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This article continues work in [4] on random walks (Sn)n≥0 whose incre-
ments Xn are (m+1)-block factors of the form ϕ(Yn−m, ..., Yn) for i.i.d.
random variables Y−m, Y−m+1, ... taking values in an arbitrary measur-
able space (S,S). Defining Mn = (Yn−m, ..., Yn) for n ≥ 0, which is
a Harris ergodic Markov chain, the sequence (Mn, Sn)n≥0 constitutes a
Markov random walk with stationary drift µ = EFm+1X1 where F de-
notes the distribution of the Yn’s. Suppose µ > 0, let (σn)n≥0 be the se-
quence of strictly ascending ladder epochs associated with (Mn, Sn)n≥0

and let (Mσn , Sσn )n≥0, (Mσn , σn)n≥0 be the resulting Markov renewal

processes whose common driving chain is again positive Harris recurrent.
The Markov renewal measures associated with (Mn, Sn)n≥0 and the for-

mer two sequences are denoted Uλ, U
>

λ
and V >

λ
, respectively, where λ is

an arbitrary initial distribution for (M0, S0). Given the basic sequence
(Mn, Sn)n≥0 is spread-out or 1-arithmetic with shift function 0, we pro-

vide convergence rate results for each of Uλ, U
>

λ
and V >

λ
under natural

moment conditions. Proofs are based on a suitable reduction to standard

renewal theory by finding an appropriate imbedded regeneration scheme

and coupling. Considerable work is further spent on necessary moment
results.
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1. Introduction

Let m ∈ IN . A stochastic sequence (Xn)n≥0 is called m-dependent if X0, ..., Xn and
Xn+m+1, Xn+m+2, ... are independent for all n ∈ IN . Our concern is a special class of such
sequences, called stationary (m + 1)-block factors, given by

Xn = ϕ(Yn−m, ..., Yn), n ≥ 0, (1.1)

where ϕ : Sm+1 → IR is a measurable function and Y−m, Y−m+1, ... are i.i.d. random variables
on a probability space (Ω,A, P ) taking values in a measurable space (S,S). We denote by F the
common distribution of the Yn’s and assume that S is countably generated. Let Sn =

∑n
k=0 Xk,

n ≥ 0, be the random walk associated with (Xn)n≥0 and suppose µ
def= EX1 > 0. Many

interesting properties of (Sn)n≥0 including renewal theory were derived by Janson [11], [12]. A
number of these results have been improved in [4] by analyzing (Sn)n≥0 within the framework
of Markov renewal theory. For this purpose observe that

Mn
def= (Yn−m, ..., Yn), n ≥ 0, (1.2)

constitutes a positive Harris chain with stationary distribution Fm+1, the (m+1)-fold product
of F , and (Mn, Sn)n≥0 a Markov random walk, respectively a Marov renewal process if all
Xn’s are positive. We call (Mn, Sn)n≥0 hereafter a (ϕ, F )-m-dependent Markov random walk,
abbreviated as (ϕ, F )-mdMRW. For the definition of its lattice-span d, a notoriously important
characteristic in renewal theory, see [4], Section 3.

Let us briefly summarize some notation from [4] which is kept throughout unless stated
otherwise. Suppose a canonical model with probability measures Px,y, (x, y) ∈ Sm+1 × IR,

such that Px,y(M0 = x, S0 = y) = 1. For every distribution λ on Sm+1 × IR put Pλ
def=∫

Sm+1×IR
Px,y λ(dx, dy). If λ is a distribution on Sm+1 only then Pλ

def= Pλ⊗δ0 . In the stationary
case λ = Fm+1 we simply write P instead of PFm+1 . As usual, the corresponding expectation
operators are denoted by Ex,y, Eλ and E. Let λλ0 be Lebesgue measure on IR and λλ1 counting

measure on Z. Finally, given a measure ζ on Sm+1×IR [resp. IR], put ζ+ def= ζ(·∩Sm+1×(0,∞))
[resp. def= ζ(· ∩ (0,∞))].

The strictly ascending ladder epochs of (Sn)n≥0 are given by σ0 = 0 and

σn
def= inf{k > σn−1 : Sk > Sσn−1}

for n ≥ 1. Put M>
n

def= Mσn and S>
n

def= Sσn . As pointed out in [4], (M>
n , σn)n≥0 and

(M>
n , S>

n )n≥0 are both MRP’s, the first 1-arithmetic with shift function 0, the latter with
the same lattice-span (and shift function) as (Mn, Sn)n≥0. The driving chain (M>

n )n≥0 is
also positive Harris recurrent with a unique stationary distribution ξ∗. Moreover, µ ∈ (0,∞)
implies µ>

def= Eξ∗Sσ1 = µEξ∗σ1 <∞. These conclusions do indeed follow from a more general
result in [3]. The Markov renewal measures associated with (Mn, Sn)n≥0, (M>

n , S>
n )n≥0 and

(M>
n , σn)n≥0 under Pλ are denoted by Uλ, U>

λ and V >

λ , respectively, that is

Uλ
def=

∑
n≥0

P
(Mn,Sn)
λ , U>

λ
def=

∑
n≥0

P
(M>

n ,S>n )
λ and V >

λ
def=

∑
n≥0

P
(M>

n ,σn)
λ . (1.3)
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Defining the stationary Markov delay distribution of (Mn, Sn)n≥0 and (M>
n , S>

n )n≥0

νs(A×B) =
1

µ>

∫
B

Pξ∗(M>

1 ∈ A, S>

1 ≥ s) λλ+
d (ds), A ∈ S

m+1, B ∈ B, (1.4)

one has

U+
νs = µ−1Fm+1 ⊗ λλ+

d and U>

νs = (µ>)−1ξ∗ ⊗ λλ+
d . (1.5)

νs is also the unique stationary distribution of the continuous-time Markov process of forward
recurrence times (Mτ(t), Sτ(t) − t)t≥0 where τ(t) def= inf{n ≥ 0 : