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Let (Zn)n≥0 be a supercritical Galton-Watson process with finite re-
production mean µ and normalized limit W = limn→∞ µ−nZn. Let
further φ : [0,∞) → [0,∞) be a convex differentiable function with
φ(0) = φ′(0) = 0 and such that φ(x1/2n ) is convex with concave deriva-
tive for some n ≥ 0. By using convex function inequalities due to
Topchii and Vatutin, and Burkholder, Davis and Gundy, we prove that
0 < Eφ(W ) <∞ if, and only if, ELφ(Z1) <∞, where

Lφ(x)
def
=

∫ x

0

∫ s

0

φ′(r)
r

dr ds, x ≥ 0.

We further show that functions φ(x) = xαL(x) which are regularly vary-
ing of order α ≥ 1 at ∞ are covered by this result if α 6∈ {2n : n ≥ 0}
and under an additonal condition also if α = 2n for some n ≥ 0. This

was obtained in a slight weaker form and analytically by Bingham and
Doney. If α > 1, then Lφ(x) grows at the same order of magnitude as

φ(x) so that ELφ(Z1) < ∞ and Eφ(Z1) < ∞ are equivalent. However,
α = 1 implies limx→∞ Lφ(x)/φ(x) = ∞ and hence that ELφ(Z1) < ∞
is a strictly stronger condition than Eφ(Z1) <∞. If φ(x) = x logp x for

some p > 0 it can be shown that Lφ(x) grows like x logp+1 x, as x→∞.
For this special case the result is due to Athreya. As a by-product we

also provide a new proof of the Kesten-Stigum result that Z1 logZ1 <∞
and EW > 0 are equivalent.
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1. Introduction and Main Result

Let (Zn)n≥0 be a supercritical Galton-Watson process with offspring distribution (pj)j≥0

and finite mean offspring µ. Then the normalized process Wn
def= µ−nZn, n ≥ 0, is a non-

negative and thus a.s. convergent martingale with limit W , say. The famous Kesten-Stigum
Theorem (see e.g. [6, Thm. I.10.1]) states that in order for W to be positive on the set of
non-extinction it is necessary and sufficient that EZ1 logZ1 =

∑
j≥1 pj log j <∞. Athreya [5]

showed for any p ≥ 0 that 0 < EW | logW |p < ∞ holds if, and only if, EZ1 logp+1 Z1 < ∞.
More precisely, he proved this equivalence be true for any integrable solution W of the stochas-
tic fixed point equation

W
d=

1
µ

Z1∑
k=1

W (k), (1.1)

where ” d= ” means equality in distribution and Z1,W (1),W (2), ... are mutually independent
with W (k) d= W for k ≥ 1. It is well-known that, even if EZ1 logZ1 =∞, a non-zero solution
to (1.1) is unique up to a scaling factor, see [6, Thm. I.10.2]. Bingham and Doney [7] extended
Athreya’s result and considered the φ-moment of W when φ is a regularly varying function of
order α ≥ 1; see also [8] for similar results in the case of more general branching processes. The
present article will further extend their results by providing a necessary and sufficient moment
condition on (pj)j≥0 for the existence of Eφ(W ) for an even larger class of functions φ to be
described below.

However, rather than this improvement it is our approach we believe to be of main
interest here because it differs completely from the analytic ones in [5], [7] and exploits more
explicitly the inherent probabilistic nature of the branching model which expresses itself in
a double martingale structure. To explain, a key observation on (Wn)n≥0 is that besides
forming a nonnegative martingale (the first one) its increments are also random sums of i.i.d.
random variables and thus of a martingale after centering (the second one). Taking this as
a starting point, a key step towards our results will be the repeated application of convex
function inequalities for martingales. A somewhat similar approach was also used by the first
author [1] in the quite different context of generalized renewal measures. As a by-product our
approach will also produce a new proof of the famous Kesten-Stigum theorem [4, Thm. II.2.1].
Let us emphasize that it also differs from the recent probabilistic proof by Lyons, Pemantle
and Peres [12] using spinal trees. The method developed here has also been employed in a
recent paper by Kuhlbusch [11] for the more general class of weighted branching processes.

Let C0 be the class of convex differentiable functions φ which are (strictly) increasing on
[0,∞) with φ(0) = 0 and concave derivative φ′ on (0,∞) satisfying φ′(0+) = 0. Observe that,
by the last condition, the identity function φ(x) = x is not in C0. We further note for each
φ ∈ C0 that φ′ is nondecreasing and positive on (0,∞) and that lim infx→∞

φ(x)
x > 0. For

n ≥ 1, we define recursively

Cn
def= {Sφ ∈ G : φ ∈ Cn−1} = SCn−1,
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where the operator S is given by Sψ(x) def= ψ(x2). The functions φ to be considered throughout
shall be elements from one of these classes, i.e. from C

def= ∪n≥0Cn, and they are clearly always
differentiable and convex, so S : C → C. As two further rather straightforward properties of
functions in C we mention

φ(2x) ≤ C φ(x), x ≥ 0, (1.2)

for some C = Cφ ∈ (0,∞), and

φ ∈ Cn ⇒ lim sup
x→∞

φ(x)
x2n+1 <∞

for each n ≥ 0 (see also Lemmata 3.3 and 3.4).

Let us stipulate hereafter that the usual primed notation for derivatives of convex or
concave functions on (0,∞) is always to be understood in the right sense in cases where right
and left derivatives are different. Whenever necessary and without further notice, a function
φ ∈ C is extended to the real line by setting φ(−x) = φ(x) for x < 0. This renders an even
convex function on IR. We write f ³ g if 0 < lim infx→∞

f(x)
g(x) ≤ lim supx→∞

f(x)
g(x) < ∞ holds

true, while f ∼ g has the usual meaning limx→∞
f(x)
g(x) = 1.

Given any nondecreasing convex function φ : [0,∞)→ [0,∞), we next define the operator
L through

Lφ(x) def=
∫ x

0

∫ s

0

φ′(r)
r

dr ds, x ≥ 0. (1.3)

It is crucial for the statement of our main result, Theorem 1.1 below. Plainly, Lφ is again
nondecreasing with values in [0,∞] and convex on {x : Lφ(x) <∞}.

To each φ ∈ C there exists a function ψ ∈ C satisfying ψ ∼ φ and Lψ(x) < ∞ for all
x ≥ 0. One may take for instance

ψ(x) =
∫ x

0

∫ y

0

(
a1[0,1](z) + φ′′(z)1(1,∞)(z)

)
dz dy, x ≥ 0,

for any a > φ′′(1), in which case furthermore ψ′′(0) ∈ (0,∞) and

Snφ(x) = φ(x2n) ∼ ψ(x2n) = Snψ(x)

for all n ≥ 0. Therefore existence results for φ-moments with φ ∈ C can (and will) be confined
without loss of generality to functions φ ∈ C∗ def= ∪n≥0C

∗
n, where C∗n

def= SnC∗0 for n ≥ 1, and

C
∗
0

def= C0 ∩ {φ : Lφ <∞}.

Notice that, for n ≥ 1 and φ ∈ C∗n, we have φ(0) = φ′(0) = φ′′(0) = 0 and thus integrability of
φ′(x)
x at 0. This shows C∗ ⊂ {φ : Lφ <∞}. Notice also that {φ ∈ C : φ′′(0) ∈ (0,∞)} ⊂ C∗.

The functions φα(x) def= xα+1, α > 0, as well as φ0(x) def= x21[0,1](x) + (2x− 1)1(1,∞)(x)
are all elements of C∗ (as for φ0, note that φ0(x) ³ x, but that the identity function is neither
in C nor in {φ : Lφ <∞}).
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It is easily verified (see Lemma 4.4) that

lim inf
x→∞

Lφ(x)
φ(x)

> 0

for φ ∈ C∗ that is, Lφ grows at least at the same order of magnitude as φ. For the special
functions φα, α ∈ [0,∞), defined above we compute

Lφα(x) =


x21[0,1](x) + (1 + 2x log x)1(1,∞)(x), if α = 0,

xα+1

α
, if α > 0,

(1.4)

and thus see that limx→∞
Lφ0(x)
φ0(x) =∞, and Lφα ³ φα if α > 0. If we consider functions φ ∈ C∗

which are regularly varying at infinity with exponent α ≥ 1, then the discussion in Section 2
will confirm the very same result for this more general situation (see Lemma 2.2). It indicates
that Lφ grows faster than φ only when φ is a function ”close to the identity function”.

Theorem 1.1. Let (Zn)n≥0 be a supercritical Galton-Watson process with offspring
distribution (pj)j≥0, finite mean offspring µ and normalized limit W = limn→∞ µ−nZn. Then
for each φ ∈ C∗ the equivalence

0 < Eφ(W ) <∞ iff ELφ(Z1) <∞, (1.5)

holds true with Lφ as in (1.3).

The convexity of φ ∈ C implies that (φ(Wn))n≥0 constitutes a nonnegative submartingale
and thus limn→∞Eφ(Wn) = supn≥0Eφ(Wn). Combining this fact with Theorem 5 in [13] (see
also [2]) and the well-known tail estimate

P (sup
n≥0

Wn > bx) ≤ c P (W > x), x ≥ 0 (1.6)

for suitable b, c > 0 (see [4, Lemma II.2.6]), the next result is readily concluded and therefore
stated without proof.

Theorem 1.2. In the situation of Theorem 1.1 the following assertions are equivalent:

0 < Eφ(W ) <∞; (1.7)

sup
n≥0

Eφ(Wn) <∞; (1.8)

(φ(Wn))n≥0 is uniformly integrable; (1.9)

lim
n→∞E|φ(Wn)− φ(W )| <∞; (1.10)

Eφ(sup
n≥0

Wn) <∞. (1.11)
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The equivalence of (1.8)-(1.11) holds true for any φ-integrable submartingale (Wn)n≥0,
but the equivalence with (1.7) hinges on (1.6) which in turn follows from the special structure
of the Galton-Watson process.

Given a supercritical Galton-Watson process (Zn)n≥0 with finite reproduction mean the
crucial equivalence of the Kesten-Stigum theorem [4, Thm. II.2.1] states that

EW > 0 iff EZ1 logZ1 <∞. (1.12)

Theorem 1.1 contains this result as a special case when choosing φ0(x) ³ x (in which case
Lφ0(x) ³ x log x by (1.4)). Our martingale proof for the more difficult ”if”-conclusion of (1.12)
is new and essentially furnished by Lemma 4.5. In contrast to the martingale proof in [4] it
does not make use of truncation.

The further organization is as follows. Section 2 provides a discussion of our main result
in the context of regularly varying functions and shows in particular that it implies the related
φ-moment results of Bingham and Doney [7]. Some general facts on functions φ from the classes
C and C∗ and the associated Lφ are provided in Section 3, while Section 4 contains various
inequalities for the φ-moments of W . They will furnish the proof of Theorem 1.1 presented in
Section 5.

2. Functions of Regular Variation

It need not be further explained that functions of regular variation are of particular
interest when dealing with moment results. This section is therefore devoted to a discussion
of several aspects concerning these functions in the present context. For α ≥ 0, let Rα be the
class of locally bounded functions from [0,∞) to [0,∞) which are regularly varying at infinity
with exponent α (slowly varying in case α = 0). Given φ(x) = xαL(x) ∈ Rα for some α ≥ 0,
the smooth variation theorem [9, Thm. 1.8.2] ensures the existence of a function ψ ∈ Rα which
is smooth (infinitely often differentiable) on (0,∞) and satisfies φ ³ ψ. Let Sα denote the
subclass of such functions. If α > 0 and α 6∈ IN then ψ can also be chosen such that all its
derivatives are monotone [9, Thm. 1.8.3] which implies that φ and all its derivatives are either
convex or concave. Possibly after switching to ψ(x+a)−ψ(a)−ψ′(a)x for some a > 0, we may
assume ψ(0) = ψ′(0) = 0 and ψ′′(0) ∈ (0,∞), hence ψ ∈ C∗. We note as a trivial observation
that φ ∈ Rα implies S−nφ ∈ Rα/2n for each n ∈ IN0.

The following three questions will be addressed hereafter:

— How are the Rα related to the classes Cn?
— What can be said about the behavior of Lφ in (1.3) if φ ∈ Rα for α ≥ 1?
— How can Theorem 1.1 be restated for regularly varying functions φ?

For any measurable φ : [0,∞)→ [0,∞), we put

φ̂(x) def=
∫ x

0

φ(y)
y

dy and φ̃(x) def=
∫ ∞
x

φ(y)
y

dy
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and stipulate the everywhere finiteness of such functions whereever they appear. Plainly, this
is guaranteed for φ̂ if φ(x)

x is locally integrable on [0,∞), and for φ̃ if φ(x)
x is integrable on

[0,∞).
The following lemma addresses the first of the above questions.

Lemma 2.1. Given φ(x) = xαL(x) ∈ Rα for some α ≥ 1, the following assertions hold
true:

(a) If 2n < α < 2n+1 for n ∈ IN0, then φ ³ ϕ for some ϕ ∈ C∗n ∩Rα.
(b) If α = 2n for n ∈ IN0 and L ³ L̂0 for some L0 ∈ R0, then φ ³ ϕ for some ϕ ∈ C∗n ∩R2n .
(c) If α = 2n for n ∈ IN and L ³ L̃0 for some L0 ∈ R0, then φ ³ ϕ for some ϕ ∈ C∗n−1∩R2n .

Proof. (a) If 2n < α < 2n+1 for n ∈ IN0 and φ ∈ Rα, then S−nφ ∈ Rβ for β def= α/2n ∈
(1, 2), thus S−nφ ³ ψ ∈ C∗0 ∩Sβ by what has been mentioned before the lemma.

(b) If φ(x) = x2nL(x) for some n ≥ 0 and L ³ L̂0 for some L0 ∈ R0, then

S−nφ(x) = xL(x1/2n) ³ ψ(x) def= xL̂0(x1/2n).

Note that L̂0 ∈ R0 with limx→∞
L̂0(x)
L0(x) = ∞ [9, Prop. 1.5.9a], and that L0(x)

x ∼ L(x) def=

supy≥x
L0(y)
y [9, Thm. 1.5.3]. We infer

ψ′(x) = L̂0(x1/2n) +
L0(x1/2n)

2n
∼ L̂0(x1/2n) ∼

∫ x1/2n

0

L(y) dy ∈ R0

and therefore, by an appeal to Karamata’s theorem [9, Prop. 1.5.8],

S−nφ(x) ³ ψ(x) ³ ψ(x) def=
∫ x

0

∫ y1/2n

0

L(z) dz dy ∈ R1.

Since L is nonincreasing we see that ψ is also an element of C∗0 so that φ(x) ³ Snψ(x) =
ψ(x2n) ∈ C∗n ∩R2n .

(c) Note here that L̃0 ∈ R0 with limx→∞
L̃0(x)
L0(x) = ∞ [9, Prop. 1.5.9b]. Hence, having

S−n+1φ(x) = x2L(x1/2n−1
) ³ ψ(x) def= x2L̃0(x1/2n−1

), we infer

ψ′(x) = 2xL̃0(x1/2n−1
)− xL0(x1/2n−1

)
2n−1

∼ 2xL̃0(x1/2n−1
)

as well as (
xL̃0(x1/2n−1

)
)′
³ L̃0(x1/2n−1

) ∈ R0.

Consequently, by another appeal to Karamata’s theorem,

S−n+1φ(x) ³ ψ(x) ³
∫ x

0

∫ y

0

L̃0(z1/2n−1
) dz dy ∈ R2

where the right-most function constitutes an element of C∗0. The assertion now follows by a
similar conclusion as in (b). ♦
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The next lemma addresses the second question above.

Lemma 2.2. Let φ(x) = xαL(x) ∈ C∗ ∩Rα for some α ≥ 1. If α > 1 then

Lφ(x) ∼ φ(x)
α− 1

, (2.1)

while

Lφ(x) ∼ xL̂(x) (2.2)

and

lim
x→∞

Lφ(x)
φ(x)

= ∞ (2.3)

hold in case α = 1.

Proof. Given φ(x) = xαL(x) ∈ C∗ ∩ Rα for some α ≥ 1 and L ∈ R0, we have
φ′(x) ∼ αxα−1L(x) by the Monotone Density Theorem [9, Thm. 1.7.2]. In case α > 1,
Karamata’s theorem implies

Lφ(x) ∼
∫ x

0

∫ s

0

αrα−2L(r) dr ds ∼ xαL(x)
α− 1

=
φ(x)
α− 1

that is (2.1).
If α = 1, then φ′ ∼ L, L̂ ∈ R0 and once again Karamata’s theorem give

Lφ(x) ∼
∫ x

0

L̂(y) dy ∼ xL̂(x),

i.e. (2.2). Moreover,

lim
x→∞

Lφ(x)
φ(x)

= lim
x→∞

L̂(x)
L(x)

= ∞

follows from [9, Prop. 1.5.9a]. ♦

Turning to the third question, a combination of Theorem 1.1 and the previous two lem-
mata leads directly to the following corollary which essentially contains the moment results
first obtained by Bingham and Doney [7, Thm. 5–7].

Corollary 2.3. Suppose the situation of Theorem 1.1 and let L ∈ R0. Then

0 < EWαL(W ) <∞ iff EZα1 L(Z1) <∞ (2.4)

for any α > 1 which is not a dyadic power. The same equivalence holds true if α = 2n for
some n ≥ 1 and if either L(x) ³ L̂0(x) or L(x) ³ L̃0(x) for some L0 ∈ R0. Finally,

0 < EWαL(W ) <∞ iff EZα1 L̂(Z1) <∞, (2.5)

if α = 1 and L(x) ³ L̂0(x) for some L0 ∈ R0.
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The corollary is slightly more general than Bingham and Doney’s result which needs an
extra condition on L whenever α is an integer. In the special case L(x) = logp x for some p ≥ 0
one finds that L̂(x) ³ logp+1 x and thus that (2.5) reduces (as it must) to Athreya’s result.

3. Some general facts on the classes C and C∗

We proved in [2, Lemma 1] that each increasing convex function φ on [0,∞) with φ(0) = 0
has a unique Choquet representation of the form

φ =
∫

[0,∞]

ϕt Qφ(dt) (3.1)

where ϕ0(x) def= x, ϕ∞(x) = x2, and

ϕt(x) def=

{
x2, if x ≤ t

2xt− t2, if x > t
(3.2)

for t ∈ (0,∞). We note that ϕt(x) = t2ϕ1(x/t) for t ∈ (0,∞). The unique nonzero measure
Qφ is given by

Qφ
def= φ′(0)δ0 + Λφ (3.3)

where Λφ((t,∞]) def= φ′′(t) − φ′′(∞) for t > 0 and φ′′(∞) def= limt→∞ φ′′(t). So we have that
Qφ((t,∞]) = φ′′(t)

2 <∞ for all t > 0 and∫
(0,c]

t Qφ(dt) =
∫ c

0

Qφ((t, c]) dt =
∫ c

0

(φ′′(t)− φ′′(c)) dt < ∞

for all c > 0. Qφ is finite iff φ′′(0) <∞.
When imposing the additonal restriction φ′(0) = 0 we arrive at the class C0. The following

lemma is now easily established and thus stated without proof.

Lemma 3.1. The mapping

φ 7→
∫
ϕt µ(dt) (3.3)

provides a bijection between functions φ ∈ C0 and nonzero measures µ on (0,∞] satisfying
µ((x,∞]) <∞ for all x > 0 and

∫
(0,c]

t µ(dt) <∞ for all c > 0. µ is finite iff φ′′(0) <∞.

The natural question of a similar result for the subclass C∗0 = C0 ∩ {φ : Lφ < ∞} is
answered by the next lemma.

Lemma 3.2. The mapping (3.3) provides a bijection between functions φ ∈ C0 and non-
zero measures µ on (0,∞] satisfying µ((x,∞]) < ∞ for all x > 0 and

∫
(0,c]

t| log t|µ(dt) < ∞
for all c > 0.

8



Proof. It is obviously enough to show for a given φ =
∫
ϕtµ(dt) ∈ C0, that

∫ 1

0
φ′(s)
s ds <

∞ holds iff
∫

(0,1]
t| log t|µ(dt) <∞. By Fubini’s theorem,

∫ 1

0

φ′(s)
s

ds =
∫

(0,∞]

∫ 1

0

ϕ′t(s)
s

ds µ(dt).

Since ϕ∞(x) = x2 is clearly in C∗0 suppose µ({∞}) = 0 without loss of generality. Using
ϕt(x) = t2ϕ1(x/t) for 0 < t <∞ we then arrive at∫ 1

0

φ′(s)
s

ds =
∫

(0,∞)

∫ 1

0

ϕ′1(s/t)
s/t

ds µ(dt) =
∫

(0,∞)

t

∫ 1/t

0

ϕ′1(r)
r

dr µ(dt)

which after a simple integration yields∫ 1

0

φ′(s)
s

ds = 2µ((1,∞)) +
∫

(0,1]

2t µ(dt) +
∫

(0,1]

2t| log t| µ(dt)

and thus provides the desired conclusion. ♦

The trivial observation that φ =
∫

(0,∞]
ϕt µ(dt) implies

Snφ =
∫

(0,∞]

Snϕt µ(dt) (3.4)

for each n ≥ 1 shows that the previous two lemmata carry over verbatim to the classes Cn and
C∗n, respectively, when replacing the functions ϕt by Snϕt. So C0 and Cn as well as C∗0 and C∗n
are isomorphic positive cones including the order.

The subsequent two lemmata, stated without proofs, collect some straightforward prop-
erties of functions in C0, respectively Cn for n ≥ 1.

Lemma 3.3. Each element φ ∈ C0 has the following properties:
(a) 2φ(x) ≤ φ(2x) ≤ 4φ(x) for all x ≥ 0.
(b) φ(x)

x is nondecresing and φ(x)
x2 is nonincreasing in x ≥ 0.

(c) limx↓0
φ(x)
x = φ′(0) = 0 and limx↓0

φ(x)
x2 = φ′′(0) ∈ [0,∞].

(d) There exists ψ ∈ C0 with ψ ∼ φ and ψ′′(0) ∈ (0,∞).

Lemma 3.4. For each n ≥ 1 and φ = Snϕ ∈ Cn the following assertions hold true:
(a) φ(2x) ≤ 22n+1

φ(x) for all x ≥ 0.
(b) φ(x)

x2n is nondecresing and φ(x)

x2n+1 is nonincreasing in x ≥ 0.

(c) limx↓0
φ(x)
x2n = ϕ′(0) = 0 and limx↓0

φ(x)

x2n+1 = ϕ′′(0) ∈ [0,∞].
Morover, the classes Cn are pairwise disjoint.

Our final lemma in this section collects a number of properties of the function Lφ asso-
ciated with any φ ∈ C∗. Let us note the general fact that φ(x) ≤ xφ′(x) ≤ φ(2x), x ≥ 0, holds
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for any increasing convex function φ : [0,∞)→ [0,∞) with φ(0) = 0. This further implies

φ(x) ³ xφ′(x) (3.5)

if φ satisfies (1.2) and will enter into our arguments in several places.

Lemma 3.5. For each φ ∈ C∗ with associated function Lφ as in (1.3) the following
assertions hold:

φ(x) = x(Lφ)′(x)− Lφ(x), x ≥ 0.

If φ ∈ C∗n for n ≥ 1, then

2φ(x/2) ≤ Lφ(x) ≤ φ(x), x ≥ 0, (3.6)

and Lφ ³ φ. If φ ∈ C∗0, then Lφ ∈ C∗0 and

Lφ ≥ φ. (3.7)

Finally, for any φ ∈ C∗,

lim inf
x→∞

Lφ(x)
φ(x)

> 0 (3.8)

as well as

lim inf
x→∞

Lφ(x)
x log x

> 0 (3.9)

hold true.

Remark. It is tempting to believe that φ ∈ C∗n implies Lφ ∈ C∗n for n ≥ 1 (as it does for
n = 0). However, one can check that this is not true in general. As an example one may take
φ(x) def= φ0(x2) ∈ C∗1 where φ0(x) = x21[0,1](x) + (2x− 1)1(1,∞)(x) ∈ C∗0 is the function already

defined in the Introduction. One obtains for this case that ψ(x) def= Lφ(x1/2) = 1
3x

21[0,1](x) +
( 1

3 + 4
3 (x1/2−1)+2(x1/2−1)2)1(1,∞)(x) has derivative ψ′(x) = 2

3x1[0,1](x)+(2− 4
3x

1/2)1(1,∞)(x)
which is obviously not concave, and thus Lφ 6∈ C∗1.

Proof. The differential equation follows easily when integrating (Lφ)′′(x) = φ′(x)
x .

Turning to (3.6), the following estimations utilize that φ′(x)
x is nondecreasing for φ ∈ C∗n,

n ≥ 1. We obtain

Lφ(x) ≤
∫ x

0

∫ s

0

φ′(s)
s

dr ds = φ(x) (3.10)

for x ≥ 0, and

Lφ(x) ≥
∫ x

0

∫ s

s/2

φ′(r)
r

dr ds ≥
∫ x

0

∫ s

s/2

φ′(s/2)
s/2

dr ds = 2φ(x/2)

for x ≥ 0. In particular, Lφ ³ φ because of (1.2). If φ ∈ C∗0, then φ′(x)
x is nonincreasing so that

Lφ ∈ C∗0 is obvious and (3.10) holds with reversed inequality sign thus showing (3.7). (3.8)
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follows from (3.6), or (3.7), and another appeal to (1.2). The final assertion holds because
φ′(1) > 0 for each φ ∈ C∗ implies

Lφ(x) ≥
∫ x

1

∫ s

1

φ′(1)
r

dr ds = φ′(1)
(
x log x− x+ 1

)
for all x ≥ 1. ♦

4. Auxiliary Moment Results

We are now going to prove a number of lemmata which will furnish the proof of Theorem
1.1 provided in the next section. In order to state them a number of random variables must
be introduced. First, let (Xn,k)k,n≥1 be a family of i.i.d. random variables with distribution
(pj)j≥0 such that the Galton-Watson process (Zn)n≥0 is given as

Zn =
Zn−1∑
k=1

Xn,k, n ≥ 1,

where Z0 = W0 = 1. For k, n ≥ 1 we further define Fn def= σ(W0, ...,Wn),

W ∗n
def= max

0≤k≤n
Wn and W ∗ def= sup

n≥0
Wn,

Yn,k
def= Xn,k − µ with generic copy Y , and

Dn
def= Wn −Wn−1 =

1
µn

Zn−1∑
k=1

Yn,k.

Put D0
def= 1. It is stipulated for the rest of this article that C always denotes a finite positive

constant which may differ from line to line.

Lemma 4.1. Suppose σ2 def= VarZ1 < ∞. Let (cn)n≥0 be a bounded sequence of real
numbers with c def= supn≥0 |cn| and φ ∈ C. Then

Eφ

(∑
n≥1

cnDn

)
≤ C

(
1 + ES−1φ

(∑
n≥1

c2σ2

µn+1(µ− 1)
Dn

)
+
∑
n≥1

Eφ(cnDn)

)
. (4.1)

and this inequality further simplifies to

Eφ

(∑
n≥1

cnDn

)
≤ C

(
1 + φ

(
cσ

µ1/2(µ− 1)

)
+
∑
n≥1

Eφ(Dn)

)
(4.2)

if φ ∈ C0. It is furthermore always true that

Eφ

(∑
n≥1

cnDn

)
≤ C

(
1 +

∑
n≥1

Eφ(Dn)

)
. (4.3)
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Proof. Note first that a.s.

E(D2
n|Fn−1) = E

(
1
µ2n

(
Zn−1∑
k=1

Yn,k

)2∣∣∣∣∣Zn−1

)
=

σ2

µ2n
Zn−1 =

σ2

µn+1
Wn−1 (4.4)

for all n ≥ 1. An application of the Burkholder-Davis-Gundy inequality [10, Theorem 11.3.2]
yields

Eφ

(∑
n≥1

cnDn

)
≤ C

(
ES−1φ

(∑
n≥1

c2nE(D2
n|Fn−1)

)
+ E sup

n≥1
φ(cnDn)

)
.

For the last term on the right hand side, we further obtain

E sup
n≥1

φ(cnDn) ≤
∑
n≥1

Eφ(cnDn) ≤
∑
n≥1

Eφ(cDn).

As to the first term on the right hand side, (4.4) and partial summation leads to

ES−1φ

(∑
n≥1

c2nE(D2
n|Fn−1)

)
≤ ES−1φ

(∑
n≥1

c2σ2

µn+1
Wn−1

)

= ES−1φ

(∑
n≥0

c2σ2

µn+2

n∑
k=0

Dk

)

= ES−1φ

(∑
k≥0

c2σ2

µk+2
Dk

∑
n≥k

1
µn−k

)

= ES−1φ

(∑
k≥0

c2σ2

µk+1(µ− 1)
Dk

)

≤ C

(
1 + ES−1φ

(∑
k≥1

c2σ2

µk+1(µ− 1)
Dk

))
,

where S−1φ(x + y) ≤ S−1(2x) + S−1φ(2y) ≤ C(S−1φ(x) + S−1φ(y)) ≤ C(1 + S−1φ(y)) for
all x, y > 0 was utilized for the final inequality. (4.1) now follows by combining the previ-
ous inequalities. If S−1φ is concave and hence subadditive on [0,∞), then (4.2) is a direct
consequence of (4.1) when noting that E|Dn| ≤ EWn = 1.

In order to see (4.3) suppose φ ∈ Cn for some n ≥ 0. Then S−n−1φ is concave which in
combination with (1.2), limx→∞

S−kφ(x)
φ(x) = 0 for k ≥ 1, and an n-fold iteration of (4.1) yields

(4.3). ♦

Lemma 4.2. Suppose σ2 def= VarZ1 <∞ and φ ∈ C. Then

Eφ(Dn) ≤ C

(
ES−1φ

(
σ2

µn+1
Wn−1

)
+ µn−1Eφ

(
Y

µn

))
. (4.5)

for all n ≥ 1.
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Proof. Since, for each n ≥ 1, Dn is the limit of the martingale transform

Hn,k
def= µ−n

k∑
j=1

Yn,j1{Zn−1≥j}, k ≥ 0

we infer by another appeal to the Burkholder-Davis-Gundy inequality

Eφ(Dn) ≤ C

(
ES−1φ

(
1
µ2n

∑
k≥1

E(Y 2
n,k1{Zn−1≥k}|Fn−1)

)
+ E sup

k≥1
φ

(
Yn,k
µn

)
1{Zn−1≥k}

)

≤ C

(
ES−1φ

(∑
k≥1

σ2

µ2n
1{Zn−1≥k}

)
+ E

(
Zn−1∑
k=1

φ

(
Yn,k
µn

))

= C

(
ES−1φ

(
σ2

µn+1
Wn−1

)
+ µn−1Eφ

(
Y

µn

))
. ♦

Lemma 4.3. Given φ ∈ C∗ with φ′′(0) ∈ (0,∞) and µ ∈ (1,∞), let X be a random
variable with Eφ(X) <∞. Then

∑
n≥1

µnEφ

(
X

µn

)
≤ C (1 + ELφ(X)). (4.6)

Proof. Put In
def= (n − 1, n] for n ≥ 1 and note that

∑
n≥0 µ

nφ(nµ−n) < ∞ because
φ(x) = O(x2) as x→ 0. Then

∑
n≥1

µnEφ

(
X

µn

)
=
∑
n≥1

µn
∑
k≥1

Eφ

(
X

µn

)
1Ik(|X|)

≤
∑
n≥1

µn

(
φ(nµ−n) +

∑
k≥n

φ(kµ−n)P (|X| ∈ Ik)

)

≤ 1
µ

(∑
n≥1

µnφ(nµ−n) +
∑
k≥1

k P (|X| ∈ Ik)
k∑

n=1

φ′(kµ−n)

)
,

(4.7)

where φ(x) ≤ xφ′(x) has been utilized for the last inequality. Since
∑
n≥1 µ

nφ(nµ−n) is finite,
it remains to further estimate the second expression in (4.7). We obtain for k ≥ 1

k∑
n=1

φ′(kµ−n) =
k∑

n=1

(
φ′(kµ−k) +

k∑
i=n+1

∫ kµ−i+1

kµ−i
φ′′(z) dz

)

≤ kφ′(kµ−k) +
k∑
i=1

i∑
n=1

∫ kµ−i+1

kµ−i
φ′′(z) dz

≤ Cµkφ(kµ−k) +
k∑
i=1

∫ kµ−i+1

kµ−i
iφ′′(z) dz,

(4.8)
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the final bound on kφ′(kµ−k) being a consequence of (3.5). Now kµ−i ≤ z ≤ kµ−i+1 is equiv-
alent to − logµ(z/k) ≤ i ≤ 1− logµ(z/k), whence

k∑
i=1

∫ kµ−i+1

kµ−i
iφ′′(z) dz ≤

k∑
i=1

∫ kµ−i+1

kµ−i

(
1− logµ

(
z

k

))
φ′′(z) dz

=
∫ k

kµ−k

(
1− logµ

(
z

k

))
φ′′(z) dz.

(4.9)

Partial integration leads to∫ k

kµ−k

(
1− logµ

(
z

k

))
φ′′(z) dz

=
[(

1− logµ

(
z

k

))
φ′(z)

]k
kµ−k

+
1

logµ

∫ k

kµ−k

φ′(z)
z

dz

= φ′(k) − (k + 1)φ′(kµ−k) +
1

logµ
(
(Lφ)′(k)− (Lφ)′(kµ−k)

)
≤ φ′(k) +

1
logµ

(Lφ)′(k)

≤ C(1 + (Lφ)′(k))

(4.10)

for all k ≥ 1, where we have utilized that (Lφ)′(k) =
∫ k

0
φ′(s)
s ds ≥ 1

2φ
′(k/2) ≥ Cφ′(k) for all

k ≥ 1. Summarizing the results from (4.8-10) and recalling
∑
n≥1 µ

nφ(nµ−n) <∞, we obtain

∑
n≥1

nP (|X| ∈ In)
n∑
k=1

φ′(nµ−k) ≤ C
∑
n≥1

n(1 + (Lφ)′(n))P (|X| ∈ In)

≤ C E|X|(1 + (Lφ)′(|X|)) < ∞
and thus the desired bound for the second expression in (4.7) because Lφ(x) ³ x(Lφ)′(x). ♦

Lemma 4.4. Let φ ∈ C∗ and X,X1, X2, ... be integrable i.i.d. random variables with
partial sums Sn = X1 + ...+Xn for n ≥ 1. Then E supn≥1 φ(Sn/n) <∞ iff ELφ(X) <∞.

