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This article continues work in [4] on random walks (Sn)n>0 whose incre-
ments X,, are (m+ 1)-block factors of the form p(Yy—m, ..., Yy) for i.i.d.
random variables Y_;,, Y_;, 11, ... taking values in an arbitrary measur-
able space (S,6). Defining My, = (Yn—m, ..., Yn) for n > 0, which is
a Harris ergodic Markov chain, the sequence (M, Sp)n>0 constitutes a
Markov random walk with stationary drift 4 = Fpm+1X1 where F' de-
notes the distribution of the Y;,’s. Suppose u > 0, let (o1,),>0 be the se-
quence of strictly ascending ladder epochs associated with (_Mn, Sn)n>0
and let (My,,, So,, )n>0, (Mo, ,0n)n>0 be the resulting Markov renewal
processes whose common driving chain is again positive Harris recurrent.
The Markov renewal measures associated with (Mp,, Sn )y, >0 and the for-
mer two sequences are denoted Uy, Uy and V7, respectively, where X is
an arbitrary initial distribution for (Mp, So). Given the basic sequence
(Mp, Sn)n>o is spread-out or l-arithmetic with shift function 0, we pro-
vide convergence rate results for each of Uy, Uf and V>\> under natural
moment conditions. Proofs are based on a suitable reduction to standard
renewal theory by finding an appropriate imbedded regeneration scheme
and coupling. Considerable work is further spent on necessary moment
results.
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2
1. INTRODUCTION

Let m € IN. A stochastic sequence (X, )n>0 is called m-dependent if Xy, ..., X,, and
Xntma1s Xntm+2, ... are independent for all n € IN. Our concern is a special class of such
sequences, called stationary (m + 1)-block factors, given by

Xn = ¢(Ynem, .. Yn), n>0, (1.1)

where ¢ : S™*! — IR is a measurable function and Y_,,,,Y_,,41, ... are i.i.d. random variables
on a probability space (2,2, P) taking values in a measurable space (S, S). We denote by F' the
common distribution of the Y;,’s and assume that & is countably generated. Let S, = >_7_ Xy,

n > 0, be the random walk associated with (X,,),>0 and suppose p def EX; > 0. Many
interesting properties of (S, )n>0 including renewal theory were derived by Janson [11], [12]. A
number of these results have been improved in [4] by analyzing (S}, ),>0 within the framework
of Markov renewal theory. For this purpose observe that

M, ¥ Vo, .. Y), n>0, (1.2)
constitutes a positive Harris chain with stationary distribution F™*1, the (m +1)-fold product
of F, and (M,, Sn)n>0 a Markov random walk, respectively a Marov renewal process if all
X,,’s are positive. We call (M,,, Sy,)n>0 hereafter a (¢, F')-m-dependent Markov random walk,
abbreviated as (¢, F')-mdMRW. For the definition of its lattice-span d, a notoriously important
characteristic in renewal theory, see [4], Section 3.

Let us briefly summarize some notation from [4] which is kept throughout unless stated

otherwise. Suppose a canonical model with probability measures P, ,, (z,y) € S™! x R,

such that P, ,(My = z,Sy0 = y) = 1. For every distribution A\ on S™*! x IR put P, def

Jsmi1y g Pry Adz, dy). If Xis a distribution on S™*1 only then Py def Prgs,- In the stationary
case A = F™*1 we simply write P instead of Ppm+1. As usual, the corresponding expectation
operators are denoted by E, ,, F\ and E. Let Ao be Lebesgue measure on IR and X; counting
measure on Z. Finally, given a measure ¢ on S™1 x IR [resp. IR], put ¢ def C(-NS™ T % (0, 0))
def
[resp. = ¢(- N (0,00))].
The strictly ascending ladder epochs of (S,,),>0 are given by o¢ = 0 and

On def inf{k >o0,_1:5: >S5, ,}

forn > 1. Put M} 2o M, and S; o Se,. As pointed out in [4], (M, ,0p)n>0 and
(M, S, )n>0 are both MRP’s, the first 1-arithmetic with shift function 0, the latter with
the same lattice-span (and shift function) as (M, S, )n>0. The driving chain (M. ),>0 is
also positive Harris recurrent with a unique stationary distribution £*. Moreover, u € (0, 00)
implies p~ def E¢Sy, = pEe-01 < 00. These conclusions do indeed follow from a more general
result in [3]. The Markov renewal measures associated with (M, Sy)n>0, (M,7,S; )n>0 and
(M, 0n)n>0 under Py are denoted by Uy, Uy and Vy, respectively, that is

U, def ZPA(Mn,sn)’ Uz def ZPA(M;,S,?) and Vy def ZPA(M;,an)_ (1.3)

n>0 n>0 n>0
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Defining the stationary Markov delay distribution of (M,,, Sy)n>0 and (M, S, )n>0
1
V(A x B) = —>/ Pe(M; € A,S7 > ) NH(ds), Ae&™ ! Be®B,  (L4)
K JB

one has

Ul = p P @A\ and U = (p7) '€ @ AL (1.5)

v

v® is also the unique stationary distribution of the continuous-time Markov process of forward
recurrence times (M), S7¢) — t)¢>0 where 7(t) def inf{n >0:5, > t}. Correspondingly, the

stationary Markov delay distribution of (M, 0y, )n>0 18

O (Ax{k}) € 9P (M € Aoy > k), Ae&™! ke, (1.6)

9 et E¢« 01, and satisfies

V2 = 9T @ A, (1.7)

where V> (A x {n}) % [4. V2 (A x {n — k}) ¢* (dz, dk).

x

Markov renewal theorems for each of Uy,U; and V" as well as a number of interesting
consequences for various relevant quantities associated with (M, Sy)n>0 and the other se-
quences introduced above are provided in [4]. The present paper continues the work by dealing
with convergence rate results in the Markov renewal theorem. Polynomial as well as exponen-
tial rates under suitable moment conditions are established. Results of this type are already
hard to derive for ordinary random walks, see e.g. [14], but are even harder to obtain for Markov
random walks, at least when the driving chain has continuous state space as in the situation
considered here, see however [2] for another special case and [9] for some recent progress in
a more general setting based upon an analytic approach. In contrast to [9], our methods are
purely probabilistic using regeneration and coupling. Although the class of (¢, F)-mdMRW
is a very special one within the general class of Markov random walks with Harris recurrent
driving chain, let us point out that each such general process contains a subsequence of the
former type when sampling at a sequence of regeneration epochs. This fact in combination
with the results of this article may eventually lead to corresponding rate results in the gen-
eral setting. A major remaining obstacle is to convert suitable moment conditions on certain
occupation measures arising from such an approach into verifiable moment conditions on the
increments of the given Markov random walk itself. One can even say that this is the main
problem whenever trying to prove rate results in renewal theory by regenerative arguments.
We refer to a future publication.

Let us also point to some weakly related work on stochastic recursive sequences and
the renovation method introduced by Borovkov for proving stability theorems in queueing,
see [5], and also [6], [7]. The connection is roughly described by the fact that the considered
renovative processes have an (m+1)-block structure on certain recurrent events which provides
a regeneration scheme for these processes. Finally, we mention a recent article by Csenki [§]
where some renewal theoretic results are proved for certain (¢, F')-mdMRW without utilizing
the Markov renewal structure.
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Our results are stated in Section 2 followed by the construction of a regeneration scheme
(Section 3) that furnishes the use of known rate results for ordinary renewal measures and
a further coupling which must be employed to prove the results for U5 and V). Section 4
provides necessary moment results. The proofs of the main results can be found in Sections 5
and 6. Finally, a few facts from classical renewal theory are collected in a short Appendix.

2. RESULTS
Let us further define for a > 0
Cxl@) = igpoEA|Xn‘a - OS%ar}é+1EA|X"|a’
Ci(a) = sup B(X;1) = | max | By(X7)°,
My () def il;pOEAeMX"' = ngzngaﬁﬂE,\eo"X”',
M () def il;pOEAeanE = ogglga%{HE)‘eaXf'

In analogy to ordinary renewal theory, our convergence rate results below are given for (¢, F')-
mdMRW’s (M,,, Sp,)n>0 which are either 1-arithmetic with shift function 0 or spread-out. The
latter means that there is an F™*!-positive set C such that for each 2 € C there exists n(z) € IN
such that P, ((M, (), Sn(z)) € -) = P*((®))(z,.) has an absolutely continuous component with
respect to F™ 1 ® N\g. Here P denotes the transition kernel of (M, X,,),>0 and P*(") itg
n-fold convolution. We also call P spread-out under the previous condition. Note that F™+!
is the unique invariant distribution and thus a maximal irreducibility measure for the Harris
chain (My,),>0. One can easily show that if (M,,, Sy)n>0 is spread-out the same holds true for
the ladder height subsequence (M, S, ),>0. As in [4] we make the following

STANDING ASSUMPTION: Whenever in the 1-arithmetic case, initial distributions A
are such that Py (X, € Z) =1 for all n > 1.

In order to state our results more efficiently, let H* be the space of functions g : [0, 00) —
IR satisfying [~ t*"1g(t) dt < co and limy_ t*g(t) = 0, where a > 1. Let further € be the
space of functions g : [0,00) — IR satisfying [~ €’ g(t) dt < oo and limy_,o €’’g(t) = 0 for
some 6 > 0. If V and W denote arbitrary signed measures on S™*! x IR and IR, respectively,

then put

def

Vip = V(N(E™' xB)) and Wi = W(-NB)

for measurable subsets B of IR.

THEOREM 2.1. Let (M, Sy)n>0 be a (@, F)-mdMRW which is either I1-arithmetic with
shift function 0 (d = 1) or spread-out (d = 0). Let further p € (0,00), o > 1 and X\, X be
distributions on S™! x IR.

(a) If O (a) < oo for v e {\ XN}, then [[(Ux — Ux) g1l € HY for every finite interval I.
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(b) If CY (a) < 00 and E(X{)* < oo, then ||[(Ux — p= F™ 1 @ Ng)ji41]| € H for every
finite interval 1.

(c) If Cf (a4 1) < oo forv e {\ X}, then |[(Ux — Uxn)jj,00) | € H®.

(d) If Cy (e +1) < 00 and E(X; )T < oo, then |[(Uxy — 7' F™ 1 @ Na)(t,00) || € H™.
(e) If Oy (1) < oo and E(X;")? < oo, then

|UF — ' P @AY < oo (2.1)

The next theorem covers the case when ¢t tends to —oo.

THEOREM 2.2. Let (M, Sp)n>0 as well as p,« and X be as in Theorem 2.1.
(a) If C5 () < 00 and E(X{)*T! < oo, then Uy_411 € H® for every finite interval I.
(b) If Cy (a+1) < 00 and E(X;)*™? < oo, then Uyj(—oo,—1] € H*.
(¢c) If C5 (1) < 0o and E(X; )? < oo, then

US| = Ua(S™ x (—00,0]) < oo. (2.2)

Turning to exponential rates, we will prove

THEOREM 2.3. Let (M, Sp)n>0 as well as p and X\, X' be as in Theorem 2.1.
(a) If Mf(a) < oo for v e {\ N} and some o > 0, then |[(Ux — Ux)jit,00) || € €.
(b) If M (a) < oo for some o > 0, then ||[(Uxy — p 7' F™ 1 @ Na)jjt.00) || € €.
(¢c) If My () < oo for some a > 0, then Uy(S™*! x (—o0, —t]) € &.

The counterpart of Theorem 2.1 for (M., S; ),>0 is stated next.

THEOREM 2.4. Let the situation of Theorem 2.1 be given and o > 1.
(a) If C, () < 00 for v € {\ X'}, then (U5 — U3 )1l € HY for every finite interval I.
(b) If Cx(@) < 0o and E(X;)* < oo, then (U — (1) 71" @ Na)jiv1]| € H for every
finite interval I.
(c) If Cy(a+1) < oo forve {\XN}, then (U7 — U300l € HY.
(d) If Cx(a+1) < 0o and E(X{ )2 < oo, then |[(Us — (17) 71 @ Na) j.00)|| € H®.
(e) If Ox(1) < 0o and E(X|")? < oo, then

U5 = (™)' @Al < oo (2.3)

The two-sided moment assumptions in Theorem 2.4 may be surprising because, in view
of corresponding results in classic renewal theory, Ey(S7)? < oo for suitable 3 > 0 seems to be
the type of required condition which in turn follows from C;f (8) < o0, as can be easily verified
with the help of Theorem 2.3 in [11]. The reason is that our method of proof uses a coupling
construction which draws on the regeneration lemmata for the special class of (¢, F')-mdMRW
given in Section 3. But since the ladder height process (M, S, ),>0 is not of this type in
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general (see e.g. [11], Example 3.1), the construction must be for the original Markov random
walk (My, Sp)n>0 and may thus lack the optimal coupling rate. Roughly speaking, when a
coupling of two versions of the original process occurs it generally takes an extra amount of time
1, say, until the imbedded ladder height processes couple. We refer to the beginning of Section
6 for a more detailed explanation. The behavior of ¥, however, is tied to the degree of negative
excursions of the two original processes before they couple. As a consequence, the existence of
a moment of order 5 > 0 for 1 is controlled by a moment condition of type C} () < oo, see
Proposition 6.3 and its proof. For the same reason, two-sided moment assumptions occur in
the next theorem which is the counterpart of Theorem 2.3.

THEOREM 2.5. Let the situation of Theorem 2.1 be given.
(a) If M, (a) < oo for v e {\ X'} and some a > 0, then [[(U5 — U3)|jt,00) | € €.
(b) If Mx(o) < oo for some a > 0, then |[(Uy — (117)71€* @ Xa)t,00) || € €.
Our final convergence rate results deal with V", the Markov renewal measure associated

with the ladder epoch sequence (M, 0,,)n>0. Which is always 1-arithmetic with shift function
0 (in fact regardless of the lattice-type of (M,,, Sp)n>0, Theorem 2.1 in [4]).

THEOREM 2.6. Let the situation of Theorem 2.1 be given and o > 1.
(a) If C7 (o) < oo for v e {\ X}, then ||(VY — Vi) eq1ll € H® for every finite interval 1.
(b) If C5 (a) < 00 and E(X7)*T! < oo, then |[(Vy — 971" @ A1) jet1]] € H® for every finite

interval 1.
(c) If C(a+1) < oo forve {\N}, then (VY — Vi) iitoo)ll € H*.
(d) If C5 (e +1) < 0o and E(X; )2 < oo, then ||[(VY — 971" @ A1)|jt,00) | € H*.
(e) If C5 (1) < 0o and E(X; )? < oo, then

Ve =971 @ AT || < . (2.4)

THEOREM 2.7. Let the situation of Theorem 2.1 be given.
(a) If M (o) < 0o for v e {\ N} and some o > 0, then ||(VY — Vi)ji00)l € €.
(b) If My (a) < oo for some a > 0, then ||(Vy — 0715 @ X)jit,00) || € €.

3. REGENERATION

The key to the proof of our main results is the following regeneration lemma and its
generalization (Lemma 3.2 below) which will enable us to re-construct the considered (¢, F')-
mdMRW (M,,, Sp)n>0 together with a sequence of regeneration epochs that divides it into
independent cycles which are further stationary except for the first one. An assumption on
existence or positivity of the stationary drift p = EX; is not needed and thus not imposed
here. The type of regeneration established through the re-construction of (M,,, Sy,)n>0 is called
wide-sense regeneration in the literature, see Thorisson’s monograph [17] for details.
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LEMMA 3.1. Let (M, Sn)n>0 be a (@, F')-mdMRW which is 1-arithmetic with shift func-
tion 0 or spread-out. Then there exist ng € IN, F™ 1 positive sets A,B € & and 3 > 0
such that
Prm)(z,.) > BF™H(B)@T (3.1)
for all x € A where I' = 01, for some L € Z in the 1-arithmetic case and I' = No(-|J) for some
finite, Xg-positive interval J C IR in the spread-out case.

PROOF. In the spread-out case the assertion follows directly from a more general result
by Niemi [15] and Niemi and Nummelin [16], see their Minorization Lemma and Remark 4.2.
We therefore restrict ourselves to the 1-arithmetic case and prove the slightly stronger result

Po(Mapmio, X1,y Xomyo) €°) > BE™ (. B) ® 6, (3.2)

for all z € A and some [ = (1, ..., lopmi2) € Z*™F2, thus ng = 2m + 2 and L = Z?:IH l;.

For a = (CLl, ...,am+1), b= (bl, ...,bm+1) e smtl put

(I)(CL, b) déf (QD(CLQ, ceey Amt1, bl)a ceey Qp(a'm—i—l? bla ceey bm)7 Qp(bh ceey bm—l—l))

and
Aa,b) % ((az, ooy @ma1,01)s ooy (@mt1s D14 oves by )y (B4 ooy byg 1))

Hence (I)(MnaMn—i-m—i—l) = (Xn+1a"-aXn+m+1) and A(MnaMn—i—m—i—l) = (Mn+1a "~7Mn—|—m—|—1)a
in particular My 11,..., My, Xpa1, .oy Xntm are fully determined by M,,, M, 4,,+1. Since
P(X, € Zfor allm > 1) = 1 there exists | € Z*™*2 such that P((X1,..., Xomi2) = 1) > 0.
Define

C def {(z,y) € §2m+2 . O(z,y) = (I, s lms1) s
D € {(y,2) € 82 0y, 2) = (2, or lamr2) )
E ¥ {(2,y,2) € S 0(x,y) = (I, oo bg1), D(5,2) = (b2, oo Lama2) )

Clearly, E = (C x S™T1) N (8™ ! x D), F?™T2(C) > 0, F*™*2(D) > 0 and F>™T3(E) > 0.

Since 8™*! is countably generated, there is an incrasing sequence of finite o-fields
(&n)n>1 such that ™! = o(U,>16,) and each &, is generated by a finite partition of
Smt1l For z € ™! and n € IN denote by G7 the unique set containing z of the partition
generating &,,. Put G;; , = G X Gy. From the Differentiation Theorem for measures we infer
the existence of F?™*+2_null sets Ny, Ny € &2™*2 such that

. P20 NnGn y)
lim ’
n—00 F2m+2 (Gg,y)

=1 forall (z,y) e C— N,

and

) F2m+2(DﬁGZZ)
lim .
n— 00 F2m+2 (GZ’Z)

Fix a triplet (u,v,w) € (C' — Ny x 8™t N (S™+! x D — N,) and an integer j such that

= 1 forall (y,z) € D— Na.

P2 (CnaGy,)
F2m+2 (G?A,v)

F?m2(DNGY ) - 3

F2m+2(ng7w) = 4 (3.3)

Qo
v



Now put
A E {zeGl F"NGIN{y e S™ : (a,y) € C}) > (3/4)F™(GI)},

B < {zeGi: F"™YGIN{yeS™!: (y,2) € D}) > (3/4)F"™ (GI)},

which are both elements of &™*1. Use (3.3) and Fubini’s theorem to obtain

F?m+2(Cn G{L’v) = /Gf F"Y (G n{yeS™!: (z,y) € C}) F™ 1 (dx)
3 om42,
ZF (Gg.,) >0

A%

and analogously

F™2(DNGI,) = /G CFTE Ny e 8T (y,2) € DY) P d2)
> SFTG,) > 0

and thereby F™T1(A) > 0 and F™*1(B) > 0. For E, . W1y e 8™ (2,y,2) € E}, we
finally conclude for all (z,z) € A x B
Fii(E,y) > FPPHG n{y e S™ i (z,y) € Oy n{y € 8™ (y,2) € DY)
= FTGIN Y (5,y) € CY) + FTUGL Ny - (3,2) € DY) — FH(GE)
> F"HGY)/2 > 0,

thus proving (3.2) via

P:r((MQm—I—Q S A7 (Xb "-7X2m+2) — l) = / Fm+1(E$,Z) Fm+1(d2)
ANB

> CFTHB)F (G FT (AB)

for all z € A and A € ™" (thus 3 = FT(B)F™T1(G7)/2). %

For ¢ > 0, we define the reduced (substochastic) kernel

P.(z,-) € P((My, X)) €-,|X1| <)

and note that

P;"(z,:) = Py((My,Sy) € X1 < ¢ .y [ Xn| <€)
for each n > 0. As a trivial consequence of (3.2), we have in the arithmetic case that with
no = 2m + 2, to = max(ly,...,ly,) and I' = J,

P;") (@, dy,ds) > BF™*(dy|B) @ T(ds) (3.4)

for all z € A. For we need this be true also in the spread-out case given some g sufficiently
large, we next state the following generalization of Lemma 3.1:
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LEMMA 3.2. Let (M, Sn)n>0 be a (@, F')-mdMRW which is 1-arithmetic with shift func-
tion 0 or spread-out. Then there exist ng € IN, F™ 1 positive sets A,B € ™t 5 > 0
(in general different from those in Lemma 3.1) and ty > 0 such that (3.4) holds true for all
x € A where I' = 6, for some L € Z in the 1-arithmetic case and I' = No(+|.J) for some finite,
Ng-positive interval J C IR in the spread-out case.

PROOF. From the above we must only consider the spread-out case. But here the result
follows again from Niemi [15] and Niemi and Nummelin [16] if we observe that, for sufficiently
large tg, the reduced kernel P;, is again spread-out and has the same irreducibility properties
as P itself. Further details can thus be omitted. &

Observe that, upon setting I, def 1¢x,|<to} for n > 1, (3.4) may be rewritten as
Py((Mpgs Sngy 115y Ing) € 1) 2 6Fm+1('|]B) e 5(17~~-71) (3.4)

for all z € A. Lemma 3.2 is now used for the re-construction of (M,,, X, )n,>0 as follows: Let us
stipulate without further notice that all occurring variables indexed by -1 are defined as 0. Let
(Mn)n>0 and (Xn)n>0 be sequences of i.i.d. Bernoulli variables with parameter 5 (~ B(1,f)),
respectively i.i.d. geometric variables with parameter %, each independent of all other occurring

variables. Put mg def ng +m-+ 1 and

Vg def inf{n € xo + moIN : M,,_,,, € A}.

Hence ro & mg*(vo — xo0) — 1 has a geometric distribution with parameter F*1(A) under
every Py. Keep the segment (M, Xi)o<k<v,—n, unchanged. Re-generate (M, Suy, — Svg—ng
Lio—ng+1, -5 Loy ) according to F™1(:[B) ® T' ® 61, 1), if 1y, = 1, and such that the overall

distribution of that vector given M, remains the original one, otherwise. Finish this block

0o—no
by re-constructing (My, Xi)vo—no<k<wv, according to the prescribed conditional distribution

under (M’Uo—noa MU07 S’Uo - S’Uo—no7 I’Uo—no—l—17 ceey Ivo)'
The next blocks are constructed similarly with vg, & > 1, defined through

Vi def inf{n € Vg1 + xx +moIN : My,_p, € A}-

A regeneration occurs each time when 7,, = 1, more precisely at
Ty, = inf{v, > Tk_1: 1y, =1}

for £ > 0. The following assertions are valid under every P, and readily seen from the con-
struction and given assumptions:

(R.1) The random vectors (T3, — Ty,—1, M1, ,St, — ST,_,) are independent for n > 0 and
identically distributed for n > 1 with the same distribution as (7o, Mr,, S1,) under
Ppm+i(.g). Moreover, Mr, and St, are independent for each n > 0.

(R.2) (ST, )n>0 constitutes an ordinary delayed l-arithmetic, respectively absolutely continu-
ous random walk. In the arithmetic case the lattice-span assertion follows along similar
lines as Lemma 3.3 in [1]. Tt is this property which makes use of the geometric variables

Xn-
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(R.3) (M, Xk)o<k<T,—ng»> ST, — ST, —ne and (Mr, 1x, X1, +r+1)k>0 are independent for every
n > 0, the last sequence being distributed as (M}, Xp4+1)r>0 under Prmii)-

—

R.4) maxi<k<n, | X7, —no+k| < to for each n > 0.

(R.5) kn def mal(vn — Up—1 — Xn) — 1, n > 0, are i.i.d. geometric variables with parameter
F™*L(A). They are further independent of (x»)n>0-

(R.6) To = v, where p =inf{n > 0:n,, = 1}. Moreover, p has a geometric distribution with
parameter [ and is independent of (M,,, X, Xn, Un)n>0-

(R.5) and (R.6) show that T} is essentially a geometric sum of independent geometric variables.

We determine its generating function in Lemma 3.5 at the end of the section. For the last

assertion in (R.6), note that with (1,)n>0 the subsequence (1, )n>0 is still independent of all

other occurring random variables.

With the help of the previous construction we get the following key identity for the
Markov renewal measure Uy. Given aset D € ™1 @B, x € S™t! and 2z € IR, let D, € B be
the z-projection of D, i.e. D, ={y € R: (z,y) € D}, and D — 2 def {(vyw—2): (v,w) € D}.

LEMMA 3.3. For all initial distributions A on S™T1 x IR and D € 6™t @ 9B

UND) = UR(D) + [ Ul (D =) Uald),
R
(3.5)
= UPW) [ D) Uk g )
SmtixIR
where Ux = 3, o PA(ST, € *) equals the renewal measure of (St,)n>0 under Py and
To—1

vl (D) EA< > 1D(Mn,Sn)>.

n=0

Proor. Using the strong Markov property, the independence of Mz and S, and
My, ~ F™T1(.|B) for all n > 0, we obtain under every Py

Toi1—1
U\(D) = U"(D) + ZE\( > 1D(Mk,5k)>

n>0 k=T,

S UPm) - X [ U0y A )
m—+1yx

n>0
= U;O(D) + /RU;%—s-l(.m)(D _y> UA(dy)
that is the first identity of (3.5). If we write the final integral in previous line as

L Aoy 2) Ul ey (do.dz) Ua(dy)
R JS™t1xR

and interchange the order of integration we also obtain the second equality in (3.5). O
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Let U* denote the renewal measure of (S7, ),>—1 under Ppm+1(.|g), Which is a zero-delayed
random walk under that probability measure. With the help of (3.5) we get the following bound
for sup,c g Ur(S™T! x [t,t + a]) independent of A:

COROLLARY 3.4. For all initial distributions A on S™T! x IR and all a > 0

sup U (8™ x [t,t +a]) < ETo(l —i—U*[—a,a]) < 0. (3.6)
telR

Proor. Clearly, U;FO has total mass F\Ty = ETy < oo, finiteness and independence of
A following from (R.5) and (R.6), see Lemma 3.5 below. Moreover,

sup Uy[t,t +a] < U[—a,aq]

telR
is a well-known inequality from classical renewal theory. Combining these facts with (3.5)
(second line) immediately gives the assertion. O

We close this section with an explicit computation of the generating function of Tjy showing
in particular that Ty has finite moments of exponential order. Let gg(s) = ﬁ denote the
generating function of a geometric distribution with parameter 6 € (0,1).

LEMMA 3.5. The distribution of Ty under Py is the same for every X, its generating
function given by

5
Esto = 3.7
L — (1= B)g1/2(8)gpm+1(a)(s™0)s™o (3.7)
and finite for all s € (0,s*) for some s* > 1. Moreover,
ETy = E(o+1)E(xo+ tmg) = ~(24 M0 (3.8)
0 = o X0 T Moko T—Mo) = 3 Frri(a) ) .

PRrOOF. In view of (R.5) and (R.6) we have

4

To = vy = Z(Xj + mokj +mo)
§=0

with mutually independent geometric variables g, x;, ;. This easily leads to the assertions of
the lemma whence we omit further details. &

4. MOMENT RESULTS

Let (M, Syn)n>0 be any (¢, F))-mdMRW with finite, but not necessarily positive station-
ary drift 4 = EFX;. The following two propositions contain the moment results which are of
essential importance when proving the main results in the next section.

PROPOSITION 4.1. Let a > 0.
(a) If C5 (a) < oo then EA(Sii)a < 0.
(b) Ifo(a) < oo then Exe’®To < oo for some 0 € (0, a].
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Let the occupation measure Ufo be defined as in Lemma 3.3.

PROPOSITION 4.2. Let a >0, I; = (0,00) and I = (—00,0).
() If Cx (@) < 00 then [guin, g, [t1* UN" (de, dt) = Ex(32,5 (S3)) < oo.

n=0
(b) If M (a) < oo then Jsmitwr, M UT (de, dt) = Ex(310) e¥5i) < oo for some
6 € (0,a].

REMARK. Since C%mﬂ(a) = E(Xi)® < Cf(a) for every A, the conclusions of the
previous propositions remain true when X is replaced by F™*! or any v < ¢ F™*! for some
¢ > 0 (like F™1(:[B)), the latter because E, (X)* < ¢ 'E(X{)®.

The proofs are presented after some furnishing lemmata. We keep the notation of the
previous section. Recall from the construction there that I' is the distribution of Sy, — Su,—n,
given 7,, = 1 under every P,. One can easily see that nyp > m + 1 in (3.1) which in turn
implies

inf  P(Sp, € -|My=2,M,, =y) > BL()/F™(B)
(z,y)EAXB

Let Y1,...,Y,, and Z4, ..., Z,, be generic random variables with
‘C(Yk) = P(Xvo—no-i-k € "nvo = 1) and ‘C(Zk) = P<X’Uo—n0+k € '|77’U0 = O)

under each Py.

LEMMA 4.3. There are finite constants c1, co such that Eq(Yy) < c1Eg(X1) and Eg(Zy) <
caFEg(X1) for all k =1,...,n0 and all measurable functions g : IR — [0,00).

PROOF. Our argument is based on the simple fact that, given v < ¢ for a finite constant

¢, ExZ < oo for any random variable Z > 0 implies F,Z < oco. Recall I, = 1y x,|<¢,}, put

def -1
Jn = T1i2o" In—k and then

def
K(I7 ) - P((M’UO7SUO - Svo—nm Jvo) € '|77U0 - 07MU0—”0 - l’)
= (1 - ﬁ)_l(Pw((MnmSno, Jno) € ) - ﬂFm—HHB) T 51)
for x € A. Obviously,
FH( D) < F™PY(D)"'F™ for all D € 6™ F™ (D) > 0,
F" I (B)@T ®6 < B Pu((Myy, Sngs Jn,) € ) for all x € A,
K(z,-) < (1 =8)"'Pu((Mpy, Sngs Jny) € -) for all @ € A,

where (3.47) should be recalled. Since furthermore

E((Mvo—anvov Svo - Svo—nm Jvo)‘nvo = 1) = Fm—H("A) ® Fm+1('|B) RI'® 517
E((Mvo—novMUmSUo - Svo—nw Jvo)|77v0 = O) = K(xadyadz) Fm+1(dx|A)7
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we now infer

o) = [ [ [ /{Oﬁl}wg(kano=y,sno=z,Jno=j>
x T(dz) F™ T (dy|B) F™ ! (dz|A) 6,(dj)

< (ﬁFm“(A))_lEg(Xl) < oo

and similarly

Eg(Z) = / / Eu(g(Xi)| Mg = 4, Sng = 2, Jng = )
AJSmHIx Rx{0,1}
x K(z,dy,dz,dj) F™!(dz|A)

< (a-pFrw) Egx) < . o

LEMMA 4.4. Let a > 0. Then Cy(«) < oo implies Ex|Sy,|* < oo.

PrROOF. We only consider the case a > 1. The modifications of the subsequent inequali-
ties if a € (0,1) are obvious. Put xq def Xo + m + 1. We start by noting

E>\|Svo|a = ﬁE/\(|Svo|a|77vo = 1) + (1 ) EA(’Svo|a|77vo = 0)
and

Ko
|‘S”U0’ < |S>Zo| + |SU0_SU0*"J0| + Z|S>20+jmo_s>20+(j—1)mo|

j=1

= |Sgl + [Suo = Svo—nol + D S5otimo — Sgot(im1ymolLixzs}

Jjz1
As can be seen from the construction in the previous section, only the middle term depends
on 7, and only the first term depends on the initial distribution A, whence

E/\(|Svo|a|77vo)1/a < (EA|S>20|Q)1/Q + E(|SU0_SUO*nO|a’nUO)1/a
+ Z(E|S>20+jmo - S>20+(j—1)m0‘al{ﬁozj})l/a'

Jj=1
Use the independence of x¢ and (S,,),>0 to obtain

Ex|Sl® = > 27"Ex|Snymi1l® < Cala) Y 27"(n+m+1)* < oo.
n>0 n>0

Moreover, with the help of Lemma 4.3

Ex(|Suvy — Sve—no|¥leve =1) = EY1+ ...+ Y,,|* < x
Ex(|Suvy — Svg—no|¥leve =0) = E|Z1+ ... + Zp|* < 0.
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Finally, recalling the definition of ko and the fact that it has a geometric distribution with
parameter F™T1(A), we infer

EA‘Sfco-H'mo - S>Zo+(j—1)m0’a1{m02j} = P(HO > j)E(‘Smo|a‘M0 = AC’MmO = AC)
_ Fm+1(AC)j/ / Eo(|Smo|* [ Moy, = v) Fm+1(dy|AC) Fm+1(dac|Ac)

< F™PH A 2E|S,,,|* < oo

for each 7 > 1 and thereby

Z(E|S>Zo+jﬂ10_S)Zo+(j—1)mo|a1{n02j})1/a < (E|Smo|a)1/aZFm+1(AC)(j_2)/a < Q.

J=1 j=21

Putting all previous inequalities together the assertion obviously follows. &
Turning to exponential moments we need

LEMMA 4.5. For all o > 0 and n € INy

< My(a(n +1)); (4.1)

Bl < [T (Breroix
k:

>1/(n+1>

BreelSuenl < (Epetelse |> (Eezawn)m

< My(2(m+ 1)a)'/? <E62°‘|S”|>1/2; (4.2)

(vt t1) /1)
BeelSil < (m +1)(Be i) ; (43)

(ntm-+1)/2(m+1)
Exe®!Snml < (m 4+ 1)My(2(m + 1)a)/? (Ee2a<m+1>lxll> .

Proor. W.lo.g. suppose X,, > 0 for all n > 0. (4.1) and (4.2) follow by simple
applications of Hoélder’s inequality so that we can turn immediately to (4.3). Write n =
jm+1) 4+ r with 0 < r < m and define

Sn(1) X1 X(—1)(m+1)+1 Xj(ma1)+1
Sn(r) aor | X X(j-1)(m+1)+r Xj(m+1)4r
= + o+ +
Sn(r + 1) Xrt1 X(jfl)(m+1)+r+1 0
Sn(m + 1) Xm+1 Xj(m+1) 0

Plainly, S,, = S, (1) + ... + Sp(m + 1) and by m-dependence each S, (k) is a sum of j + 1 (if
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k <r)orj (if £ > r) ii.d. random variables under P = Ppm+1. Thus we conclude

Ee®5n :/ ae®P(S, >1t) dt

m—+1 "
Z/ aeo‘tP( (k) > )dt
m+1

<
m-+1

= Z/ a(m + 1)e*MmtDsp(S, (k) > s) ds
m—+1

_ ZEea(m—l—l)Sn(k)
k=1

=r <Ee°‘(m+1)X1>j+1 +(m+1-r) (Eeo‘(m+l)xl>j
j+1 (n+m+1)/(m~+1)
< (m_|_ 1) (Eea(m-l-l)Xl)J < (m+ 1) <E€a(m+1)‘X1‘)
which is (4.3). (4.4) is an obvious consequence of (4.2) and (4.3). O

We are now ready for the

PROOF OF PROPOSITION 4.1. Defining S5 4 Sr_o X, we clearly have SiF < Si)
for all n > 0. Moreover, (Mn,57(1+))n20 and (Mn,Sr(;))ngo are (1, F)-mdMRW’s for obvious
choices of ¢ with the same T),’s as regeneration epochs as (M, S, )n>0 itself. It is therefore
enough to prove the proposition for the case of nonnegative X,,’s.

(a) Again we restrict ourselves to the case a > 1, our assumption being C) (o) = Cy (o) <

0. Recall ng >m + 1, put A % (1 — g)~L(Fm+! — BF™+1(.|B)) and note that

L(My, 0w, =0) = LMy, loe=k) = A
for k > n as well as

E(S'Un - Svn_1|9 =n) = PA(S'UO € '|77vo =1),
£(S'Un - Svn—1|g > n) = PA(SUO € '|77'U0 - 0)7
E(Svn — Svnflfg > n) = PA(SUO € )

for all n > 0 and under each P5. Now use the latter fact to obtain

(E)\S%O)l/a < (E)\Sa 1/a + Z E)\ Unt1 )al{QZn})l/a
n>1
— (E)\Sa l/a Z EA Sa UaP(QZn)l/a
n>1
= (ExSg)" + (Ea(Sg)V ) (1-p)"/e
n>1

which is finite because E, S, < oo for v € {\,A} by Lemma 4.4. In case v = A we mention
that Ex X< < oo for all n > 0 follows from EX{ < oo and A < (1 — 3)~1Fm+L,
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(b) Note first that Lemma 3.5 yields

PA(TO Z n) = P(TO Z n) < Cl’}/l_n (45)

for all n > 1, some C; € (0,00) and 1 € (1,00). Since Ee®*t | 1 for a | 0 and My () < oo,
we infer from (4.4) for sufficiently small positive 6 that
E\e?05n < Conyl (4.6)

for all n > 0, some Cy € (0,00) and 2 < ;. Hence by Holder’s inequality

1/2
Eje?510 = ZEAeQS"l{TOZH} < Z(Ekewsn) P(Tozn)1/2

n>1 n>1 (47)
< (10 2(72/71)71/2 < o0.
n>1
This completes the proof of Proposition 4.1. &

For the proof of Proposition 4.2(a), we need a further lemma. Let G be the o-field
generated by (Xn, n, Un)n>1 and note that the T),, x,, are all G-measurable.

LEMMA 4.6. There is a finite constant Cy such that
P)\(Xk € |Q) < C()P)\(Xk S ) Py-a.s.

for all k € INy and initial distributions .

PRrROOF. The following listing shows that Py (X} € -|G), if not equal to Py\(Xj € -), can
vary only within a set of finitely many distributions which are all bounded by some constant
times Py (X € -) as claimed. Note that the latter is the same as P(X; € -) for all k > m + 1
by m-dependence. It is convenient to put

A, ifn=0
A € FTTCB), it > 1m,, =1
A, ifn>1m, =0

and to observe that Py, < [F™1(B) A (1 — )] Ppmt1 for all n > 1.

Case 1. v, <k <wv,+ xnt+1 for some n > —1. Then

P)\(Xk - |Q) = P,\n(Xk € )
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CASE 2. k =vp+ Xn+1 +Jmo+7 < Upyp for some 7 > 0,n > —-1land 1 <r <m+ 1.
Then
P>\n (XT+Xn+1 € '|Mm+1+Xn+1 € A), lfj = 07 Rn41 = 0
Py (Xy4y,., €My, o ZA), ifj=0,Kkpp1 >0
P)\(X]C€|g) _ ( +Xn+1 | F14+Xn+ € ) o +1 -
PFm+1(~|AC)(XT € "Mm—i-l € A)a lf] > 17/’€n—|—1 =]
Ppmi1(iaey(Xy € | Mpmg1 €A), ifj>1, k1 >

CASE 3. k=uvp+xnt1+(G+1)mog—no+r < wv,yq for some j > 0,n > —1land 1 <r < ny.
Then

P(Yr € ')7 if k1 =7, Nongr = 1
PA(Xk € ’g) = P(ZT € ')7 if Kpt1 :j777vn+1 =0. ¢
PFerl(,‘Ac)(XT S -), if ka1 >
PROOF OF PROPOSITION 4.2. It suffices again to assume all X,,’s to be nonnegative.

(a) As before, we consider only o > 1. By Lemma 4.6 and the conditional Minkowski
inequality

Ex(SR19)"* < Y EAXRIGV < G/ Y (BAX)VY < (CoCala)/ (n+1)
k=0 k=0

a.s. for all n > 0. Since T is G-measurable, this further implies
E)\(SS|T0 > n) = E,\(E)\(5’3|g)|To > n) < C()C)\(Oé)(n —+ 1)a

a.s. for all n > 0. Combining this with (4.5) we finally obtain

To—1
EA( Z Sﬁ) = ZE/\Sgl{Twn}
n=0 n>0
= Z E)\(Sngo > TL)P(TO > n)
n>0
< CoCiCx(@) Y (n+1)*y " < oo

n>0

which is the assertion.
(b) Here we obtain for sufficiently small # > 0 in a similar manner as in (4.7)

To—1
B3 ) - Toe

n=0 n>0
< Z(EA€2QSH)1/2P(TO > n)1/2

n>0

< C1C Y (y/m)? < o0

n>0

and thus again the desired result. &
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REMARK. All previous moment results remain true when replacing Ty by the associated
first level 1 ladder epoch

= Ty, ¢ def inf{n : Sy, > 1}.
This can be easily shown when combining the previous results with

BE,(S7,)" <ooforve{\F"} = E,,(S; )* < oo for v € {\, F™ 1Y
0
E,(S7)* <ooforve {\F™1} = E,¢%<ocoforve{\Fm}

0

and similar conclusions for exponential moments, which are well-known facts from standard
renewal theory (see [10]).

However, it should be observed for later purposes, notably Proposition 6.3, that Ty needs
no longer have moments of arbitrary order under Py as being true for T (by Lemma 3.5).
Indeed, assuming p > 0 and defining ¢(z) = inf{n > 0: Sy, > =}, a straightforward argument
in combination with Theorem 1.5.2 in [10] gives for o > 1

E)\Toa = E)\Tg < E)\T(?—F/ EFmJFl(-\IB%)Tg(m) P)\(STO c dx)

—OO,].]

< E\T§' + const EF7n+1(.|]Bg)T6X/ EFm+1(.|IBg)¢(x)a Py (S, € dz).
]

—0Qo,

But the latter expression is finite if E,(Sp)* < oo for v € {A, F*'}, whence we conclude
with Proposition 4.2 (in case pu > 0)

Cy(a)<oo = E/I <ooforve{\Fmt} (4.8)
By a similar argument, one can show for a > 0 that

My (o) <00 = E,e"T < oo for some 0 € (0,a] and v € {\, F™ 1}, (4.9)

For the remainder of this section suppose p € (0,00). Our next lemma deals with the
moments of the X,’s under P,-, v° the stationary Markov delay distribution defined in (1.4).
The notation from there should be recalled, in particular ¥ = E¢«o07.

