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The Plateau Problem

The Plateau Problem is named after the Belgian physicist Joseph Plateau
(1801-1883) who was interested in the study of soap bubbles.

The classical Plateau Probelm
Given a curve Γ in R3 find a surface of minimal area which spans Γ.

G. De Philippis (SISSA): Regularity for mass minimizing currents 2/35



A general formulation of the Plateau problem

The generalised Plateau Problem
Given a (m − 1) dimensional manifold Γ in a n-dimensional Riemannian
manifold Mn (m < n) find a m-dimensional surface Σ ⊂M of minimal
“area” (m-dimensional volume) spanning Γ (∂Σ = Γ).

The general formulation has several relevant applications (Geometric
Analysis, General Relativity,...)
To solve the Plateau Problem one has to give a rigorous meaning to
the notions of surface, area, spanning a given boundary.

⇓

Geometric Measure Theory.
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The direct methods in the Calculus of Variations

Let {Σj} be a minimising sequence, i.e.

Area(Σj)→ inf
{

Area(Σ) : ∂Σ = Γ
}

∂Σj = Γ.

To apply the direct methods of the Calculus of Variations we need:
(i) pre-compactness: Σj → Σ∞

(ii) closure: ∂Σ∞ = Γ
(iii) lower-semicontinuity

Area(Σ∞) ≤ lim inf Area(Σj)

Indeed in this case

Area(Σ∞) ≤ lim inf Area(Σj) = inf
{

Area(Σ) : ∂Σ = Γ
}
.

and Σ∞ is admissible.
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The direct methods in the Calculus of Variations

Three possible approaches:

Parametrized approach: Douglas, Rado, Courant,. . .
Set theoretical approach: Reifenberg, Almgren, Harrison-Pugh,
De Lellis-Ghiraldin-Maggi, D.-De Rosa-Ghiraldin,. . .
Distributional approach: De Giorgi, Federer-Fleming,. . .
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The parametrized approach

It works only for surfaces (m = 2).

Let Γ ⊂Mn be a Jordan curve, i.e. Γ = ϕ(S1), ϕ injective and continuous.
The class of admissible surfaces is given by images of maps from the unit
disk D ⊂ R2 ≈ C such that

X (∂D) ⊂ Γ

and
X : ∂D→ Γ is a weakly monotone parametrization.

(Note that we are not imposing that X
∣∣∣
∂D

= ϕ)
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The parametrized approach
The area functional

Area(X ) =
∫
D

∣∣∂x X ∧ ∂y X
∣∣.

is invariant under reparamerization:

ψ

D

X (D) = X (ψ(D))

X ◦ ψ

X

If ψ : D → D is a diffeomorphism

Area(X ) = Area(X ◦ ψ)

but possibly ‖X ◦ ψ‖ � ‖X‖, ⇒ no control on the parametrization!
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The parametrized approach

The problem is that the group of diffeomorphism is non compact.

However:

|∂x X ∧ ∂y X | ≤ |∂x X ||∂y X | ≤ |∂x X |2 + |∂y X |2
2 .

so that
Area(X ) ≤ Energy(X ) := 1

2

∫
D
|∇X |2.

Moreover we have equality if (and only if) X is conformal:

|∂x X | = |∂y X | ∂x X · ∂y X = 0.
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The parametrized approach
We are thus reduced to find a conformal minimizer of the energy.

The
energy is invariant by conformal diffeomorphism.

Energy(X ) = Energy(X ◦ ψ) ψ : D→ D conformal .

The conformal group is again non compact but it becomes trivial once we
fix the image of three points.

⇓

Theorem (Douglas-Rado)
There exists a conformal minimizer X̄ of Energy. Furthermore

Area(X̄ ) = inf
{

Area(X ) :

X : D→Mn, X : ∂D→ Γ monotone parametrization
}
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The parametrized approach

Some remarks:

- To allow reparametrizations it is important not to impose the strong
boundary condition X = ϕ on ∂D.

- The solution minimizes the area among all disk type surfaces. There
could be “better” surfaces with different topology:
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The paramtrized approach
In general one can prescribe the genus of the minimizer provided the
following “Douglas condition holds”:

Ag = inf
{

Area of surfaces with genus g spanned by Γ
}
< Ag−1

Question
Given a smooth boundary Γ is it true that there exists g0 such that

Ag0 ≤ Ag for all g?

If the curve is non smooth it is possible that Ag+1 < Ag :
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The set theoretical approach

In this setting:

- Surfaces are compact sets Γ ⊂ K (⊂Mn),
- Area is their m-dimensional Hausdorff measure:

Hm(K ) := sup
δ>0

inf
{∑

i∈N
rm
i : ri ≤ δ and K ⊂

⋃
i∈N

B(xi , ri )
}
.

- The notion of spanning a boundary Γ is given by requiring

i∗ : Hm−1(Γ,Z)→ Hm−1(K ,Z)

to be trivial.

This is the good framework to study soap bubbles!
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The distributional approach
Let Σ be a smooth m-dimensional surface, then

Dm(Mn) 3 ω 7→ [[Σ]](ω) :=
∫

Σ
ω

is a continuous linear functional on the space of compactly supported
smooth m-dimensional forms.

