Classification problems in operator algebras

Mathematics Münster: Dynamics - Geometry - Structure

$$
20-22 \text { June } 2019
$$

KU LEUVEN

Stefaan Vaes*

[^0]
Operator algebras

We consider $*$-subalgebras $M \subset B(H)$, where the $*$-operation is the Hermitian adjoint.

- Operator norm: for $T \in B(H)$, we put $\|T\|=\sup \{\|T \xi\| \mid \xi \in H,\|\xi\| \leq 1\}$.

C*-algebras: norm closed $*$-subalgebras of $B(H)$.

- Weak topology:
$T_{i} \rightarrow T$ if and only if $\left\langle T_{i} \xi, \eta\right\rangle \rightarrow\langle T \xi, \eta\rangle$ for all $\xi, \eta \in H$.
Von Neumann algebras: weakly closed $*$-subalgebras of $B(H)$.
\leadsto Intimate connections to group theory, dynamical systems, quantum information theory, representation theory, ...

Commutative operator algebras

- Unital commutative C^{*}-algebras are of the form $C(X)$ where X is compact Hausdorff.
\leadsto algebraic topology, K-theory, continuous dynamics, geometric group theory
- Commutative von Neumann algebras are of the form $L^{\infty}(X, \mu)$ where (X, μ) is a standard probability space.
\leadsto ergodic theory, measurable dynamics, measurable group theory

Discrete groups and operator algebras

Let G be a countable (discrete) group.

- Left regular unitary representation $\lambda: G \rightarrow \mathcal{U}\left(\ell^{2}(G)\right): \lambda_{g} \delta_{h}=\delta_{g h}$.
- $\operatorname{span}\left\{\lambda_{g} \mid g \in G\right\}$ is the group algebra $\mathbb{C}[G]$.
- Take the norm closure: (reduced) group \mathbf{C}^{*}-algebra $C_{r}^{*}(G)$.
- Take the weak closure: group von Neumann algebra $L(G)$.

We have $G \subset \mathbb{C}[G] \subset C_{r}^{*}(G) \subset L(G)$.
At each inclusion, information gets lost \leadsto natural rigidity questions.

Open problems

- Kaplansky's conjectures for torsion-free groups G.
- Unit conjecture: the only invertibles in $\mathbb{C}[G]$ are multiples of group elements λ_{g}.
- Idempotent conjecture: 0 and 1 are the only idempotents in $\mathbb{C}[G]$.
- Kadison-Kaplansky: 0 and 1 are the only idempotents in $C_{r}^{*}(G)$.
- Free group factor problem: is $L\left(\mathbb{F}_{n}\right) \cong L\left(\mathbb{F}_{m}\right)$ if $n \neq m$?
- Connes' rigidity conjecture: $L(\operatorname{PSL}(n, \mathbb{Z})) \neq L(\operatorname{PSL}(m, \mathbb{Z}))$ if $3 \leq n<m$.
- Stronger form: if G has property (T) and $\pi: L(G) \rightarrow L(\Gamma)$ is a *-isomorphism, then $G \cong \Gamma$ and π is essentially given by such an isomorphism.
\leadsto Structure and classification of operator algebras is highly nontrivial.

Operator algebras and group actions

Let G be a countable group.

Continuous dynamics and C*-algebras

An action $G \curvearrowright X$ of G by homeomorphisms of a compact Hausdorff space X gives rise to the C^{*}-algebra $C(X) \rtimes_{r} G$.

Measurable dynamics and von Neumann algebras

An action $G \curvearrowright(X, \mu)$ of G by measure class preserving transformations of (X, μ) gives rise to a von Neumann algebra $L^{\infty}(X) \rtimes G$.

- These operator algebras contain $C(X)$, resp. $L^{\infty}(X)$, as subalgebras.
- They contain G as unitary elements $\left(u_{g}\right)_{g \in G}$.
- They encode the group action: $u_{g} F u_{g}^{*}=\alpha_{g}(F)$ where $\left(\alpha_{g}(F)\right)(x)=F\left(g^{-1} \cdot x\right)$.

