Equivalence of Liouville quantum gravity and the Brownian map

Jason Miller

Cambridge
joint with
Ewain Gwynne (Cambridge)
Scott Sheffield (MIT)

June 21, 2019

Overview

How does one make sense of the uniform measure on surfaces homeomorphic to the sphere?

- Approach 1: Random planar maps
- Rooted in the combinatorics literature from the 1960s
- Approach 2: Liouville quantum gravity (LQG)
- Rooted in the physics literature from the 1980s
- Relationship

Schramm-Loewner evolution, percolation, Eden growth model, diffusion limited aggregation

Planar Brownian motion

- Planar Brownian motion is the "uniform measure" on continuous curves in \mathbf{C}

Planar Brownian motion

- Planar Brownian motion is the "uniform measure" on continuous curves in \mathbf{C}
- Arises as the scaling limit of uniformly random discrete paths

Planar Brownian motion

- Planar Brownian motion is the "uniform measure" on continuous curves in \mathbf{C}
- Arises as the scaling limit of uniformly random discrete paths
- Let S_{n} be a simple random walk on \mathbf{Z}^{2}
- moves up/down/left/right in each time step with equal probability

Planar Brownian motion

- Planar Brownian motion is the "uniform measure" on continuous curves in \mathbf{C}
- Arises as the scaling limit of uniformly random discrete paths
- Let S_{n} be a simple random walk on \mathbf{Z}^{2}
- moves up/down/left/right in each time step with equal probability
- Donsker's invariance principle: $S_{\lfloor t n\rfloor} / \sqrt{n}$ converges to planar Brownian motion as $n \rightarrow \infty$

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with n faces - random planar map (RPM).

Random planar maps

- A planar map is a finite graph together with an embedding in the plane so that no edges cross.
- Its faces are the connected components of the complement of its edges
- A map is a quadrangulation if each face has 4 adjacent edges
- A quadrangulation corresponds to a metric space when equipped with the graph distance
- Interested in uniformly random quadrangulations with n faces - random planar map (RPM).
- First studied by Tutte in 1960s while working on the four color theorem
- Combinatorics: enumeration formulas
- Physics: statistical physics models: percolation, Ising, UST ...
- Probability: "uniformly random surface," Brownian surface

What is the structure of a typical quadrangulation when the number of faces is large?

What is the structure of a typical quadrangulation when the number of faces is large? How many are there? Tutte:

$$
\frac{2 \times 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} .
$$

Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)

Structure of large random planar maps

- Diameter is $\asymp n^{1 / 4}$ (Chaissang-Schaefer)
(Simulation due to J.F. Marckert)

Structure of large random planar maps

(Simulation due to J.F. Marckert)

- Diameter is $\asymp n^{1 / 4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1 / 4}$ (Le Gall)

Structure of large random planar maps

(Simulation due to J.F. Marckert)

- Diameter is $\asymp n^{1 / 4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1 / 4}$ (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

Structure of large random planar maps

(Simulation due to J.F. Marckert)

- Diameter is $\asymp n^{1 / 4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1 / 4}$ (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)

Structure of large random planar maps

(Simulation due to J.F. Marckert)

- Diameter is $\asymp n^{1 / 4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1 / 4}$ (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)
- Brownian surface: disk, plane, sphere, half-plane

Structure of large random planar maps

(Simulation due to J.F. Marckert)

- Diameter is $\asymp n^{1 / 4}$ (Chaissang-Schaefer)
- Non-trivial subsequentially limiting metric spaces upon scaling distances by $n^{-1 / 4}$ (Le Gall)
- Subsequentially limiting space is a.s.:
- 4-dimensional (Le Gall)
- homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: the Brownian map (Le Gall, Miermont)
- Brownian surface: disk, plane, sphere, half-plane
- Abstract metric measure spaces (X, d, μ)

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability. Ranges very likely to intersect in many places.

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability. Ranges very likely to intersect in many places. How unlikely is it that they travel a long distance without intersecting?

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability. Ranges very likely to intersect in many places. How unlikely is it that they travel a long distance without intersecting? Hard problem...

Brownian intersection exponents

Three "random walks" on the planar grid \mathbf{Z}^{2}. Each one moves independently in each direction with equal probability. Ranges very likely to intersect in many places. How unlikely is it that they travel a long distance without intersecting? Hard problem...

How was it solved?

Idea: Often easier to solve problems like this one on random quadrangulations because they are "less rigid."

How was it solved?

Idea: Often easier to solve problems like this one on random quadrangulations because they are "less rigid."

- Formulate and solve the analogous problem on a random quadrangulation (Duplantier)

How was it solved?

Idea: Often easier to solve problems like this one on random quadrangulations because they are "less rigid."

- Formulate and solve the analogous problem on a random quadrangulation (Duplantier)
- Apply a physics heuristic called the "KPZ relation" which converts probabilities computed on random quadrangulations to the corresponding probabilities on the square lattice

How was it solved?

Idea: Often easier to solve problems like this one on random quadrangulations because they are "less rigid."

- Formulate and solve the analogous problem on a random quadrangulation (Duplantier)
- Apply a physics heuristic called the "KPZ relation" which converts probabilities computed on random quadrangulations to the corresponding probabilities on the square lattice
- Verify the physics prediction mathematically (Lawler, Schramm, Werner using SLE)

How was it solved?

Idea: Often easier to solve problems like this one on random quadrangulations because they are "less rigid."

- Formulate and solve the analogous problem on a random quadrangulation (Duplantier)
- Apply a physics heuristic called the "KPZ relation" which converts probabilities computed on random quadrangulations to the corresponding probabilities on the square lattice
- Verify the physics prediction mathematically (Lawler, Schramm, Werner using SLE)

Many other examples just like this.

Picking a surface at random in the continuum

Uniformization theorem: every two-dimensional Riemannian manifold homeomorphic to the unit disk \mathbf{D} can be conformally mapped to the disk.

Picking a surface at random in the continuum

Uniformization theorem: every two-dimensional Riemannian manifold homeomorphic to the unit disk \mathbf{D} can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}\left(d x^{2}+d y^{2}\right)$ for some smooth function ρ where $d x^{2}+d y^{2}$ is the Euclidean metric.

Picking a surface at random in the continuum

Uniformization theorem: every two-dimensional Riemannian manifold homeomorphic to the unit disk \mathbf{D} can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}\left(d x^{2}+d y^{2}\right)$ for some smooth function ρ where $d x^{2}+d y^{2}$ is the Euclidean metric.
\Rightarrow Can parameterize the surfaces homeomorphic to \mathbf{D} with smooth functions on \mathbf{D}.

- If $\rho=0$, get \mathbf{D}
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Picking a surface at random in the continuum

Uniformization theorem: every two-dimensional Riemannian manifold homeomorphic to the unit disk \mathbf{D} can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}\left(d x^{2}+d y^{2}\right)$ for some smooth function ρ where $d x^{2}+d y^{2}$ is the Euclidean metric.
\Rightarrow Can parameterize the surfaces homeomorphic to \mathbf{D} with smooth functions on \mathbf{D}.

- If $\rho=0$, get \mathbf{D}
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is the measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

The Gaussian free field

- The discrete Gaussian free field (DGFF) is the measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function

The Gaussian free field

- The discrete Gaussian free field (DGFF) is the measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, the Gaussian field h with

$$
\operatorname{cov}(h(x), h(y))=G(x, y)
$$

where G is the Green's function for Δ

The Gaussian free field

- The discrete Gaussian free field (DGFF) is the measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, the Gaussian field h with

$$
\operatorname{cov}(h(x), h(y))=G(x, y)
$$

where G is the Green's function for Δ

- Conformally invariant and Markovian

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- III-defined as h takes values in the space of distributions

(Number of subdivisions)

Liouville quantum gravity

- Liouville quantum gravity (LQG):
$e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- III-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

$$
\gamma=0.5
$$

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- III-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

Hoegh-Krohn, Kahane, Duplantier-Sheffield.

(Number of subdivisions)

Liouville quantum gravity

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- III-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

Hoegh-Krohn, Kahane, Duplantier-Sheffield.

$$
\gamma=1.0
$$

(Number of subdivisions)

Liouville quantum gravity

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- III-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

Hoegh-Krohn, Kahane, Duplantier-Sheffield.

(Number of subdivisions)

Liouville quantum gravity

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Introduced by Polyakov in the 1980s
- III-defined as h takes values in the space of distributions
- Previously, area measure constructed using a regularization procedure
- Can compute areas of regions and lengths of curves
- Does not come with an obvious notion of "distance"

Hoegh-Krohn, Kahane, Duplantier-Sheffield.

$$
\gamma=2.0
$$

(Number of subdivisions)

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Previously, only made sense of as an area measure using a regularization procedure:

$$
\mu_{h}^{\gamma}=\lim _{\epsilon \rightarrow 0} \epsilon^{\gamma^{2} / 2} e^{\gamma h_{\epsilon}(z)} d x d y
$$

