Classification problems in operator algebras

Mathematics Münster: Dynamics - Geometry - Structure

20 - 22 June 2019

Stefaan Vaes*

* Supported by ERC Consolidator Grant 614195

We consider *-subalgebras $M \subset B(H)$, where the *-operation is the Hermitian adjoint.

• Operator norm:

for $T \in B(H)$, we put $||T|| = \sup\{||T\xi|| | \xi \in H, ||\xi|| \le 1\}$.

C*-algebras: norm closed *-subalgebras of B(H).

▶ Weak topology: $T_i \to T$ if and only if $\langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$ for all $\xi, \eta \in H$.

Von Neumann algebras: weakly closed *-subalgebras of B(H).

Intimate connections to group theory, dynamical systems, quantum information theory, representation theory, ...

Commutative operator algebras

- Unital commutative C*-algebras are of the form C(X) where X is compact Hausdorff.
 - algebraic topology, K-theory, continuous dynamics, geometric group theory
- Commutative von Neumann algebras are of the form L[∞](X, μ) where
 (X, μ) is a standard probability space.
 - ergodic theory, measurable dynamics, measurable group theory

Let G be a countable (discrete) group.

- Left regular unitary representation $\lambda : G \to \mathcal{U}(\ell^2(G)) : \lambda_g \delta_h = \delta_{gh}$.
- ▶ span{ $\lambda_g \mid g \in G$ } is the group algebra $\mathbb{C}[G]$.
- ▶ Take the norm closure: (reduced) group C*-algebra $C_r^*(G)$.
- ▶ Take the weak closure: group von Neumann algebra L(G).

We have $G \subset \mathbb{C}[G] \subset C_r^*(G) \subset L(G)$.

At each inclusion, information gets lost ~~ natural rigidity questions.

Open problems

- ► Kaplansky's conjectures for torsion-free groups G.
 - Unit conjecture: the only invertibles in C[G] are multiples of group elements λ_g.
 - Idempotent conjecture: 0 and 1 are the only idempotents in $\mathbb{C}[G]$.
 - Kadison-Kaplansky: 0 and 1 are the only idempotents in $C_r^*(G)$.
- ▶ Free group factor problem: is $L(\mathbb{F}_n) \cong L(\mathbb{F}_m)$ if $n \neq m$?
- ► Connes' rigidity conjecture: $L(PSL(n,\mathbb{Z})) \cong L(PSL(m,\mathbb{Z}))$ if $3 \le n < m$.
- Stronger form: if G has property (T) and π : L(G) → L(Γ) is a *-isomorphism, then G ≅ Γ and π is essentially given by such an isomorphism.

 \sim Structure and classification of operator algebras is highly nontrivial.

Operator algebras and group actions

Let G be a countable group.

Continuous dynamics and C*-algebras

An action $G \curvearrowright X$ of G by homeomorphisms of a compact Hausdorff space X gives rise to the C*-algebra $C(X) \rtimes_r G$.

Measurable dynamics and von Neumann algebras

An action $G \curvearrowright (X, \mu)$ of G by measure class preserving transformations of (X, μ) gives rise to a von Neumann algebra $L^{\infty}(X) \rtimes G$.

- These operator algebras contain C(X), resp. $L^{\infty}(X)$, as subalgebras.
- They contain G as unitary elements $(u_g)_{g \in G}$.
- ► They encode the group action: $u_g F u_g^* = \alpha_g(F)$ where $(\alpha_g(F))(x) = F(g^{-1} \cdot x).$

Amenable von Neumann algebras: full classification

Some run-up: Murray - von Neumann types.

Factor: a von Neumann algebra M with trivial center, i.e. $M \not\cong M_1 \oplus M_2$.

A factor M is of

- ▶ type I if there are minimal projections, i.e. $M \cong B(H)$,
- ► type II₁ if not of type I and 1 ∈ M is a finite projection: if v*v = 1, then vv* = 1,
- ▶ type II_{∞} if not of type II_1 but pMp of type II_1 for a projection $p \in M$,
- type III otherwise.

Theorem (Murray - von Neumann): every II₁ factor admits a faithful normal trace $\tau : M \to \mathbb{C}$. **Trace property:** $\tau(xy) = \tau(yx)$.

Type of $L^{\infty}(X) \rtimes G$ depends on the (non)existence of G-invariant measures on X, while L(G) is always of type II₁.

The hyperfinite II₁ factor

Take $M_2(\mathbb{C}) \subset M_4(\mathbb{C}) \subset M_8(\mathbb{C}) \subset \cdots$, where $A \mapsto \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$.

 \sim Completion of direct limit: II₁ factor *R*.

Definition (Murray - von Neumann)

A von Neumann algebra M is called **approximately finite dimensional** (AFD) if there exists an increasing sequence of finite dimensional subalgebras $A_n \subset M$ with weakly dense union.

Theorem (Murray - von Neumann)

The II₁ factor R constructed above is the unique AFD factor of type II₁. It is called the hyperfinite II₁ factor.