Amenable von Neumann algebras: full classification

Some run-up: Murray - von Neumann types.
Factor: a von Neumann algebra M with trivial center, i.e. $M \not \approx M_{1} \oplus M_{2}$.
A factor M is of

- type I if there are minimal projections, i.e. $M \cong B(H)$,
- type I_{1} if not of type I and $1 \in M$ is a finite projection: if $v^{*} v=1$, then $v v^{*}=1$,
- type II_{∞} if not of type II_{1} but $p M p$ of type I_{1} for a projection $p \in M$,
- type III otherwise.

Theorem (Murray - von Neumann): every II_{1} factor admits a faithful normal trace $\tau: M \rightarrow \mathbb{C}$. Trace property: $\tau(x y)=\tau(y x)$.
\leadsto Type of $L^{\infty}(X) \rtimes G$ depends on the (non)existence of G-invariant measures on X, while $L(G)$ is always of type I_{1}.

The hyperfinite II_{1} factor

Take $M_{2}(\mathbb{C}) \subset M_{4}(\mathbb{C}) \subset M_{8}(\mathbb{C}) \subset \cdots$, where $A \mapsto\left(\begin{array}{ll}A & 0 \\ 0 & A\end{array}\right)$.
\leadsto Completion of direct limit: II_{1} factor R.

Definition (Murray - von Neumann)

A von Neumann algebra M is called approximately finite dimensional (AFD) if there exists an increasing sequence of finite dimensional subalgebras $A_{n} \subset M$ with weakly dense union.

Theorem (Murray - von Neumann)

The I_{1} factor R constructed above is the unique AFD factor of type I_{1}. It is called the hyperfinite II_{1} factor.

What about other types?
Which factors are AFD? $\quad L^{\infty}(X) \rtimes G$?

Amenability

Definition (von Neumann)

A countable group G is amenable if there exists a finitely additive probability measure m on the subsets of G such that $m(g \mathcal{U})=m(\mathcal{U})$ for all $g \in G$ and $\mathcal{U} \subset G$.
\leadsto Closely related to the Banach-Tarski paradox.
\leadsto Equivalently: there exists a G-invariant state $\omega: \ell^{\infty}(G) \rightarrow \mathbb{C}$.
Hakeda-Tomiyama: a von Neumann algebra $M \subset B(H)$ is amenable if there exists a conditional expectation $P: B(H) \rightarrow M$.
$\leadsto L(G)$ and $L^{\infty}(X) \rtimes G$ are amenable whenever G is amenable.

Theorem (Connes, 1976)

Every amenable von Neumann algebra is AFD! In particular, all amenable II_{1} factors are isomorphic with R.

Modular theory: Tomita - Takesaki - Connes

Murray - von Neumann: II_{1} factors admit a trace $\tau: M \rightarrow \mathbb{C}$, $\tau(x y)=\tau(y x)$.

Tomita - Takesaki: any faithful normal state $\omega: M \rightarrow \mathbb{C}$ on a von Neumann algebra M gives rise to a one-parameter group $\sigma_{t}^{\omega} \in \operatorname{Aut}(M)$ such that $\omega(x y)=\omega\left(y \sigma_{-i}^{\omega}(x)\right) \leadsto$ KMS condition.

Connes: this "time evolution" $\left(\sigma_{t}^{\omega}\right)_{t \in \mathbb{R}}$ is essentially independent of the choice of ω.

- Connes - Takesaki: every type III factor M is of the form $M \cong N \rtimes \mathbb{R}$ where N is of type II_{∞}.
- Restricting the action $\mathbb{R} \curvearrowright N$ to the center of N leads to an ergodic flow $\mathbb{R} \curvearrowright(Z, \eta)$.
- This is an isomorphism invariant of M.

Classification of amenable factors

Type III factor $M \leadsto$ ergodic flow $\mathbb{R} \curvearrowright(Z, \eta)$.

Definition (Connes)

A type III factor M is of

- type III_{λ} if the flow is periodic: $\mathbb{R} \curvearrowright \mathbb{R} /(\log \lambda) \mathbb{Z}$,
- type II_{1} if the flow is trivial: $Z=\{\star\}$,
- type III_{0} if the flow is properly ergodic.

Classification of amenable factors

- (Connes) For each of the following types, there is a unique amenable factor: type II_{1}, type II_{∞}, type II_{λ} with $0<\lambda<1$.
- (Connes, Krieger) The amenable factors of type III_{0} are exactly classified by the associated flow.
- (Haagerup) There is a unique amenable III_{1} factor.

Amenability for C*-algebras

The correct notion is: nuclearity.

The C^{*}-algebra $C_{r}^{*}(G)$ is nuclear if and only if G is amenable.

Elliott program: classification of unital, simple, nuclear C^{*}-algebras by K-theory and traces.
\leadsto Huge efforts, by many people, over the past decades.

Currently approaching a final classification theorem, for all unital, simple, nuclear C^{*}-algebras satisfying a (needed) regularity property.

Beyond amenability: Popa's deformation/rigidity theory

Consider one of the most well studied group actions:
Bernoulli action $G \curvearrowright(X, \mu)=\prod_{g \in G}\left(X_{0}, \mu_{0}\right):(g \cdot x)_{h}=x_{g-1 h}$.

- $M=L^{\infty}(X) \rtimes G$ is a I_{1} factor.
- Whenever G is amenable, we have $M \cong R$.

Superrigidity theorem (Popa, Ioana, V)

If G has property (T), e.g. $G=\operatorname{SL}(n, \mathbb{Z})$ for $n \geq 3$,
or if $G=G_{1} \times G_{2}$ is a non-amenable direct product group, then $L^{\infty}(X) \rtimes G$ remembers the group G and its action $G \curvearrowright(X, \mu)$.

More precisely: if $L^{\infty}(X) \rtimes G \cong L^{\infty}(Y) \rtimes \Gamma$ for any other free, ergodic, probability measure preserving (pmp) group action $\Gamma \curvearrowright(Y, \eta)$,
then $G \cong \Gamma$ and the actions are conjugate (isomorphic).

Free groups

Theorem (Popa - V)

Whenever $n \neq m$, we have that $L^{\infty}(X) \rtimes \mathbb{F}_{n} \neq L^{\infty}(Y) \rtimes \mathbb{F}_{m}$, for arbitrary free, ergodic, pmp actions of the free groups.

- If $L^{\infty}(X) \rtimes \mathbb{F}_{n} \cong L^{\infty}(Y) \rtimes \mathbb{F}_{m}$, there also exists an isomorphism π such that $\pi\left(L^{\infty}(X)\right)=L^{\infty}(Y)$.
This is thanks to uniqueness of the Cartan subalgebra.
- Such a π induces an orbit equivalence: a measurable bijection $\Delta: X \rightarrow Y$ such that $\Delta\left(\mathbb{F}_{n} \cdot x\right)=\mathbb{F}_{m} \cdot \Delta(x)$ for a.e. $x \in X$.
- (Gaboriau) The L^{2}-Betti numbers of a group are invariant under orbit equivalence.
We have $\beta_{1}^{(2)}\left(\mathbb{F}_{n}\right)=n-1$.

L^{2}-Betti numbers of groups

- Let G be a countable group. View $\ell^{2}(G)$ as a left G-module (by left translation) and a right $L(G)$-module (by right translation).
- Atiyah, Cheeger-Gromov, Lück:
define $\beta_{n}^{(2)}(G)=\operatorname{dim}_{L(G)} H^{n}\left(G, \ell^{2}(G)\right)$.
- Gaboriau: invariant under orbit equivalence.

Conjecture (Popa, Ioana, Peterson)

If $L^{\infty}(X) \rtimes G \cong L^{\infty}(Y) \rtimes \Gamma$ for some free, ergodic, pmp actions, then $\beta_{n}^{(2)}(G)=\beta_{n}^{(2)}(\Gamma)$ for all $n \geq 0$.

Big dream (many authors)

Define some kind of L^{2}-Betti numbers for II_{1} factors.
Prove that $\beta_{1}^{(2)}\left(L\left(\mathbb{F}_{n}\right)\right)=n-1$.

Bernoulli actions of type III

Consider the $G \curvearrowright(X, \mu)=\prod_{h \in G}\left(X_{0}, \mu_{h}\right)$ given by $(g \cdot x)_{h}=x_{g-1 h}$.