Moreover
(i)

Area(Σ) = sup
‖ω‖∞≤1

[[Σ]](ω)

(ii) For every (m − 1)-form η,

[[∂Σ]](η) =
∫
∂Σ
η

Stokes=
∫

Σ
dη = [[Σ]](dη)

We can recover the geometric data of Σ by its action on forms!
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Currents

Definition (De Rahm/Federer-Fleming)
A m-dimensional current T is a linear and continuous functional on
Dm(Mn), the space of compactly supported m-dimensional forms.

We also define:
- Mass:

M(T ) = sup
‖ω‖∞≤1

T (ω) ∈ (0,+∞]

- Boundary:
∂T (η) = T (dη) η ∈ Dm−1(Mn)

- Convergence:

Tj
∗
⇀ T ⇐⇒ Tj(ω)→ T (ω) ∀ω.
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The Plateau problem with currents

By abstract non-sense (Banach-Alouglu Theorem) we have:

Theorem
Given a (m − 1) dimensional manifold Γ in a n-dimensional Riemannian
manifold Mn there exists m-dimensional current T with spt T ⊂Mn such
that

M(T ) = min
{
M(S) : ∂S = [[Γ]]

}

The problem is that we added too many competitors!
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Too many currents...

Though currents generalizes surfaces, they can be too general:

Let
ω = a(x , y)dx + b(x , y)dy ∈ D1(R2)

then

T1(ω) = ∂2
x a(0, 0)

T2(ω) =
∫

[0,1]2
a(x , y)dxdy

are 1-dimensional currents.

Question
Can the above examples arise as limit of a minimising sequence of the

original Plateau problem?
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Federer-Fleming Closure Theorem

Theorem (Federer-Fleming)
The weak-∗ closure of{

[[Σ]] : Σ is a smooth m-dim surface with ∂Σ = Γ and Area(Σ) ≤ c
}

is given by the class of integer rectifiable currents.
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Integer rectifiable currents

Integer rectifiable currents are countably union of “pieces” of C 1 manifolds
with integer multiplicity.

2

1

1
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Integer rectifiable currents

Definition
A m-dimensional current T is said to be integer rectifiable if there exist two
sequences {Kj} and {θj} such that

- Kj is a compact subset of C 1 m-dimensional surface Mj ,
- θj ∈ N,
-
∑

j θjArea(Kj) < +∞
and

T (ω) =
∑

j
θj

∫
Kj
ω.
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The deformation Theorem

Theorem (Federer-Fleming)
The infimum among of the Plateau problem among smooth manifolds is
equal to the minimum of the Plateau problem among integer rectifiable
currents.
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Regularity

Integer rectifiable currents can nevertheless be ugly..

Question (Regularity)
Is a solution of the Plateau problem smooth?

Note that this would allow to solve the problem in the smooth category.

In particular when m = 2 it would prove that that for all (smooth) Γ there
exists g0 such that

Ag0 ≤ Ag for all g .

Regularity divides into:
Interior regularity (regularity away from Γ)
Boundary regularity (regularity close to Γ)
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Boundary regularity (regularity close to Γ)
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Interior regular points

Definition
An interior point p ∈ spt T \ Γ is regular, p ∈ Regi(T ), if there exists a
neighborhood U of p and a smooth manifold Σ such that

TxU = Q[[Σ]] for some Q ∈ N.
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Interior regularity

The regularity theory highly depends on the co-dimension n −m, let

Singi(T ) = spt T \ (Γ ∪ Regi(T ))

be the set of interior singular points.

Co-dimension one (n = m + 1): De Giorgi/Federer/Simons:

dimH Singi(T ) ≤ m − 7.

If m = 7, Singi(T ) is discrete. In general Singi(T ) is rectifiable
(Simon) and of locally finite measure (Naber-Valtorta).
High co-dimension (n ≥ m + 2): Almgren+De Lellis-Spadaro:

dimH Singi(T ) ≤ m − 2
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Interior regularity

The above results are optimal:

The current associated with the cone

C =
{

(x , y) ∈ R4 × R4 : |x | = |y |
}

is locally mass minimising (Bombieri-De Giorgi-Giusti).
Every complex analytic variety in Cm is locally mass-minimising
(Federer). For instance

V =
{

(z ,w) ∈ C2 : z2 = w3}
is locally mass minimising.

The proof of the two regularity results is quite different and Almgren’s proof
is 1000 pages long!
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Interior regularity: the case of surfaces

For surfaces (i.e. 2d currents) a more precise description is possible:

Co-dimension one (m = 2, n = 3): Minimizers are smooth away from
Γ.
High co-dimension (m = 2, n ≥ 4),
Chang+De Lellis-Spadaro-Spolaor: Singi(T ) is discrete and locally
around p ∈ Singi(T ), spt T is given by finitely many branched disk
intersecting at p.

