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Overview

How does one make sense of the uniform measure on surfaces homeomorphic to
the sphere?

I Approach 1: Random planar maps

I Rooted in the combinatorics literature from the 1960s

I Approach 2: Liouville quantum gravity (LQG)

I Rooted in the physics literature from the 1980s

I Relationship

Schramm-Loewner evolution, percolation, Eden growth model, diffusion limited

aggregation
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Planar Brownian motion

I Planar Brownian motion is the “uniform measure”
on continuous curves in C

I Arises as the scaling limit of uniformly random
discrete paths

I Let Sn be a simple random walk on Z2

I moves up/down/left/right in each time step
with equal probability

I Donsker’s invariance principle: Sbtnc/
√
n

converges to planar Brownian motion as n→∞
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Random planar maps
I A planar map is a finite graph together with an

embedding in the plane so that no edges cross.

I Its faces are the connected components of the
complement of its edges

I A map is a quadrangulation if each face has 4
adjacent edges

I A quadrangulation corresponds to a metric space
when equipped with the graph distance

I Interested in uniformly random quadrangulations
with n faces — random planar map (RPM).

I First studied by Tutte in 1960s while working on the
four color theorem

I Combinatorics: enumeration formulas
I Physics: statistical physics models:

percolation, Ising, UST ...
I Probability: “uniformly random surface,”

Brownian surface
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What is the structure of a typical quadrangulation when the number of faces is large?

How many are there? Tutte:

2× 3n

(n + 1)(n + 2)

(
2n
n

)
.
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Structure of large random planar maps

(Simulation due to J.F. Marckert)

I Diameter is � n1/4 (Chaissang-Schaefer)

I Non-trivial subsequentially limiting metric spaces
upon scaling distances by n−1/4 (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall and

Paulin, Miermont)

I There exists a unique limit in distribution: the
Brownian map (Le Gall, Miermont)

I Brownian surface: disk, plane, sphere,
half-plane

I Abstract metric measure spaces (X , d , µ)
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Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability.

Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability. Ranges very likely to intersect in many places.

How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability. Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting?

Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability. Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



Brownian intersection exponents

Three “random walks” on the planar grid Z2. Each one moves independently in each

direction with equal probability. Ranges very likely to intersect in many places. How

unlikely is it that they travel a long distance without intersecting? Hard problem...

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 8 / 26



How was it solved?

Idea: Often easier to solve problems like this one on random
quadrangulations because they are “less rigid.”

I Formulate and solve the analogous problem on a
random quadrangulation (Duplantier)

I Apply a physics heuristic called the “KPZ relation”
which converts probabilities computed on random
quadrangulations to the corresponding probabilities on
the square lattice

I Verify the physics prediction mathematically (Lawler,
Schramm, Werner using SLE)

Many other examples just like this.
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Picking a surface at random in the continuum
Uniformization theorem: every two-dimensional Riemannian manifold homeomorphic to
the unit disk D can be conformally mapped to the disk.

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)(dx2 + dy 2) for some
smooth function ρ where dx2 + dy 2 is the Euclidean metric.
⇒ Can parameterize the surfaces homeomorphic to D with smooth functions on D.

I If ρ = 0, get D

I If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

I The discrete Gaussian free field (DGFF) is the
measure on functions h : D → R for D ⊆ Z2 and
h|∂D = ψ with density with respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
the Gaussian field h with

cov(h(x), h(y)) = G(x , y)

where G is the Green’s function for ∆

I Conformally invariant and Markovian
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Liouville quantum gravity

I Liouville quantum gravity (LQG):
eγh(z)(dx2 + dy 2) where h is a GFF

I Introduced by Polyakov in the 1980s

I Ill-defined as h takes values in the
space of distributions

I Previously, area measure constructed
using a regularization procedure

I Can compute areas of regions
and lengths of curves

I Does not come with an obvious
notion of “distance”

Hoegh-Krohn, Kahane, Duplantier-Sheffield.

γ = 0.5

(Number of subdivisions)
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LQG and TBM

I Two “canonical” (but very different) constructions of random surfaces: Liouville
quantum gravity (LQG) and the Brownian map (TBM)

I For γ ∈ [0, 2), Liouville quantum gravity (LQG) is the “random surface” with
“Riemannian metric” eγh(z)(dx2 + dy 2) where h is a GFF

I Previously, only made sense of as an area measure using a regularization procedure:

µγh = lim
ε→0

εγ
2/2eγhε(z)dxdy .