- (Kakutani) The action is non-singular (i.e. measure class preserving) if and only if all μ_{h} are absolutely continuous and, for all $g \in G$, we have that $\sum_{h \in G} d\left(\mu_{g h}, \mu_{h}\right)^{2}<\infty$.
- Ergodic? What is the type of $L^{\infty}(X) \rtimes G$?

Theorem (V - Wahl, 2017)

If $H^{1}\left(G, \ell^{2}(G)\right)=\{0\}$, there are no non-singular Bernoulli actions of type III. More precisely,
every nonsingular Bernoulli action of G is the disjoint union of a classical, pmp Bernoulli action and a dissipative Bernoulli action.

Dissipative action $=$ type I
$=$ existence of a fundamental domain $X=\bigsqcup_{g \in G} g \cdot \mathcal{U}$.

Bernoulli actions of type III

What if $H^{1}\left(G, \ell^{2}(G)\right) \neq\{0\}$? Very delicate! Even for $G=\mathbb{Z}$.

- (Krengel, 1970)

The group $G=\mathbb{Z}$ admits a nonsingular Bernoulli action without invariant probability measure.

- (Hamachi, 1981)

The group $G=\mathbb{Z}$ admits a nonsingular Bernoulli action of type III.

- (Kosloff, 2009)

The group $G=\mathbb{Z}$ admits a nonsingular Bernoulli action of type $\mathbf{I I I}_{1}$.
\sim In all cases: no explicit constructions.
\sim (V - Wahl, 2017) Explicit examples of type III I_{1} Bernoulli actions for many amenable groups and many groups with $\beta_{1}^{(2)}(G)>0$.

Type of nonsingular Bernoulli actions

Let $G \curvearrowright(X, \mu)=\prod_{g \in G}\left(\{0,1\}, \mu_{g}\right)$ be a conservative Bernoulli action.

Theorem (Björklund-Kosloff-V, 2019)

Let G be abelian and not locally finite.

- If $\lim _{g \rightarrow \infty} \mu_{g}(0)$ does not exist: type III_{1}.
- If $\lim _{g \rightarrow \infty} \mu_{g}(0)=\lambda$ and $0<\lambda<1$, then type II_{1} or type III_{1}, depending on $\sum_{g \in G}\left(\mu_{g}(0)-\lambda\right)^{2}$ being finite or not.
- If $\lim _{g \rightarrow \infty} \mu_{g}(0)=\lambda$ and $\lambda \in\{0,1\}$, then type III.
- Answering Krengel: a Bernoulli action of \mathbb{Z} is never of type I_{∞}.
- When G is infinite and locally finite, types II_{∞} and II_{λ} do arise.
- For non-amenable groups G, the growth of the associated 1-cocycle $c: G \rightarrow \ell^{2}(G)$ plays a key role.
- Type III $_{\lambda}$ appears if G has more than one end.

Type of nonsingular Bernoulli actions

Let $G \curvearrowright(X, \mu)=\prod_{h \in G}\left(\{0,1\}, \mu_{h}\right)$ with $\mu_{h}(0) \in[\delta, 1-\delta]$.
Write $c_{g}(h)=\mu_{h}(0)-\mu_{g^{-1} h}(0)$.

- (Kakutani) Non-singular action iff $\left\|c_{g}\right\|_{2}<\infty$ for all $g \in G$.
- ($\mathrm{V}-\mathrm{Wahl}$) If $\sum_{g \in G} \exp \left(-1 / 2\left\|c_{g}\right\|_{2}^{2}\right)<+\infty$, then dissipative.

Theorem (Björklund-Kosloff-V, 2019)

Assume G has only one end, and $\sum_{g \in G} \exp \left(-8 \delta^{-1}\left\|c_{g}\right\|_{2}^{2}\right)=+\infty$.

- The action is ergodic.
- The action is of type $I I I_{1}$, unless $\sum_{g \in G}\left(\mu_{g}(0)-\gamma\right)^{2}<+\infty$ for some $0<\gamma<1$.
- If G has more than one end, type III $_{\lambda}$ may arise.
- A group G admits a type $I I I_{1}$ Bernoulli action iff $H^{1}\left(G, \ell^{2}(G)\right) \neq\{0\}$.

[^0]: * Supported by ERC Consolidator Grant 614195