Proof. Put Un
def= X+

1 + ...+X+
n and Vn

def= X−1 + ...+X−n for n ≥ 1. Then (n−1Un)n≥1

and (n−1Vn)n≥1 are both nonnegative reversed martingales. By Theorem 2.1 in [3],

E sup
n≥1

φ(Un/n) ≤ C ELφ(X+
1 )

and similarly E supn≥1 φ(Vn/n) ≤ C ELφ(X−1 . This proves the direct conclusion of the lemma.
The converse follows by the same proof as for the case φ(x) = x given by Chow and Teicher

[10,Thm. 10.3.3]: It is easily seen that E supn≥1 φ(Sn/n) <∞ implies E supn≥1 φ(Xn/n) <∞.
The integrability of X ensures

P
(

sup
n≥1
|Xn|/n > t

)
≥ C

∑
n≥1

P (|X| ≥ nt)
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for all t ≥ T , T sufficiently large. Consequently,

∞ > E sup
n≥1

φ(Xn/n) ≥ C

∫ ∞
T

φ′(t)
∑
n≥1

P (|X| ≥ nt) dt

≥ C

∫
{|X|≥T}

∫ ∞
T

φ′(t)
∑
n≥1

1{n≤|X|/t} dt dP

≥ C

∫
{|X|≥T}

∫ |X|
T

φ′(t)
( |X|

t
− 1
)
dt dP

= C

∫
{|X|≥T}

|X|((Lφ)′(|X|)− (Lφ)′(T ))− (φ(X)− φ(T )) dP

≥ C
(
E|X|(Lφ)′(|X|)− 1

)
,

which proves the lemma. ♦

Given a supercritical Galton-Watson process (Zn)n≥0 with finite mean offspring and
normalized limit W , the Kesten-Stigum theorem provides the equivalence of the nondegeneracy
of W with the so-called (L logL)-condition EZ1 logZ1 <∞, which may also be stated as

EW > 0 iff EZ1 logZ1 <∞. (4.11)

Lemma 4.5 below will furnish a new and very short proof of the crucial ”if”- part of (4.11)
included in the proof of Theorem 1.1 in the next section.

Lemma 4.5. Let X be any nonnegative random variable with finite mean.
(a) Then there exists a function φ ∈ C∗0 such that limx→∞

φ(x)
x =∞ and Eφ(X) <∞.

(b) If EX log+X < ∞ then there exists a function φ ∈ C∗0 such that limx→∞
φ(x)
x = ∞ and

ELφ(X) <∞.

The reader might expect at first glance that part (b) is a trivial consequence of (a).
Namely, since x log x ∼ ϕ0(x) def= (x+ 1) log(x+ 1)−x ∈ C∗0, part (a) applied to ϕ0(X) implies
the existence of a function ψ ∈ C∗0 such that limx→∞

ψ(x)
x =∞ and Eψ◦ϕ0(X) <∞. However,

to conclude assertion (b) we must have ψ ◦ ϕ0 ∈ C∗0 which may fail to hold.

Proof. (a) Integrability of X implies the existence of 0 def= a0 < a1 < ... ↑ ∞, such that∫
{X>an}

X dP ≤ 2−n

for all n ≥ 1. We may choose the an such that an − an−1 ↑ ∞. Defining the convex function
ψ : IR→ IR, x 7→∑

n≥0(x− an)+, we obviously have

ψ(x)
x

=
∑
n≥1

(
1− an

x

)+

↑ ∞ (x ↑ ∞)
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and, by choice of the an,

Eψ(X) =
∑
n≥1

E(X − an)+

≤
∑
n≥1

∫
{X>an}

X dP

≤ EX +
∑
n≥1

1
2n

< ∞.

We will now define a function φ ∈ C∗0 satisfying φ′ ≤ ψ′, φ ≤ ψ and limx→∞
φ(x)
x = ∞. This

clearly proves part (a) of the lemma.

Note that ψ is differentiable with derivative ψ′(x) =
∑
n≥1 n1[an−1,an)(x) for all x 6∈

{an : n ≥ 0}. Put

φ′(x) def=
∑
n≥0

(
n+

x− an
an+1 − an

)
1[an,an+1)(x)

for x ≥ 0. Then φ′ is a continuous function dominated by ψ′, starting at 0, and concave on
[0,∞) because the differences an − an−1 are increasing. Consequently, its primitive φ(x) def=∫ |x|

0
φ′(y) dy belongs to the class C∗0. A comparison of the areas under the curves of ψ′ and φ′

also shows that φ ∼ ψ, hence limx→∞
φ(x)
x =∞.

(b) Consider the function ϕ0(x) def= (x + 1) log(x + 1) − x ∼ x log x. Since ϕ0(0) = 0,
ϕ′0(x) = log(x + 1) and ϕ′′0(x) = 1

x+1 we see that ϕ0 ∈ C∗0 and obtain by partial integration
using Fubini’s theorem

Eϕ0(X) =
∫ ∞

0

log(x+ 1)P (X > x) dx

=
∫ ∞

0

1
y + 1

∫ ∞
y

P (X > x) dx dy = EX EY,

where Y is a nonnegative random variable with survival function

P (Y > y) =
1

(y + 1)EX

∫ ∞
y

P (X > x) dx, y ≥ 0.

Part (a) ensures the existence of a function ψ ∈ C∗0 such that ψ(Y ) < ∞. Let Ψ be the
associated function defined in (1.3). Using that Ψ′(x) =

∫ x
0
ψ′(r)
r dr for x ≥ 0 and ψ′(0) = 0

we then obtain

∞ > Eψ(Y ) =
∫ ∞

0

ψ′(y)P (Y > y) dy

=
1
EX

∫ ∞
0

ψ′(y)
y + 1

∫ ∞
y

P (X > x) dx dy

≤ 1
EX

∫ ∞
0

(∫ x

0

ψ′(y)
y

dy

)
P (X > x) dx
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=
1
EX

∫ ∞
0

Ψ′(x)P (X > x) dx

= EΨ(X).