LEMMA 4.7. There is a finite constant K such that Cl. (o) < K E(X{)*! and C,.(a) <
K E(X{)® for all a > 0.

PROOF. F™T! =971 E. (577! _01 1{m, e.}) implies £ = Pe« (Mg € -) < 9F™H! and thus
foreachn >1and o > 0

E, (XH)* = /E P,s(My € dz) = /Ex(Xf)o‘ £ (dx)

/Ew(X P (dr) = 9B(XE)Y < oo

IN
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since ¥ = > /u < co. Notice that this is the same for Eg¢«(XF)*. Forn =0, X, =0 and a
simple computation gives

Ee- g

(e 1 > (e
E,«(X)~ = u_>/o (0 Per (S0 > 1) dt = P

and this is again bounded by a constant times F(X;")**! because, by using (4.2) in [4] and
the previous estimates,

o1+m
Besi! < Boocy < me (S o)
n=1

n=1

~ Eg*<Z<X:>““) + Eeo B(X{ )™
< (m+ 1D)OE(XT)H

This completes the proof of the lemma. %

The moments of the first passage times 7(¢) = inf{n > 1: S, > t}, t > 0, and the
associated stopped sums S, ;) are considered in the following proposition which may be viewed

as the natural extension of a well-known result for i.i.d. increments due to Gut, see [10], Section
II1.3. Keep in mind that o3 = 7(0).

PROPOSITION 4.8. Let aw > 1 in parts (a),(b) and o« > 0 in parts (c),(d) below.
(a) If CY (o) < 0o and C; (1) < oo, then EN\ST ) < const(t + 1) for all t > 0.
(b) If C (a) < oo, then ExT(t)* < const(t+ 1) for all t > 0.
(¢) If M () < 0o and Cy (1) < oo, then Exe?S~® < const (t+1)e for allt >0 and 6 < «.
(d) If My (a) < oo, then Exe?™® < g(0)e™ for allt >0 and 6 < 6y < o where r > 1 does
not depend on 6 and g(6) — 1 as 0 — 0.

PROOF. Parts (a) and (b) follow from Theorem 2.3 of [11] in the stationary case A =
Fm+1 For the extension to general \ observe that

T(t +m
BA(Sr = 8)7 < Ba(X[)" < E*( ) (4.10)
< (m+1)C¥(a) + E(XT) O‘E,\T ) < const(t+1),

where (4.2), (4.4) from [4] have been utilized, as well as

ExT(t)* < ENTE; < conmst(t+1)" (4.11)

where 7(t) o inf{n > 0 : Sy, > t}. The final inequality is a standard renewal result applied
to the ordinary delayed random walk (S, — ST, _, )n>0 which, by Proposition 4.1(a), satisfies
Ex(S7,)% <ooand Ex(St, — 81, ;)% = Epm+1(4p)Sg, < o0 for n > 1if C) (o) < oo.
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Similar arguments lead to (c) and (d): Instead of (4.10), we get

T(t)+m
Eeoz(S.,.(t)—t) < E ( aX+>

< (m+1)My +Ee°‘X1 E7(t) < const(t+1)

for all ¢ > 0 providing M («) < co. This clearly implies (c).

By Proposition 4.1(b), M, (a) ensures Exe”®10 < 0o and EFm+1(.|]B)eHS;0 < oo for all
0 < 0, < o, whence EyeTr) < g(9)e’"9t for all £ > 0, # < 0y < a and some g as stated above
may again be deduced by standard renewal arguments in combination with Theorem III.3.2 in
[10]. Since 7(t) < Ty for all £ > 0, (d) follows. &

The moments of the occupation measure Ug,} = g~ (Zzlz_ol 1¢(n,,s,)e-y) Will also be of
interest, see the proof of Theorems 2.6 and 2.7 at the end of Section 6.

LEMMA 4.9. Let a > 0.

(a) If C5 (a+1) < 00 then [gy g |1 UL (da, dt) = Bx(305"(S7)*) < oo

(b) If My (@) < 0o then [gnir, €U (da,dt) = Ex(3 00 Ll e?5n) < oo for some 6 €
(0, al.

PROOF. (a) First note that C5 (a+ 1) < oo implies Exo{"" < oo by Proposition 4.8(b).
By combining this with Theorem 1.3 in [11], which may easily be adapted to the nonsta-
tionary case A # F™F1 we further obtain Ej(S5;?)*+! < const E\o?tC5 (a4 1) where
57(1_) =Y r_o X, should be recalled. Using the inequality

o1—1

Z 1{S;>t} S 0-11{0'1>t} + tl{SgI)>t}
n=0

we now conclude
o0 0'1—1
t|* U (dx,dt) = E / at®™! 1,y dt
/Sm+1><]R A 0 nz_:o (Sn >t}

< FE\ (01/ ato‘_ll(oyal)(t) dt) + E)\</ Oétal(o S(f))(t) dt)
0 0 o

= Ejot! (S( Netl < 0.

+1

(b) The procedure here is similar so that we restrict ourselves to the only critical point,

Sev < oo for some 8 > 0 follows from M, () < oo. Indeed,

using Holder’s inequality and (4.4) of Lemma 4.5, we obtain for sufficiently small § > 0

namely an argument why E\é’

E)\ees( ) ZEAGQS( )1{01 < Z 2055L+>m 1/2P>\(c71 — )1/
n>0 n>0
_\ (n+m+1)/(4m+4)
< (m+ 1)1/2M)\_(4(m—|— 1)9)1/2 Z <E€49(m—|—1)X1 > ) (07 = n)1/2

n>1
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which is finite because Eye?”t < oo by Proposition 4.8(d) for sufficiently small 6 > 0. &

5. PROOF OF THEOREMS 2.1 - 2.3

PROOF OF THEOREM 2.1. (a) It clearly suffices to prove the assertion for I = |0, 1].
Given Cf (@) < oo for v € {\, X'}, we have E, (S}, )* < oo for v € {\, X, F"*!} by Proposition
4.1(a). A coupling argument in classical renewal theory (see [14] and the Appendix) gives

NUxje+1 — Unjegrll < Hax(t)

for all ¢ > 0 and a decreasing function Hy x on [0, 00) satisfying

o
/ ta_lH)\,X(t) dt < oo,
0
thus in particular lim; oo t*H x(t) = 0. Moreover,

sup ||UA\5+I_U)\’\5+IH < Sup(U)\<S+I)\/U)\/(S+I)) < U*[—l,l] < oQ. (51)
selR selR
For each v € {\, X, F™T1(.|B)}, |U°|| = ETy < oo holds by Lemma 3.5 and
/ t* Ulo(S™ x dt) = / at U (S™F % (t,00)) dt < o0
[0,00) 0

by Proposition 4.2(a) and the subsequent Remark. The latter equation further implies

lim t*U (8™ x (t,00)) = 0.

t—o0

Using these facts and (3.5) of Lemma 3.3, the assertion follows from

T T
1UNt+1 = Unperrll < MU r = Undeg ol

[ U eyr = Unimya | U oy (57 x )

(5.2)
< UG = Ushegsll + 0P [0xjer = Usjer | BTo

+ Sg—}% ”UMs—H - [U)\’|s+I|| U;%+1(.|B) (Sm+1 X (t/27 OO))

(b) follows directly from (a) with A\’ = v® when using Lemma 4.7.
(c) Using part (a) (with o+ 1 instead of «), we infer the inequality

U ft,00) — Unjitoo) | < % D Uxnsr = Unpngr || < 2 Kox () Y nm !

n>|t] n>|t]

for a suitable function K y/(t) convergent to 0 as ¢t — oco. Moreover,

/0 N ko) = Uniitoe) L dE <03 (04 1) U n.00) = Unffnoo) |

n>0
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< Z(n +1)*! Z 1Ux k1 — Unr i1l

n>0 k>n
k
= D MUngr = Unpesr | D (n+ 1)
k>0 n=0
< Y (ke + D) Ujprr — Un st |
E>0
k+1
<y / (6 + ) Une—rsar — Unio—ssorll dt
k>0vk

= / (t 4+ D) Uxpp—142r — Unpp—1421|| dt < oo.
0

This proves the assertion.
(d) is again just a specialization of (c).
(e) Here the moment assumptions guarantee E,,S;FO < oo for v € {\ v F™HL(.B)}

whence classical renewal theory (see [14] and the Appendix) yields ||[Uy —U,:|| < co. Moreover,
Ul is a finite measure with total mass ETy, < oo for every distribution » on S™*! x IR.

Assertion (2.1) now easily follows from (5.2) with t =0, I =[0,00) and X' = v°. &

PROOF OF THEOREM 2.2. (a) The arguments are very similar to those for Theorem
2.1(a), but ¢ is negative here. Given C} (a) < oo and E(X; )*™ < oo, Proposition 4.1(a)
implies Ex(S,)* < oo and E(S7,)*™! < co. This can further be used (see the Appendix) to
obtain

Ux(t+1) < Hx(t)
for all ¢ <0 and an increasing function Hy on (—oo, 0] satisfying
0
/ [t|* T Hy(t) dt < oo,

thus in particular lim;—,_ [t|*Hx(t) = 0. By Proposition 4.2(a) and the subsequent Remark,

— o0

0
J I RS ) = [ all U (87 x (et <

Now one can easily conclude the asserted result from the inequality

Un(S™ T xt+1) < UP(S™ xt+1) + ETy sup Up(s+ 1)
s<t/2

+ Ugbuir gy (8™ x (=00, 1/2)) SSSIIZ)%U)\(S +1).

(5.3)

which in turn follows from (3.5) of Lemma 3.3.

(b) This is shown by the same argument as Theorem 2.1(c).

