J$, wobei $x \in U$ liegt. Daraus können wir schließen, dass folgendes gilt:

$$U_i \cap (U + V_J) \neq \{0\}.$$

Weiter ist $U_i \cap (U + V_J)$ als Schnitt G-invarianter Unterräume wieder ein G-invarianter Unterraum. Da U_i irreduzibel ist, folgt schon $U_i \cap (U + V_J) = U_i$, also insbesondere $U_i \subseteq U + V_J$.

Insgesamt haben wir nun $V \subseteq U + V_J$ und damit diese Richtung gezeigt. <u>zu</u> " \Rightarrow ": Wenn die gegebene Darstellung bereits irreduzibel ist, so ist die Aussage trivial. Also nehmen wir an, dies sei nicht der Fall. Dann wählen wir $U_1 \subseteq V$ G-invariant so, dass G irreduzibel auf U_1 wirkt und $U_1 \neq \{0\}$. Hier können wir zum Beispiel einen G-invarianten Unterraum minimaler Dimension> 0 wählen. Nach Voraussetzung gibt es nun ein G-invariantes Komplement $W_1 \subseteq V$ so, dass $U_1 \bigoplus W_1 = V$ gilt. Ist W_1 nun irreduzibel, so sind wir fertig. Sollte dies nicht der Fall sein, so gibt es $U_2 \subsetneq W_1$ G-invariant mit $U_1 \neq \{0\}$ derart, dass die Darstellung auf U_2 irreduzibel ist. Nun existiert nach Voraussetzung ein G-invariantes Komplement zu $U_1 \bigoplus U_2$, welches wir W_2 nennen. Ist W_2 wieder nicht irreduzibel führen wir diesen Prozess erneut durch. Da V endlichdimensional ist und $\dim(U_i) > 0$ für alle so definierten Unterräume U_i ist, sind wir nach endlich vielen Schritten fertig. Ist die Anzahl der so gewonnen Unterräume durch $k \in \mathbb{N}$ gegeben, folgt:

$$V = \bigoplus_{i=1}^{k} U_i$$