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Previously, only made sense of as an area measure using a regularization procedure:

$$
\mu_{h}^{\gamma}=\lim _{\epsilon \rightarrow 0} \epsilon^{\gamma^{2} / 2} e^{\gamma h_{\epsilon}(z)} d x d y
$$

- LQG has a conformal structure (compute angles, etc...) and an area measure

LQG and TBM

- Two "canonical" (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in[0,2)$, Liouville quantum gravity (LQG) is the "random surface" with "Riemannian metric" $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF
- Previously, only made sense of as an area measure using a regularization procedure:

$$
\mu_{h}^{\gamma}=\lim _{\epsilon \rightarrow 0} \epsilon^{\gamma^{2} / 2} e^{\gamma h_{\epsilon}(z)} d x d y
$$

- LQG has a conformal structure (compute angles, etc...) and an area measure
- In contrast, TBM has a metric structure and an area measure

Canonical embedding of TBM into \mathbf{S}^{2}

- It has been believed that there should be a "natural embedding" of TBM into \mathbf{S}^{2} and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

Canonical embedding of TBM into \mathbf{S}^{2}

- It has been believed that there should be a "natural embedding" of TBM into \mathbf{S}^{2} and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma=\sqrt{8 / 3}$

- Discrete approach: take a uniformly random planar map and embed it conformally into \mathbf{S}^{2} (circle packing, uniformization, etc...), then in the $n \rightarrow \infty$ limit it converges to a form of $\sqrt{8 / 3-L Q G}$.

Equivalence of LQG and TBM

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$, h a GFF
- The Brownian map (TBM): Gromov-Hausdorff limit of uniformly random quadrangulations

Theorem (M., Sheffield)
$T B M$ and $\sqrt{8 / 3}-L Q G$ are equivalent. More precisely, there is a canonical way to endow $\sqrt{8 / 3}-L Q G$ with a metric so that it is isometric to TBM.

Equivalence of LQG and TBM

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right), h$ a GFF
- The Brownian map (TBM): Gromov-Hausdorff limit of uniformly random quadrangulations

Theorem (M., Sheffield)
$T B M$ and $\sqrt{8 / 3}-L Q G$ are equivalent. More precisely, there is a canonical way to endow $\sqrt{8 / 3}-L Q G$ with a metric so that it is isometric to TBM.

Comments

Equivalence of LQG and TBM

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right), h$ a GFF
- The Brownian map (TBM): Gromov-Hausdorff limit of uniformly random quadrangulations

Theorem (M., Sheffield)
$T B M$ and $\sqrt{8 / 3}-L Q G$ are equivalent. More precisely, there is a canonical way to endow $\sqrt{8 / 3}-L Q G$ with a metric so that it is isometric to TBM.

Comments

1. Construction is purely in the continuum

Equivalence of LQG and TBM

- Liouville quantum gravity (LQG): $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right), h$ a GFF
- The Brownian map (TBM): Gromov-Hausdorff limit of uniformly random quadrangulations

Theorem (M., Sheffield)
$T B M$ and $\sqrt{8 / 3}-L Q G$ are equivalent. More precisely, there is a canonical way to endow $\sqrt{8 / 3}-L Q G$ with a metric so that it is isometric to TBM.

Comments

1. Construction is purely in the continuum
2. Ideas are connected to aggregation models, such as the Eden model and diffusion limited aggregation

Metric ball on a $\sqrt{8 / 3}-\mathrm{LQG}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa>0$

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa>0$
- Simple for $\kappa \in(0,4]$, self-intersecting for $\kappa \in(4,8)$, space-filling for $\kappa \geq 8$

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa>0$
- Simple for $\kappa \in(0,4]$, self-intersecting for $\kappa \in(4,8)$, space-filling for $\kappa \geq 8$
- Dimension: $1+\kappa / 8$ for $\kappa \leq 8$

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$

Schramm-Loewner evolution (SLE)

- Introduced by Schramm in '99 to describe limits of interfaces in discrete models
- Characterized by conformal invariance and domain Markov property
- Indexed by a parameter $\kappa>0$
- Simple for $\kappa \in(0,4]$, self-intersecting for $\kappa \in(4,8)$, space-filling for $\kappa \geq 8$
- Dimension: $1+\kappa / 8$ for $\kappa \leq 8$
- Some special κ values:
- $\kappa=2$ LERW, $\kappa=8$ UST
- $\kappa=8 / 3$ Self-avoiding walk
- $\kappa=3$ Ising, $\kappa=16 / 3$ FK-Ising
- $\kappa=4$ GFF level lines
- $\kappa=6$ Percolation
- $\kappa=12$ Bipolar orientations

Critical percolation, hexagonal lattice Each hexagon is colored red or black with prob. $\frac{1}{2}$
(Lawler-Schramm-Werner, Smirnov, Schramm-Sheffield, ...)