I LQG has a conformal structure (compute angles, etc...) and an area measure

I In contrast, TBM has a metric structure and an area measure
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Canonical embedding of TBM into S2

I It has been believed that there should be a “natural embedding” of TBM into S2

and that the embedded surface is described by a form of Liouville quantum gravity
(LQG) with γ =

√
8/3

ψ

I Discrete approach: take a uniformly random planar map and embed it conformally
into S2 (circle packing, uniformization, etc...), then in the n→∞ limit it converges
to a form of

√
8/3-LQG.
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Equivalence of LQG and TBM

I Liouville quantum gravity (LQG): eγh(z)(dx2 + dy 2), h a GFF

I The Brownian map (TBM): Gromov-Hausdorff limit of uniformly random
quadrangulations

Theorem (M., Sheffield)
TBM and

√
8/3-LQG are equivalent. More precisely, there is a canonical way to endow√

8/3-LQG with a metric so that it is isometric to TBM.

Comments

1. Construction is purely in the continuum

2. Ideas are connected to aggregation models, such as the Eden model and diffusion limited
aggregation
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Metric ball on a
√

8/3-LQG

Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 16 / 26



Schramm-Loewner evolution (SLE)

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 Self-avoiding walk
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Each hexagon is colored red or black

with prob. 1
2

(Lawler-Schramm-Werner, Smirnov, Schramm-Sheffield, ...)
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SLEκ

η(t)
gt

η(s)

gt(η(s))

Wt=gt(η(t))

Loewner’s equation: if η is a non self-crossing path in H with η(0) ∈ R and gt is the
Riemann map from the unbounded component of H \ η([0, t]) to H normalized by
gt(z) = z + o(1) as z →∞, then

∂tgt(z) =
2

gt(z)−Wt
where g0(z) = z and Wt = gt(η(t)). (F)

SLEκ in H: The random curve associated with (F) with Wt =
√
κBt , B a standard

Brownian motion. Other domains: apply conformal mapping.
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Simulations due to Tom Kennedy.
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Percolation

I Introduced in the mathematics literature by
Hammersley and Welsh (1957)

I Motivation: understand the flow of gas
through a gas mask

I Graph G = (V ,E), p ∈ (0, 1).

I Keep each e ∈ E based on the toss of an
independent p-coin

I Interested in connectivity properties of the
resulting graph

I Critical value pc :
I p > pc → there exists an infinite

cluster
I p < pc → all clusters are finite

I Crossing probabilities
I Scaling limits
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Critical bond percolation on a box in Z2 with side-length 1000, conformally mapped

to D. Shown are the clusters which touch the boundary.
Jason Miller (Cambridge) Equivalence of LQG and TBM June 21, 2019 21 / 26



Results on planar lattices

I pc = 1
2

for bond percolation on the
�-lattice

I pc = 1
2

for site percolation on the 4-lattice

I Smirnov: The exploration path between
open and closed sites in critical site
percolation on the 4-lattice converges to
SLE6 as the mesh size tends to 0.

Open problem: is there any universality? Does
the percolation exploration path converge on any
other planar lattice?
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Percolation on random planar maps

I Angel: pc = 1
2

for site percolation on a random 4

I Angel-Curien: pc = 3
4

for face percolation on a
random �

I Open faces are adjacent if they share an edge.
Closed faces are adjacent if they share a vertex.

Percolation thresholds for many other types of maps have
been computed (c.f. Angel-Curien, Menard-Nolin, Rich-
lier...)

We will consider critical p = pc = 3
4

face percolation on a
random �.
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Percolation exploration path

I Work on � of the disk

I p = pc = 3/4

I Open/closed ∂-conditions

I There is a unique interface separating
open/closed clusters attached to the
boundary

I Perspective: this is a random path
on a random metric space

Theorem (Gwynne-M.)
The interface for critical face percolation
on a random � of the disk converges to
SLE6 on

√
8/3-LQG.

Universal strategy: works for any random planar map model provided one has certain

technical inputs.
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Final words

γ-LQG: eγh(z)(dx2 + dy 2) where h is a GFF.

I γ-LQG for γ =
√

8/3 corresponds to uniformly random planar maps / TBM

I Other values of γ correspond to random planar maps with extra structure

I
√

3←→ Ising model
I
√

2←→ Uniform spanning tree

I
...

I Metric properties of γ-LQG less well-understood

I Hausdorff dimension of γ-LQG for γ 6=
√

8/3 is not known

I Watabiki prediction:

dγ = 1 +
γ2

4
+

1

4

√
(4 + γ2)2 + 16γ2.

I Ding, Goswami, Gwynne, Zeitouni, Zhang.
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