Note that the second result is perfectly coherent with the structure of
complex variety!
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Towards boundary regularity: Orientation

The Plateau problem with currents depends on the orientation:

1 1

2

Note that there are boundary points which lies at the interior of spt T !
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Boundary regular points

Definition
A boundary point p ∈ Γ is regular, p ∈ Regb(T ), if there exists a
neighborhood U of p and a smooth m-dimensional manifold Σ such that or
some Q ∈ N.

TxU = Q[[Σ+]] + (Q − 1)[[Σ−]] for some Q ∈ N.

where Σ± are the two parts in which Γ splits Σ.

We will say that
p is a regular one-sided point if Q = 1;
p is a regular two-sided point if Q ≥ 2;
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Back to the example...

12

ptwo-sided

q one-sided

Note that defining

Θ(T , x) = lim
r→0

M(T Br (x))
ωmrm ,

then
Θ(T , q) = 1

2 Θ(T , p) = 3
2
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Interlude

Question (Almgren)
Can two sided regular point exist if Γ is connected?

No, if there exists at least one regular boundary point, in particular the
multiplicity of T is 1 almost everywhere (not too difficult to show).
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Boundary regularity

Theorem (Allard)
One sided points are always regular, where

p is one-sided, if Θ(T , p) = 1
2

Question
Do one sided points always exist?

Yes if the ambient space is euclidean (Mn = Rn):

Balls are convex and can be used as barriers:

q ∈ argmax{|p| : p ∈ Γ} is one-sided.
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Boundary regularity: Co-dimension 1

Theorem (Hardt-Simon)
In co-dimension 1 (n = m + 1) all boundary points are regular (if Γ is
smooth).

Corollary
If Γ ⊂M3 is a smooth curve, there exists g0 such that the Federer-Fleming
solution spanned by Γ is a Douglas-Rado solution for genus g0. In particular

Ag0 ≤ Ag for all g ∈ N

Corollary
In co-dimension 1 there are no regular two sided points if Γ is connected
(and smooth).
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Boundary regularity: High co-dimension

When the co-dimension is ≥ 2 it is not known in a general ambient
manifold if there exists one boundary regular point (and if the ambient is
Rn only the existence of very few ones is known).

Theorem (De Lellis, D. Hirsch, Massaccesi ’18)
In general co-dimension and in a general ambient manifold, the set of
boundary regular point is open and dense in Γ.

Corollary
There are no regular two sided points if Γ is connected.
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Idea of the proof

The strategy of the proof follows the one at the interior developed by
Almgren and in last analysis it is based on the unique continuation principle
for harmonic functions...
...which fails at the boundary!!

This is not merely a technical fact, indeed we can show the following
(compare with Chang’s Theorem)

Example (DDHM’18)
There exists a two-dimensional mass minimising current with a sequence of
singular points accumulating at the boundary.

Moreover (compare with Hardt-Simon’s corollary)

Theorem (De Lellis-D.-Hirsch’19)
There exists a smooth 4 dimensional Riemannian manifold and a smooth
curve Γ such that the mass minimizing current spanned by Γ has infinite
topology.
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Idea of the proof

Why just an open dense set?

Unique continuation is true at the boundary if the function and the gradient
vanishes on an open set...

Definition
A collapsed point has a flat tangent cone and minimal density in a
neighborhood.

If Regb(T ) is not dense, there exists a collapsed singular point.

Theorem (DDHM)
Collapsed points are always regular.

G. De Philippis (SISSA): Regularity for mass minimizing currents 34/35



Idea of the proof

Why just an open dense set?

Unique continuation is true at the boundary if the function and the gradient
vanishes on an open set...

Definition
A collapsed point has a flat tangent cone and minimal density in a
neighborhood.

If Regb(T ) is not dense, there exists a collapsed singular point.

Theorem (DDHM)
Collapsed points are always regular.

G. De Philippis (SISSA): Regularity for mass minimizing currents 34/35



Idea of the proof

Why just an open dense set?

Unique continuation is true at the boundary if the function and the gradient
vanishes on an open set...

Definition
A collapsed point has a flat tangent cone and minimal density in a
neighborhood.

If Regb(T ) is not dense, there exists a collapsed singular point.

Theorem (DDHM)
Collapsed points are always regular.

G. De Philippis (SISSA): Regularity for mass minimizing currents 34/35



Idea of the proof

Why just an open dense set?

Unique continuation is true at the boundary if the function and the gradient
vanishes on an open set...

Definition
A collapsed point has a flat tangent cone and minimal density in a
neighborhood.

If Regb(T ) is not dense, there exists a collapsed singular point.

Theorem (DDHM)
Collapsed points are always regular.

G. De Philippis (SISSA): Regularity for mass minimizing currents 34/35



Idea of the proof

Why just an open dense set?

Unique continuation is true at the boundary if the function and the gradient
vanishes on an open set...

Definition
A collapsed point has a flat tangent cone and minimal density in a
neighborhood.

If Regb(T ) is not dense, there exists a collapsed singular point.

Theorem (DDHM)
Collapsed points are always regular.

G. De Philippis (SISSA): Regularity for mass minimizing currents 34/35



Thank you!
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