(¢) The moment assumptions give here ExSy < oo and E(S7, )* < co. It is a well-known
fact from ordinary renewal theory that under these conditions ||U} || = Ux(—00,0] < oo and
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Ux(—o0,z] < K(x + 1) for all x > 0 and some constant K. By another appeal to (3.5) of
Lemma 3.3, we thus infer

U5 < IO+ [ Us(=o0,=a] Ut (S )

< ORI+ IOTIIOi) )+ [ Kl 1) Uy (8741 )

< (K+ 14Uy [)ETo +K/ || U;%H(.“B)(Smﬂ x dx) < oo,
(

—00,0]

where the latter integral is finite by Proposition 4.2(a). &

Proor oF THEOREM 2.3. Here it suffices to note that the assertions are proved similarly
to those of Theorem 2.1(c),(d) and Theorem 2.2(b), of course, with the help of Proposition
4.1(b) and 4.2(b). O

6. COUPLING AT LADDER EPOCHS AND PROOF OF THEOREMS 2.4 - 2.7

In order to prove convergence rate results for the ladder variable sequence (M, S;),>o0,
the regeneration scheme of Section 3 cannot be used directly because the T}, need not be ladder
epochs and therefore do not provide a regeneration scheme for the above sequences as well.
However, it can still be employed for the following coupling construction, unfortunately at the
price of stronger moment conditions than possibly necessary. Although the technical details
of the construction are rather involved, its basic outline is simple and may be described as
follows:

First we construct two coupled versions (M), S] )n>0 and (M), S))n>0 of (M, Sn)n>0
with different initial distributions. This is accomplished by using regeneration lemma 3.2.
Hence there are a.s. finite random times 7" and 7", in fact regeneration times for the respective
sequences, such that (M., ., S, )Jn>0 = (M, _,, S, )n>0. The coupling process

A a M!S ifo<n<7
(Mn7Sn> d:ef 1/ E/ " n), . / ) n Z 07
( n—1!/4T1!"s TL—T’—I—T”)? ifn 2 T

then provides us with a copy of (M), S],)n>0 which concides with (M, S})),>o after time 7’.
In order to see that the ladder epochs of (M,,S,)n>0 and (M, S"),>0 eventually coincide,
notice that 7/ + ¢, where

¢ < inf{n > 7' S, > max{S],...5., S, ....S"},
is a joint ladder epoch. It is this extra amount of time v it takes to synchronize the ladder
epochs of (M, Sp)n>0 and (M, 5"),>0 which has led to the stronger moment assumptions
in our theorems.
Turning to the details, let (M,,, X, )n>0, with regeneration epoch sequence (7},),>0, be
as constructed in the previous section. Put

Gy & Py(Sp ) and G Ppno(p)(Sh, € ).
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We summarize the main properties of the regeneration scheme described in Section 3:

(R.1) (ST,)n>0 is an ordinary delayed 1-arithmetic or absolutely continuous random walk with
delay distribution GG, and increment distribution G under Pj.

(R.2) (M7, )n>—1 forms a sequence of independent random variables which are identically
distributed as F™*1(.|B) for n > 0.

(R.3) For each n > 0, My, is independent of (M, Xi)o<k<T, —ngs ST, — ST, —n, and thus in
particular independent of (1%, ST, )o<k<n-

(R.4) maxi<g<ng | X1, —no+k| < to for each n > 0.

Since these facts remain unaffected when switching to the level 1 ladder epochs of (S7,)n>0
by considering (T ns Mg STn)nz—lv where
Tn déf inf{Tk > Tn—l : STk — STn71 > 1},

it is no loss of generality to assume hereafter G, G be concentrated on (1,00). The reason
for taking level 1 instead of level 0 as usual is only a simplification in the proof of Lemma 6.2
below. We refer to our remark preceding 4.7 for the fact that the moment results of Section
4 are still applicable. In the following, we confine ourselves to the little more complicated case
of absolutely continuous G.

Given arbitrary initial distributions A\, ' on S™*! x IR, we proceed by several steps:

STEP 1. Following Lindvall’s approach for absolutely continuous renewal processes, we

first give a construction of an exact coupling (31,71, S2,n)n20 for the distributions of (S7, )n>0
under Py and Py, i.e.

P ((S1.0)n>0 € ) = Pr((S7, )ns0 € ),
Py ((S2,0)n>0 € 1) = Pr((S7,)nz0 € °).

and
(Stn)n>ie = (S2n)n>r0c (6.1)

for a suitable coupling pair (71,¢,72,¢). We have to do so in some detail because of the moment
considerations further below. Let (go,n)nzo and (gg,n)nzo be two independent renewal pro-
cesses with delay distributions GG and G/, respectively, and common increment distribution
G under Py )/, say. Put Xi,n def S’i,n — S’i,n_l for n > 1 and i« = 0,2. The backward and
forward recurrence time processes of (Szn — Si,O)nZl are denoted by (Bz‘,t)tzo and (Fi,t)t20~
Of course, (BOJ, Fo,t)tzo and (ng Fg’t)tz() have the same distribution which does not depend
on A\, \'. Absolute continuity of G yields the existence of c1, ¢o,t* > 0 such that

Py (B €)= e1ljpe, Ao (6.2)

for all t > t*, [14], Lemma III1.5.1. Let Q¢, h; denote the distribution and absolutely continuous
component density of By, thus hy > ¢11yg,,) for t > t*. For a > 0, define G, by

Gla+z,a+z+ 1]
Go(x,z + b def G(a,0) ’
do(x,z + b], otherwise

if G(a,00) >0



25

Hence Gy, is the conditional distribution of F, under B; = a for every ¢t. Now put Vo0, V2,0) def

= = ef
(50,05 52,0), Wo et 4 + (Voo V Vap) and

7A'i’0 déf 1nf{n Z 1: gi,n - S@o > WO — ‘/;;70}.

Given B; w,—v;, = b;, the forward recurrence time F; y,—v; , has distribution G, because

Wy — Vi is independent of (S‘m — S’¢70)n20. Let (Vp,1, V2,1) be a maximal coupling (see [14],

p. 19) with these conditional marginals, independent of (Si’f—iyo_i_n — §i7f—i’0):‘12>062, and define

A def 5 def ~ 5 def £
Sio = Sio, Xim = Xipfor0<n<7o and X;7, = Biw,-vi, T+ Vi1

The same procedure is next applied to the post-7; o-processes (Sifi’ﬁn — Si,‘f'i,o)nZO with back-

def

ward recurrence times (Btl)tzoi Put Wiy = t*+ Vo1V Vo,

. def . . =
Fi1 = inf{n>%o+1:S,—Sis,>Wi—Viilh
let (Vo2,V2,2) be a maximal coupling with conditional marginals Gy, , Gyp,, given (Bil,Wl—% ¥
Bz'l,Wl—w ) = (b1, b2), which is independent of (SwiJJrn — §i7—f-i‘1);:>062. Define

5 def ~ ~ > def 51
Xin = X’L’,n for Tio<n<T;1 and Xi:’f'i,l = Bi,Wl—Vi,l + ‘/;’2.

It is clear how the construction continues leading to strictly increasing sequences (7; i )r>0 of
random times such that

> def o ~ ~ > def 7~k
Xi,n = Xi,n for Tik <N < T k+1 and Xiﬁ'i,k = Bi,Wk—Vi,k + Vi,k—i-l

where the meaning of Wy, V; ; and Bf should now be clear. For each ¢ = 0,2, the resulting
renewal process (S;n)n>0 is a copy of (S;n)n>0 and a coupling of both occurs at (7o.¢, 72,¢),
i.e.

S’O,’iﬁoyc — 512,’}\'2’47
where

¢ = inf{k>1:Vor=Var}

As shown in [14], the absolute continuity of G (notably (6.2)) implies [Py /(¢ > n) < s™ for
some € (0,1) and all n. > 0. The coupling process (51, )n>0 takes the form

5 def Son, ifn <7y,
Sin = N ' .
S2,7A'2,(—|—n—7:0,<7 lf n Z TO,C
Put also
~ def 7A_O,n7 it n S C
Tl,n = R R R . .
T0,¢ + Ton — To,¢, fn>(

Step 1 is herewith complete.
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STEP 2. Our next task is to define regeneration epochs T} ,, for ¢ = 1,2 and n > 0. To
that end notice that by (R.1)

PA(To € -|(S1,)k>-1) = Ki'(St,°),
P (T Tn 1€ ’( )2 1) - KI(STn_STnfla'% nZL

for suitable kernels K ,K} Pt Ty 1 =Tp 1 = S; -1 def (as stipulated), Kj o def K},

Ks.0 def K1 and K; , = Ky, def K, for n > 1. Generate T;,, — T; ,—1, given (SLk,SQJg,
Vo.k, Va.k ) k>0, according to Kzn(Sm — Szyn 1,)) for n > 0 and ¢ = 1,2. By (6.1) this can

obviously be done in such a way that

T177A'1,c+n - T1,7A'1,g+n—1 = T2,7A'2,<+n - T2,7A’2,g+’n—1 (6.3)

for all n > 1. Put TlndﬁfT”m.

STEP 3. The final step is to define two coupled sequences (M1 1, S1.n)n>0, (M2, S2.n)n>0
which are copies of (M,,, Sy )n>0 under Py and P/, respectively. Put X, ,, = S; , — Sin—1 for
n > 1, as usual.

From (R.3) in the previous section, we infer the existence of a kernel K satisfying

Px((Mr, 41, X1, +&)k>0 € -|(Mo, So), (T}, S1;)j>0) = Ko((Tj11 — T}, 57, — S1;)j>n), ")

for all n > 0 and A. Generate (M1 7, 4k, X175 c4k)k>0 = (Mo, CJF;C,XQ T CJrk)k>0, given (,

(Ti1es Sister 7 k:)k>() , (Vo,ks Vo, )k>0, according to Ko ((Th,ry +x =117, ¢ s St ok Sm k>057)
(a reasonable definition in view of (6.1) and (6.3)).
The regeneration scheme in the previous section further yields the existence of a kernel

K3 such that

Px((My, X&)o<r<t, € *|(Mo, So0),(T}, S1;)j>1, (M}, Sj)j>T,)
= KB((MO7 MTn)? (Tja STj)lﬁjS’m )

forallm > 0 and A\. Let (M0, 51,0) and (M2 o, S2,0) be independent random vectors with distri-
bution A and A" under /Py .. Given these and all other variables generated so far, we generate
(Mi,in,k)OSkSTi,c according to Kg((Mi’(), Miﬂ'i,g)? (Ti,j7 S'ini,j)lng’f'i,g’ ) for i = 1, 2. This
completes the definition of (M; y,S;in)n>0 for ¢ = 1,2. The main properties are summarized
below:

Py (M1, S1n)n>0 € ) = Pa((Mn, Sp)n>o0 € *);
P)\,)\’((MZ,n7SZ,n)nZO € ) = PN((MnaSn)nZO € ')3
Py ((My,0, 51,0, M2,,520) €) = A@N;
(Si1; )n>0 = (Sin)nso for i =1,2;
(M1, S10)n>mc = (M2, S2.0)n>rsc -

Defining the filtrations

ef
Fin & o ((Sik)o<k<ns (Tikl{T, v <n})k>0, (Lir, .<ny (Voks Vo,k))k>0); 1 =0
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for i = 1,2, it can be easily checked that

(F.1) the T}, 7; 1, as well as 7; ¢ are stopping times with respect (§; n)n>0;
(F.2) (Tix — Tik—1,57, ), — ST, ,_1 Jk>n and §y 1, , are independent for all n > 0.
(F.3) (Tix — Tik—1,57,, — 57,41 )k>¢ and §y 1, . are independent.
for each i =1, 2.
Let (an, S; )Jn>0 be the Markov renewal process of strictly ascending ladder heights

associated with (M; ,, Sin)n>0- The process of forward recurrence times is denoted by (M; 4,

Ri,t)tZO, i.e.

déf (Mi,q-(t)y Sz',n(t) - t), Ti(t) déf inf{n Z 0: Si,n > t}.