What about other types? Which factors are AFD? $L^{\infty}(X) \rtimes G$?

Amenability

Definition (von Neumann)

A countable group G is amenable if there exists a finitely additive probability measure m on the subsets of G such that $m(g\mathcal{U}) = m(\mathcal{U})$ for all $g \in G$ and $\mathcal{U} \subset G$.

Closely related to the Banach-Tarski paradox.

 \sim Equivalently: there exists a *G*-invariant state $\omega : \ell^{\infty}(G) \to \mathbb{C}$.

Hakeda-Tomiyama: a von Neumann algebra $M \subset B(H)$ is amenable if there exists a conditional expectation $P : B(H) \rightarrow M$.

 $\sim L(G)$ and $L^{\infty}(X) \rtimes G$ are amenable whenever G is amenable.

Theorem (Connes, 1976)

Every amenable von Neumann algebra is AFD ! In particular, all amenable II_1 factors are isomorphic with R.

Modular theory: Tomita - Takesaki - Connes

Murray - von Neumann: II₁ factors admit a trace $\tau : M \to \mathbb{C}$, $\tau(xy) = \tau(yx)$.

Tomita - **Takesaki:** any faithful normal state $\omega : M \to \mathbb{C}$ on a von Neumann algebra M gives rise to a one-parameter group $\sigma_t^{\omega} \in \operatorname{Aut}(M)$ such that $\omega(xy) = \omega(y \sigma_{-i}^{\omega}(x))$ \longrightarrow KMS condition.

Connes: this "time evolution" $(\sigma_t^{\omega})_{t \in \mathbb{R}}$ is essentially independent of the choice of ω .

- ▶ Connes Takesaki: every type III factor M is of the form $M \cong N \rtimes \mathbb{R}$ where N is of type II_{∞} .
- ▶ Restricting the action $\mathbb{R} \frown N$ to the center of N leads to an ergodic flow $\mathbb{R} \frown (Z, \eta)$.
- ► This is an isomorphism invariant of *M*.

Classification of amenable factors

Type III factor $M \longrightarrow$ ergodic flow $\mathbb{R} \cap (Z, \eta)$.

Definition (Connes)

A type III factor M is of

- type III_{λ} if the flow is periodic: $\mathbb{R} \curvearrowright \mathbb{R}/(\log \lambda)\mathbb{Z}$,
- type III₁ if the flow is trivial: $Z = \{\star\}$,
- ▶ type III₀ if the flow is properly ergodic.

Classification of amenable factors

- ► (Connes) For each of the following types, there is a unique amenable factor: type II₁, type II_∞, type III_λ with 0 < λ < 1.</p>
- (Connes, Krieger) The amenable factors of type III₀ are exactly classified by the associated flow.
- ► (Haagerup) There is a unique amenable III₁ factor.

The correct notion is: nuclearity.

The C*-algebra $C_r^*(G)$ is nuclear if and only if G is amenable.

Elliott program: classification of unital, simple, nuclear C*-algebras by K-theory and traces.

Huge efforts, by many people, over the past decades.

Currently approaching a final classification theorem,

for all unital, simple, nuclear C*-algebras satisfying a (needed) regularity property.

Beyond amenability: Popa's deformation/rigidity theory

Consider one of the most well studied group actions:

Bernoulli action $G \curvearrowright (X, \mu) = \prod_{g \in G} (X_0, \mu_0) : (g \cdot x)_h = x_{g^{-1}h}$.

- $M = L^{\infty}(X) \rtimes G$ is a II₁ factor.
- Whenever G is amenable, we have $M \cong R$.

Superrigidity theorem (Popa, Ioana, V)

If G has property (T), e.g. $G = SL(n, \mathbb{Z})$ for $n \ge 3$, or if $G = G_1 \times G_2$ is a non-amenable direct product group, then $L^{\infty}(X) \rtimes G$ remembers the group G and its action $G \curvearrowright (X, \mu)$.

More precisely: if $L^{\infty}(X) \rtimes G \cong L^{\infty}(Y) \rtimes \Gamma$ for any other free, ergodic, probability measure preserving (pmp) group action $\Gamma \curvearrowright (Y, \eta)$,

then $G \cong \Gamma$ and the actions are conjugate (isomorphic).

Free groups

Theorem (Popa - V)

Whenever $n \neq m$, we have that $L^{\infty}(X) \rtimes \mathbb{F}_n \ncong L^{\infty}(Y) \rtimes \mathbb{F}_m$,

for arbitrary free, ergodic, pmp actions of the free groups.

If L[∞](X) ⋊ 𝔽_n ≅ L[∞](Y) ⋊ 𝔽_m, there also exists an isomorphism π such that π(L[∞](X)) = L[∞](Y).

This is thanks to uniqueness of the Cartan subalgebra.

- ▶ Such a π induces an **orbit equivalence**: a measurable bijection $\Delta : X \to Y$ such that $\Delta(\mathbb{F}_n \cdot x) = \mathbb{F}_m \cdot \Delta(x)$ for a.e. $x \in X$.
- ► (Gaboriau) The L²-Betti numbers of a group are invariant under orbit equivalence.