Since Ψ ∈ C∗0 (Lemma 4.4) and since limx→∞ ψ′(x) = ∞ implies limx→∞
Ψ(x)
x log x = ∞ we have

proved the asserted result. ♦

5. Proof of Theorem 1

Proof of Theorem 1 (direct part). We begin with the direct part and must there-
fore show that ELφ(Z1) < ∞, or equivalently EZ1(Lφ)′(Z1) < ∞, implies 0 < Eφ(W ) < ∞.
We first show that Eφ(W ) < ∞ by distinguishing the cases φ ∈ C∗n for n ≥ 0 and using an
induction over n.

Step 1. Let φ ∈ C∗0 in which case φ′ is concave. Suppose φ′′(0) ∈ (0,∞) w.l.o.g. (by
Lemma 3.3(d)). Since W0 = 1, an application of the Topchii-Vatutin-inequality (see [2] or [14])
yields

Eφ(Wn) ≤ φ(1) + C
n∑
k=1

Eφ(Dk) (5.1)

for all n ≥ 1 (one may take C = 1 as shown in [2]). We want to show

sup
n≥0

Eφ(Wn) <∞,

which by the previous inequality follows if∑
k≥1

Eφ(Dk) <∞ (5.2)

The following estimation will use that the sequence (
∑n
j=1

Yk,j
µk

1{Zk−1≥j})n≥0 is a martingale
and that Zk−1 is independent of (Yk,j)j≥1. By another appeal to the Topchii-Vatutin-inequality,

Eφ(Dk) = Eφ

(
1
µk

Zk−1∑
j=1

Yk,j

)

= Eφ

(∑
j≥1

Yk,j
µk

1{Zk−1≥j}

)

≤ C
∑
j≥1

Eφ

(
Yk,j
µk

)
1{Zk−1≥j}

= C Eφ

(
Y

µk

)∑
j≥1

P (Zk−1 ≥ j)

= C Eφ

(
Y

µk

)
EZk−1

= Cµk−1Eφ

(
Y

µk

)
.

17



So we obtain in combination with Lemma 4.3 (recall φ′′(0) ∈ (0,∞))

∑
k≥1

Eφ(Dk) ≤ C
∑
k≥1

µk−1Eφ

(
Y

µk

)
≤ C ELφ(Y ) < ∞, (5.3)

which is the desired conclusion because Y d= Z1 − µ.

Step 2. Now let φ ∈ C∗n for some n ≥ 1 and suppose that Eψ(W ) < ∞ for all ψ ∈ C∗k
and 0 ≤ k < n. Note that S−1φ ∈ C∗n−1, S−1φ(x) ³ x(S−1φ)′(x) by (3.5), and thus (by the
induction hypothesis)

sup
n≥0

EWn(S−1φ)′(Wn) ≤ C sup
n≥0

ES−1φ(Wn) ≤ C ES−1φ(W ) < ∞.

Note also that EZ2
1 ≤ C ELφ(Z1) < ∞ because lim infx→∞

Lφ(x)
x2 > 0 for φ ∈ C∗n with n ≥ 1.

Combining these facts with Lemmata 3.5 and 4.1-3, we now infer

Eφ(W − 1) = Eφ

(∑
n≥1

Dn

)
≤ C

(
1 +

∑
n≥1

Eφ(Dn)

)

≤ C

(
1 +

∑
n≥1

ES−1φ

(
σ2

µn+1
Wn−1

)
+
∑
n≥1

µn−1Eφ

(
Y

µn

))

≤ C

(
1 +

∑
n≥1

σ2

µn+1
EWn−1(S−1φ)′

(
σ2

µn+1
Wn−1

)
+ ELφ(Y )

)

≤ C

(
ES−1φ(W )

∑
n≥1

σ2

µn+1
+ ELφ(Y )

)
< ∞.

Step 3. The proof of the direct part of Theorem 1.1 is now completed by showing that
ELφ(Z1) <∞ implies Eφ(W ) > 0 for any φ ∈ C∗. To that end note first that ELφ(Z1) <∞
implies EZ1 logZ1 < ∞ by (3.9) in Lemma 3.5. If EZ1 logZ1 < ∞ then Lemma 4.5 ensures
ELψ(Z1) < ∞ for some ψ ∈ C∗0 satisfying limx→∞

φ(x)
x = ∞. Consequently, by recalling

(5.1-3) we infer

sup
n≥0

Eψ(Wn) ≤ ψ(1) +
∑
n≥1

Eφ(Dn) ≤ C ELψ(Z1) < ∞

and thus the uniform integrability of (Wn)n≥0, in particular EW = EW0 = 1 > 0 which
completes the proof. ♦

Proof of Theorem 1 (converse). Since P (W > 0) > 0, there exist 0 < η < 1 < T

such that γ def= infn≥0 P (η ≤W ∗n ≤ t) > 0. It follows that

P (W ∗ > t) = P (W0 > t) +
∑
n≥0

P (W ∗n ≤ t,Wn+1 > t)
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≥
∑
n≥0

P

(
η ≤W ∗n ≤ t,

1
µn+1

ηµn∑
j=1

Xn,j > t

)
≥
∑
n≥0

P (η ≤W ∗n ≤ t)P (Sηµn > µt/η)

≥ γ
∑
n≥1

P (Sηµn > µt/η)

for t ≥ T , where Sk
def= X1,1 + ... + X1,k for k ≥ 1 and St

def= t−1
∑dte
k=1X1,k for t ∈ (0,∞).

Since

P
(

max
ηµn−1<k≤ηµn

Sk > t/η
)
≤ P

(
1

ηµn−1

ηµn∑
k=1

Sk > t/η

)
= P (Sηµn > µt/η)

for all t > 0, we further obtain

P (W ∗ > t) ≥ γ
∑
n≥1

P (Sηµn > µt/η)

≥ γ
∑
n≥1

P
(

max
ηµn−1<k≤ηµn

Sk > t/η
)

≥ γP
(

sup
k≥1

Sk > t/η
)

for all t ≥ T . Consequently, given any φ ∈ C∗, Eφ(W ∗) is finite if Eφ(supk≥1 Sk) <∞ which
in turn holds iff ELφ(Z1) <∞ as we have proved in Lemma 4.4. ♦
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