(Mi ¢, Rit)

Let (Mt, Ry)¢>0 be that process for (M, Sy)n>0 and put A\ def P,\((Mt, R;) € -) for each t > 0.

So far we have not yet shown that our construction also provides an exact coupling for

the afore-mentioned ladder variable sequences. Indeed, for 7; - needs not be a ladder epoch for

(M; pn, Sin)n>0, we have to look for a pair (77, 75) = (71,c +v¢, 72 ¢ +¢), ¢ a random time, such

that 7; - + 1 is one for ¢« = 1,2. Since S; -, , = S2,r, . > 0 and the maximal upward excursion
of (Sin)o<n<r, . is bounded by

Ti,C Ti7c—TLO

Z + }: + def .,
Xi,n S Xi7n+n0t0 == Zl

n=0 n=0

(for the inequality recall (R.4)), an obvious admissible choice for v is

def
Vv = T(Z1V Za — Siz ),

where

7)€ inf{n>0: 85 0 —Sim, >t}

(does not depend on i = 1,2). We then have

Riy= Ry forallt>S" = Sty = 2,3,

and therefore

e = ALl = 1PN (Myyg, Rug) € -) = P (Mzy, Ray) € )|

< ||Pax((My4,Ri4) € -, 8% > t) — P (Mo, Rayt) € -, 8% > 1) (6.4)
< PPy (S* > 1)

for all t > 0. Dealing with moments of S* below we first show two auxiliary lemmata:
LEMMA 6.1. M, . and (Z1, ZQ,S@TZ.@) are independent under IPy x+ for i =1,2.

PrRoOOF. The assertion follows directly from our coupling construction, regeneration prop-
erty (R.3) and the definition of the Z;, 1 = 1, 2. O

LEMMA 6.2. Let (7; n)n>0, @ = 1,2, and ¢ be as defined further above and let o > 0.
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(a) If CY (o) < 0o and CY,(a) < oo, then Ey /72, e < oo fori=1,2.
(b) If M (o) < 0o and My, (a) < oo, then EA)\/ee”C < oo for some 0 € (0,a] andi=1,2.

PROOF. (a) Since ¢ has geometrically decreasing tail under [Py s it is enough to prove
Exx 7, < const (n + 1)**2 for all n > 0 and i = 0,2. Notice that 7;, — 7;,_1 = inf{k >
1: gi’ff—i,n71+k; — Si’f—iynil > W, — Vi,} is the first passage time ®; ,(W,, — V;,) beyond
level W,, —V;,, for the ordinary renewal process (giﬁ,n_ﬁk — Si,ﬂ,n_l)kzo (independent of
W, — Vi and with increment distribution G = Ppmt1(.g) (ST, € -)) and hence a well-studied

€

object. Setting ®(t) o inf{n >1: Sy, — So0 >t}, we thus have
Py (Tin—Tin—1 € “|Gn_1, Wy, =w,V; , =v) = Py x(®jn(w—v) €-) = P\ »(P(w—v) € )

where &_; def (Vo,0, V2,0) and

def =1,2 & 2
&, = o((Vo,ks Va,k)o<k<n+1, (7, k)0<1k<n 13 (S, )6<(;g<ﬂ e 1)
for n > 0. Furthermore, G(1,00) = 1 clearly implies ®(w) < w+1. Use Proposition 4.1(a) and
the subsequent remark to infer E,\,,\/S’ﬁn <oocaswellas Eyx vy W < ooforallm >0andi=0,2
from C (a) < oo and Cf,(a) < co. As shown in [14], IIL.6, even Ey W2 < const (n + 1)
holds under these assumptions. Combining these facts, we conclude

n
Exx7i, < (n+1)° ZE,\,A/(ﬁ,k — Tik-1)"
k=0

= (n+1)° ZEAA’ Qi (Wi — Vi) Gr-1)
< (n—}-l)a/EA,,\/@(w)a ZPA,/\’(sz € dw)

< (n+1)*> Eax (Wi +1)°
k=0

< const(n + 1) Z(k +1) < const (n+ 1)+
k=0

as claimed.

(b) Here it suffices to verify Ey yefTin < ()™ for all sufficiently small § > 0 and a
suitable function g satisfying g(f) — 1 as § — 0. By Proposition 4.1(b), M, (a) < oo and
M (a) < oo implies E,\,,\/eggiv" < oo as well as Ey v e < oo for some 6 € (0,q], all
n >0 and i = 0,2. It can further be shown that E(e""|®,,_5) < g(8) Py y-as. for all
n > 0, g a function as claimed above and & _5 the trivial o-field. Indeed, W,, conditioned
upon (Vo n—1, Va,n— 1) (v1,v2) is distributed as the maximum of the two forward recurrence
times Ft*+v1w2 ’U17Ft*+v1\/vz v, and the family V(P14 Fa ) ,t > 0 is uniformly integrable, in
particular Li-bounded for all 6 € (0, 0], 6p > 0. By combining these facts with ®(w) < w + 1

we obtain

EA’)\/eei'i,n < E}\)\/69(¢i,0(WO)+...+‘1>i,n(Wn))
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O(Wo+...4+W,+n+1)

IA

EA)\IB
e@(n—kl)E)\’)\/ 69(W0+...+W,,L,1)E(69Wn

IA

QSn—Z)

n+1
< 9(0)69("+1)E,\7>\/69(W°+"‘+W”—1) <. < <g(0)69)

for all sufficiently small # which is the desired conclusion. &
Now we are ready to prove

PROPOSITION 6.3. Let S* be as defined above.
(a) For each o> 1, Cy(a) < 0o and Cyx(a) < oo imply Ex x(S*)* < o0.
(b) For each a >0, My(a) < oo and My (o) < oo imply Ex x e < oo for some 6 € (0,0].

PROOF. This time we only prove (a). Setting SZ-(JF) def > o X5, we have

, M

S* < Zi+Za+ Siry chre(20vZy) — Stim .

< S§,+r)1,< + Séﬁl}c + (S1mi cr(21vzZs) — S17c) + 2n0to

(6.5)

Observe that S%t)l < ZQ:CO Y1k, where Y7 i, def Z;F:i}_:fl Xffj +noto. Under Py, the latter
(+)

variables are independent for k£ > 0 and identically distributed for £ > 1 as STo—no +ngoto under
Ppmt1(.gy. Moreover, Y1 g, ..., Y1, are §1 1, ,-measurable, (Y1 x)r>n is independent of §1 7, ,
and 71 ¢ a stopping time with respect to (Slle,n)nZO' Consequently, we infer from Theorem
1.5.2 in [10] that

T1,¢ a
EA,A’(SS;)LQ)Q < const (E}H)\/Ylofo + EAJ\’ (ZYl’k) )

k=1

S const (E)\(Séﬂj) + not())a + EFm+1(.|B) (Sé—v_;) + noto)a E)\y)\/f'lok) .

We get Ex x7{: < 0o by Lemma 6.2. Cy (a) < oo yields E,T¢" < oo for v € {\, F"'(-[B)}
(see (4.8)) and then together with Ci (a) < oo also EFm+1(.‘B)(S(Tj))O‘ < 00, by Theorem 1.3(ii)

in [11]. It is this conclusion which needs the stronger C)(a) < oo instead of C (a) < oo.
S(+)

2,7, )" < 00 under Cy (@) < oo. Hence, in view of

Clearly, the same arguments show Ey x/(
(6.5), it remains to prove

]E‘)\,A/ (S]_,’Tl’g—FT*(Z]_VZQ) - Sl,’l‘l’()a < o0
under C(a) + Cyx(a) < co. Lemma 6.1 and the strong Markov property lead to

o
EA:/\’(SLT1,<+T*(Z1VZ2) - Sl,Tl,g)

— / / » E;psg(z) IPy \/ (M, . € dx) P\ (Z1V Z3 € dz)
RJS™

= / EFm+1(~\B)S7C-I(z) PA,)\/(Zl V 4y € dZ)
R
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where 7(t) = inf{n > 0:S,, > t}. Now use Proposition 4.8 for
Epm+1(m)Sy;) < const(z+1)°
whence

ExN (81,7 c+re(z1vz2) = S1,m. )" < const By v (21 V Z2 +1)°

< comstIE,\,X(Sit)l(;\/Sét)2C 1% < oo. &

PROOF OF THEOREMS 2.4 AND 2.5. Recall from Section 2 that Uy, = Ux(-N(S™ ! x J))
for intervals J C IR. Let I = (0, 1]. By Corollary 3.4, for all distributions A on S™*! x IR

sup Uy (8™ xt+ 1) < supUn(S™Tt xt+1) = H(l) < oo. (6.6)
teR telR

Put 7> (t) = inf{n > 0: .S, >t} and notice R; = 575y — tas well as

E 1{M>e Spet+J}y T E 1{MT>(t)+ €, Ri+(S” > (t)n T>(t))EJ}
n>0 n>0

for every J C (0,00). Using this, the strong Markov property, (6.4) and (6.6), we infer

U /\|t+I A/|t+1|| = HU,\>t|1 - U,\>;|[||
- Us>x (/\t - )‘/)(dsa d.’l?)
’ /Sm+1><(0,oo) i ' (6.7)
< H(1) [[Ae = Al
< H(1) Py (S* > t)
for all ¢ > 0 and then further
||U§|(taoo) - U)?’Kt,oo)” S Z || A|t—|—n+[ A"t—l—n—i—]”
n>0
< H(l) ZP)"X<S* > t—|—n)
n>0
t+n
S H(l)Z/ P)\’)\/(S*>5) ds
= H(l)/ Py (S* > s) ds (6.8)
(t—1,00)

for all initial distributions A\, A’ on S™*! x IR. All assertions are now easily verified when
combining (6.7) and (6.8) with the moment results of Proposition 6.3. We thus omit further
details. &

PROOF OF THEOREMS 2.6 AND 2.7. (a) Given A\, N with C} (o) < oo and C},(a) < o0,
consider the following coupling model: Let Y”, ..., Y], Y_,, ..., Yy, ... be (S, &)-valued random
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variables on a probability space (€,2(, IPy x/) such that

P)(\fi\?ovSO)v(Mcl)vs(/))7(Yn)n21) — A ® A/ ® FOO

where My & (Y_pn, ..., Yp) and M def (Y, ....Y]). Put further

My =Y_msr,.. Y1), M=, .,....Yy, Y1)

My, = (Yo, ....Yn), M = (YO/,Yl, s Yom)
M, =M =Yp_m,....,Y,) forn>m+1

and then

X, ¥ o(M,), X. =) forn>1.