We have $\beta_1^{(2)}(\mathbb{F}_n) = n - 1$.

*L*²-Betti numbers of groups

- Let G be a countable group. View ℓ²(G) as a left G-module (by left translation) and a right L(G)-module (by right translation).
- ► Atiyah, Cheeger-Gromov, Lück: define $\beta_n^{(2)}(G) = \dim_{L(G)} H^n(G, \ell^2(G)).$
- **Gaboriau:** invariant under orbit equivalence.

Conjecture (Popa, Ioana, Peterson)

If $L^{\infty}(X) \rtimes G \cong L^{\infty}(Y) \rtimes \Gamma$ for some free, ergodic, pmp actions, then $\beta_n^{(2)}(G) = \beta_n^{(2)}(\Gamma)$ for all $n \ge 0$.

Big dream (many authors)

Define some kind of L^2 -Betti numbers for II₁ factors. Prove that $\beta_1^{(2)}(L(\mathbb{F}_n)) = n - 1$.

Bernoulli actions of type III

Consider the $G \curvearrowright (X, \mu) = \prod_{h \in G} (X_0, \mu_h)$ given by $(g \cdot x)_h = x_{g^{-1}h}$.

- (Kakutani) The action is non-singular (i.e. measure class preserving) if and only if all µ_h are absolutely continuous and, for all g ∈ G, we have that ∑_{h∈G} d(µ_{gh}, µ_h)² < ∞.
- Ergodic ? What is the type of $L^{\infty}(X) \rtimes G$?

Theorem (V - Wahl, 2017)

If $H^1(G, \ell^2(G)) = \{0\}$, there are no non-singular Bernoulli actions of type III. More precisely,

every nonsingular Bernoulli action of G is the disjoint union of a classical, pmp Bernoulli action and a dissipative Bernoulli action.

Dissipative action = type I

= existence of a fundamental domain $X = \bigsqcup_{g \in G} g \cdot \mathcal{U}$.

Bernoulli actions of type III

What if $H^1(G, \ell^2(G)) \neq \{0\}$? Very delicate! Even for $G = \mathbb{Z}$.

► (Krengel, 1970)

The group $G = \mathbb{Z}$ admits a nonsingular Bernoulli action without invariant probability measure.

- ▶ (Hamachi, 1981)
 The group G = Z admits a nonsingular Bernoulli action of type III.
- ▶ (Kosloff, 2009) The group $G = \mathbb{Z}$ admits a nonsingular Bernoulli action of type III_1 .
- In all cases: no explicit constructions.
- (V Wahl, 2017) Explicit examples of type III₁ Bernoulli actions for many amenable groups and many groups with $\beta_1^{(2)}(G) > 0$.

Type of nonsingular Bernoulli actions

Let $G \curvearrowright (X, \mu) = \prod_{g \in G} (\{0, 1\}, \mu_g)$ be a conservative Bernoulli action.

Theorem (Björklund-Kosloff-V, 2019)

Let G be abelian and not locally finite.

- ▶ If $\lim_{g\to\infty} \mu_g(0)$ does not exist: type III₁.
- ▶ If $\lim_{g\to\infty} \mu_g(0) = \lambda$ and $0 < \lambda < 1$, then type II₁ or type III₁, depending on $\sum_{g\in G} (\mu_g(0) \lambda)^2$ being finite or not.
- If $\lim_{g\to\infty} \mu_g(0) = \lambda$ and $\lambda \in \{0,1\}$, then type III.
- Answering Krengel: a Bernoulli action of $\mathbb Z$ is never of type II_∞ .
- When G is infinite and locally finite, types II_∞ and III_λ do arise.
- For non-amenable groups G, the growth of the associated 1-cocycle
 c : G → l²(G) plays a key role.
- Type III $_{\lambda}$ appears if G has more than one end.

Type of nonsingular Bernoulli actions

Let $G \curvearrowright (X, \mu) = \prod_{h \in G} (\{0, 1\}, \mu_h)$ with $\mu_h(0) \in [\delta, 1 - \delta]$. Write $c_g(h) = \mu_h(0) - \mu_{g^{-1}h}(0)$.

- ▶ (Kakutani) Non-singular action iff $||c_g||_2 < \infty$ for all $g \in G$.
- ► (V Wahl) If $\sum_{g \in G} \exp(-1/2 \|c_g\|_2^2) < +\infty$, then dissipative.

Theorem (Björklund-Kosloff-V, 2019)

Assume G has only one end, and $\sum_{g \in G} \exp(-8\delta^{-1} \|c_g\|_2^2) = +\infty$.

- The action is ergodic.
- The action is of type III₁, unless $\sum_{g \in G} (\mu_g(0) \gamma)^2 < +\infty$ for some $0 < \gamma < 1$.
- If G has more than one end, type III_{λ} may arise.
- ▶ A group *G* admits a type III₁ Bernoulli action iff $H^1(G, \ell^2(G)) \neq \{0\}$.