SLE_{κ}

Loewner's equation: if η is a non self-crossing path in \mathbf{H} with $\eta(0) \in \mathbf{R}$ and g_{t} is the Riemann map from the unbounded component of $\mathbf{H} \backslash \eta([0, t])$ to \mathbf{H} normalized by $g_{t}(z)=z+o(1)$ as $z \rightarrow \infty$, then

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W_{t}} \text { where } g_{0}(z)=z \text { and } W_{t}=g_{t}(\eta(t))
$$

SLE_{κ}

Loewner's equation: if η is a non self-crossing path in \mathbf{H} with $\eta(0) \in \mathbf{R}$ and g_{t} is the Riemann map from the unbounded component of $\mathbf{H} \backslash \eta([0, t])$ to \mathbf{H} normalized by $g_{t}(z)=z+o(1)$ as $z \rightarrow \infty$, then

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W_{t}} \text { where } g_{0}(z)=z \text { and } W_{t}=g_{t}(\eta(t))
$$

SLE $_{\kappa}$ in H : The random curve associated with (\star) with $W_{t}=\sqrt{\kappa} B_{t}, B$ a standard Brownian motion.

SLE_{κ}

Loewner's equation: if η is a non self-crossing path in \mathbf{H} with $\eta(0) \in \mathbf{R}$ and g_{t} is the Riemann map from the unbounded component of $\mathbf{H} \backslash \eta([0, t])$ to \mathbf{H} normalized by $g_{t}(z)=z+o(1)$ as $z \rightarrow \infty$, then

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W_{t}} \text { where } g_{0}(z)=z \text { and } W_{t}=g_{t}(\eta(t))
$$

SLE $_{\kappa}$ in H : The random curve associated with (\star) with $W_{t}=\sqrt{\kappa} B_{t}, B$ a standard Brownian motion. Other domains: apply conformal mapping.

SLE(4)

SLE(8)

Simulations due to Tom Kennedy.

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask
- Graph $G=(V, E), p \in(0,1)$.

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask
- Graph $G=(V, E), p \in(0,1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask
- Graph $G=(V, E), p \in(0,1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin
- Interested in connectivity properties of the resulting graph

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask
- Graph $G=(V, E), p \in(0,1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin
- Interested in connectivity properties of the resulting graph
- Critical value p_{c} :
- $p>p_{c} \rightarrow$ there exists an infinite cluster
- $p<p_{c} \rightarrow$ all clusters are finite

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask
- Graph $G=(V, E), p \in(0,1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin

- Crossing probabilities

Percolation

- Introduced in the mathematics literature by Hammersley and Welsh (1957)
- Motivation: understand the flow of gas through a gas mask
- Graph $G=(V, E), p \in(0,1)$.
- Keep each $e \in E$ based on the toss of an independent p-coin

- Crossing probabilities
- Scaling limits

Critical bond percolation on a box in \mathbf{Z}^{2} with side-length 1000 , conformally mapped to D. Shown are the clusters which touch the boundary.

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the \square-lattice

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the

\square-lattice

- $p_{c}=\frac{1}{2}$ for site percolation on the \triangle-lattice

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the \square-lattice
- $p_{c}=\frac{1}{2}$ for site percolation on the \triangle-lattice
- Smirnov: The exploration path between open and closed sites in critical site
 percolation on the \triangle-lattice converges to SLE_{6} as the mesh size tends to 0.

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the \square-lattice
- $p_{c}=\frac{1}{2}$ for site percolation on the \triangle-lattice
- Smirnov: The exploration path between open and closed sites in critical site
 percolation on the \triangle-lattice converges to SLE_{6} as the mesh size tends to 0.

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the \square-lattice
- $p_{c}=\frac{1}{2}$ for site percolation on the \triangle-lattice
- Smirnov: The exploration path between open and closed sites in critical site
 percolation on the \triangle-lattice converges to SLE_{6} as the mesh size tends to 0.

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the D-lattice
- $p_{c}=\frac{1}{2}$ for site percolation on the \triangle-lattice
- Smirnov: The exploration path between open and closed sites in critical site
 percolation on the \triangle-lattice converges to SLE_{6} as the mesh size tends to 0.

Open problem: is there any universality?

Results on planar lattices

- $p_{c}=\frac{1}{2}$ for bond percolation on the \square-lattice
- $p_{c}=\frac{1}{2}$ for site percolation on the \triangle-lattice
- Smirnov: The exploration path between open and closed sites in critical site
 percolation on the \triangle-lattice converges to SLE_{6} as the mesh size tends to 0.

Open problem: is there any universality? Does the percolation exploration path converge on any other planar lattice?

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle
- Angel-Curien: $p_{c}=\frac{3}{4}$ for face percolation on a random \square

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle
- Angel-Curien: $p_{c}=\frac{3}{4}$ for face percolation on a random \square

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle
- Angel-Curien: $p_{c}=\frac{3}{4}$ for face percolation on a random \square
- Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex.

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle
- Angel-Curien: $p_{c}=\frac{3}{4}$ for face percolation on a random
- Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

Percolation on random planar maps

- Angel: $p_{c}=\frac{1}{2}$ for site percolation on a random \triangle
- Angel-Curien: $p_{c}=\frac{3}{4}$ for face percolation on a random \square
- Open faces are adjacent if they share an edge. Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have been computed (c.f. Angel-Curien, Menard-Nolin, Richlier...)

We will consider critical $p=p_{c}=\frac{3}{4}$ face percolation on a random \square.

Percolation exploration path

- Work on \square of the disk

Percolation exploration path

- Work on \square of the disk

Percolation exploration path

- Work on \square of the disk
- $p=p_{c}=3 / 4$

Percolation exploration path

- Work on \square of the disk
- $p=p_{c}=3 / 4$
- Open/closed ∂-conditions

Percolation exploration path

- Work on \square of the disk
- $p=p_{c}=3 / 4$
- Open/closed ∂-conditions
- There is a unique interface separating open/closed clusters attached to the boundary

Percolation exploration path

- Work on \square of the disk
- $p=p_{c}=3 / 4$
- Open/closed ∂-conditions
- There is a unique interface separating open/closed clusters attached to the boundary
- Perspective: this is a random path on a random metric space

Percolation exploration path

- Work on \square of the disk
- $p=p_{c}=3 / 4$
- Open/closed ∂-conditions
- There is a unique interface separating open/closed clusters attached to the boundary
- Perspective: this is a random path on a random metric space

Theorem (Gwynne-M.)

The interface for critical face percolation on a random \square of the disk converges to SLE_{6} on $\sqrt{8 / 3}-L Q G$.

Percolation exploration path

- Work on \square of the disk
- $p=p_{c}=3 / 4$
- Open/closed ∂-conditions
- There is a unique interface separating open/closed clusters attached to the boundary
- Perspective: this is a random path on a random metric space

Theorem (Gwynne-M.)

The interface for critical face percolation on a random \square of the disk converges to SLE_{6} on $\sqrt{8 / 3}-L Q G$.

Universal strategy: works for any random planar map model provided one has certain technical inputs.

Final words

γ-LQG: $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF.

- γ-LQG for $\gamma=\sqrt{8 / 3}$ corresponds to uniformly random planar maps / TBM

Final words

γ-LQG: $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF.

- γ-LQG for $\gamma=\sqrt{8 / 3}$ corresponds to uniformly random planar maps / TBM
- Other values of γ correspond to random planar maps with extra structure
$-\sqrt{3} \longleftrightarrow$ Ising model
- $\sqrt{2} \longleftrightarrow$ Uniform spanning tree

Final words

γ-LQG: $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF.

- γ-LQG for $\gamma=\sqrt{8 / 3}$ corresponds to uniformly random planar maps / TBM
- Other values of γ correspond to random planar maps with extra structure
- $\sqrt{3} \longleftrightarrow$ Ising model
- $\sqrt{2} \longleftrightarrow$ Uniform spanning tree
-
- Metric properties of γ-LQG less well-understood

Final words

γ-LQG: $e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right)$ where h is a GFF.

- γ-LQG for $\gamma=\sqrt{8 / 3}$ corresponds to uniformly random planar maps / TBM
- Other values of γ correspond to random planar maps with extra structure
- $\sqrt{3} \longleftrightarrow$ Ising model
- $\sqrt{2} \longleftrightarrow$ Uniform spanning tree
-
- Metric properties of γ-LQG less well-understood
- Hausdorff dimension of γ-LQG for $\gamma \neq \sqrt{8 / 3}$ is not known
- Watabiki prediction:

$$
d_{\gamma}=1+\frac{\gamma^{2}}{4}+\frac{1}{4} \sqrt{\left(4+\gamma^{2}\right)^{2}+16 \gamma^{2}}
$$

- Ding, Goswami, Gwynne, Zeitouni, Zhang.