Obviously, (M., Sn)n>0 and (M}, Sn)n>0 are (o, F')-md MRWSs with initial distributions A, ',
respectively, under IPy »/ and

(Mm Xn)nzm—H = (M;w X;l)nzm-i-l-

The ladder epoch MRWs of (M,,, Sp)n>0 and (M), S )n>0 are denoted by (M, ,0p)n>0 and
(M?', 0l )n>0, respectively, where oo = o, = 0 should be recalled. Let further (R,)n>0 and
(R!,)n>0 be the associated sequences of forward recurrence times and put A, def Py x (R, € ),
N, Py (R € ).

Since the first regeneration time 7j as constructed in Section 3 does not depend on the first
m~+1 values of (M,,, X,,)n>0 it can here be defined in such a way that it is a regeneration time for
both chains (M,,, X,,)n>0 and (M), X} )n>0. As a consequence, (M, M), X,,, X, )o<n<Ty—ne
and (Mg, Myy) ~ F*"2(|B) are independent. The important observation is now that the
downward excursions maxo<n<7, Sn — ST,,, MaXo<n<1, S;, — 57, of the two MRWs at Tj are
both bounded by

, To To
ssovsy) = N xovy X T
n=0 n=0
which, by (R.4), is further bounded by

Z déf S(_) \/S(_)/ +2n0t0.

Tof’n,o To*’no
Consequently, a joint ladder epoch occurs at Ty + ®(Z) where

o(t) ¥ inf{n>0: 87,40 — S, >t}

and leads to the conclusion that

(Mp, Rp)p>myraz) = (M, R n>1y4+0(2)
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and thereby to (compare (6.7) and (6.8))

sup |Vy{n} —Vi{n}| < Py (To+ ®(Z) > n), (6.9)

TLENQ

IViitnoo) = Virimeol < > P (To +®(2) > k) (6.10)
k>n

for all n > 0. Instead of (6.6) we have used here the trivial inequality

sup Vy{n} < 1.

nelNo
The proof is now obviously completed by providing suitable moment results for Ty + ®(Z2).
Since the distribution of Ty is always geometrically bounded (Lemma 3.5), only ®(Z) remains
to be considered. But the independence of Z and (M4, STo+n — ST, )n>0 = (Mp, 1y STy —
S, Jn>0 in combination with Proposition 4.8(b) (if Cy (a) + Oy, (a) < o0) gives

]EA’)\/@(Z)OC = /EFerl(.“Bg)T(Z)a P)\’)\/(ZEC[Z) < const Ey »Z“

and a similar inequality for Ey »e?®() 0 > 0 if M (o) + M,,(a) < oo. The assertions of
Theorem 2.6(a),(c) and 2.7(a) are now easily verified because, by Proposition 4.1, C\ (a) +
C} (@) < oo further implies Ey »/ Z® < 0o and My (a)+My, (a) < oo further implies Ej ye?Z <
oo for sufficiently small 6 > 0.

(b),(d),(e) The use the former coupling construction for the comparison of Vy with V> =
971 @ AT requires a modification of the previous arguments. The first step is to define a
distribution A on S™*! x IR such that Py ((M,,p) € -) = ¢° for a suitable stopping time p
satisfying Py (p € {0y, : n > 0}) = 1. We define

o1—1
def _
X(C’) = 9 1E5* ( Z 1{(Mn,Sn)EC}>

n=0

for C € @™ T1®% and claim that p = 7(—Sp) has the desired properties. Since Py (Sp < 0) = 1,
p is indeed a ladder epoch for (M, S, )n>0. Moreover,

o1—1
P)\/(Mp e A,p — l{,’) = 19_1E£* < Z 1{Mn+k€A7T(_Sn)_k})

n=0
o1—1
n=0
0'1—1
= ﬁ_lE&'* ( Z 1{M01€A,0'1—’I’L+k3})
n=0
= 07" Pe(01>n,M,, € A;oy =n+k)
n>0
= 0P (M7 € A,oy > k) = ¢°(Ax {k}) (6.11)

for all A € 81! and k € IN which proves the other asserted property of p.
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The second step is to verify that E(X; )**T! < oo implies C}, (o) < co. Since N (- x R) =
Fmtland Py ((Xp)n>1 € ) = Pyixr)(Xn)n>1 € +), we infer C}, () = Ex (Sy)*V E(X7)*.
It hence remains to show E)/(S;)® < oo providing F(X; )™ < oco. Note that the latter
implies O, (o + 1) < oo for £ < 9F™TL. The definition of A gives

Ex(S0)" = ﬁ_lEs*(Z_(SJ)“>

n=0

and this is indeed finite under the former condition by Lemma 4.9(a). The same type of
argument shows that Ee®X1 < oo for some o > 0 implies M, (#) < oo for some 6 € (0, .

Now one can use Theorem 2.6(a),(c) and 2.7(a) to infer the assertions of all other parts
of these theorems, however, with V> = 971¢* ® A\ replaced by Vy;. What hence remains to
be done in order to get the same results without this replacement is to show (as n — 00)

Vi{n} — V> {n}| = o(n™®), respectively o(e™") for some 6 > 0, (6.12)

providing E(X; )*™! < oo, respectively Fe®*1 < oo for some a > 0. But

p—1
Ve —V. < Ex (Zl{(Mk,k)E'}>
k=0

and therefore

p—1
OS VA>/{7/L}—‘/*>{’)’L} = EA/(Zl{k_n}) = PA,(p>n)
k=0

Use (6.11) with A = S™*! to see that

+1

Eyp® < const Eg-of < 0

by Proposition 4.8(b) for F(X; )**! < oo also gives Cr. (o + 1) < co. A similar argument
shows Eye < oo for some § > 0 if Fe®X1 < oo for some o > 0. (6.12) is now a trivial
consequence. &

APPENDIX

We finally want to collect some basic facts from standard renewal theory that have
been used somewhere before. Let (S),)n>0 be an ordinary random walk with i.i.d. increments
X1, X2, ... having positive mean p and a delay Sp which is independent of (X,),>1. Let G be the
increment distribution and A that of Sy under Py, also called initial distribution of (S,,),>0. We

only write P for Py. The renewal measure of (S,,),>0 under Py is denoted by Uy, i.e. Uy = AxU
with U & > n>0 G*(™ . Let (0,, 52 )n>0 be the sequence of strictly ascending ladder epochs
and ladder heights associated with (S, ),>0 and put p> o EST, U~ o > >0 P(S; € ) and

Uy LB U~, the renewal measure of (S, ),>o under Py.
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Suppose (Sp)n>0, and thus also (S; ),>0, is l-arithmetic or spread-out. As usual, we
consider without further notice only initial distributions A on Z in the l-arithmetic case. By
using a coupling of forward recurrence times (to some extent described in Section 6) and the

inequality
supU~(t+1) < U~ (1), (A1)
t>0
one can show that
||U>>\|t+1 _U;\t+1” < U>(I)P>\7)\/(T>t) <A2)

where Py )+ is the underlying probability measure in a suitable coupling model, T" the coupling
time and I = [0,1]. Provided E,(S;)® < oo for v € {\, X'} and E(X{)® < oo, it can be
shown that Ey \/T'* < oo.

In order to get a similar bound for |[Uy — Uy/|| we first note that

o1—1
U = U°t *U>, e def E0< Z 1{5"6.}>. (A?))

n=0
Moreover, letting Z def min, >0 (S, — Sp) and ¥ = Eoy,
P\(Z e = 9 U, (A.4)
for every A, see [13], Lemma 2, so that
U = JEU”(-— %) and U, = JEUS(-— Z). (A.5)

By using this in (A.2), we obtain

1Uxjt4+1 — Unjegrll < ﬁE<||U§|t—Z+I - U§'|t—z+1“>

: (A.6)
< 19[U>(I)P)\’)\/(T—|— Z > t) < 19U>(I)P)\’)\/(T > t),

where Z is a copy of Z independent of the coupling time 7. Hence we get the same coupling
bound and thereby the same convergence rate results as in (A.2) if ¢ tends to co.

Since E|Z|* < oo iff E(X{)**! < o0, see e.g. Theorem 1V.4.9 in [10], and by using (A.1),
(A.5) further yields an appropriate estimate for the convergence of Uy (t+ I) to 0 as ¢ tends to
—o00. Indeed,

Ur(t+1) < 9EUS(t—Z+1) = 9E\U~(t—Z — Sy + 1)

(A7)
< JUZ(I)PA(Z + So < t+1),

and the final probability is of order o(|t|~%) as t — —o0 if E(X;)*™! < 0o and E)(S;)® < co.



35

REFERENCES

ALSMEYER, G. (1994). On the Markov renewal theorem. Stoch. Proc. Appl. 50, 37-56.

ALSMEYER, G. (1996). Superposed continuous renewal processes: A Markov renewal
approach. Stoch. Proc. Appl. 61, 311-322.

ALSMEYER, G. (2000). The ladder variables of a Markov random walk. Prob. Math.
Statist. 20, 151-168.

ALSMEYER, G. and HOEFS, V. (2001). Markov renewal theory for stationary m-block
factors. Markov Proc. Rel. Fields 7, 325-348.

BOROVKOV, A.A. (1984). Asymptotic Methods in Queueing Theory. Wiley, Chichester.

BOROVKOV, A.A. (1988). On the ergodicity and stability of the sequence wp4+1 =
f(wn,&): Applications to communication networks. Th. Probab. Appl. 33, 595-611.

BOROVKOV, A.A. and FOSS, S. (1992). Stochastically recursive sequences and their
generalizations. Sib. Adv. Math. 2, 16-81.

CSENKI, A. (2000). Asymptotics for renewal-reward processes with retrospective reward
structure. Oper. Res. Letters 26, 201-209.

FUH, C.D. (2000). Uniform renewal theorem and first passage probabilities in Markov
random walks. Technical Report, Academia Sinica, Taipei.

GUT, A. (1988). Stopped Random Walks. Limit Theorems and Applications. Springer,
New York.

JANSON, S. (1983). Renewal theory for m-dependent variables Ann. Probab. 11 558-568.

JANSON;, S. (1986). Moments for first passage and last exit times, the minimum and related
quantities for random walks with positive drift. Adv. Appl. Probab. 18, 865-879.

KEENER, R. (1987). A note on the variance of a stopping time. Ann. Statist. 15, 1709-
1712.

LINDVALL, T. (1992). Lectures on the Coupling Method. Wiley, New York.

NIEMI, S. (1985). On non-singular Markov renewal processes with an application to a
growth-catastrophe model. J. Appl. Probab. 22, 253-266.

NIEMI, S. and NUMMELIN, E. (1986). On non-singular renewal kernels with an application
to a semigroup of transition kernels. Stoch. Proc. Appl. 22, 177-202.

THORISSON, H. (2000) Coupling, Stationarity, and Regeneration. Springer, New York.



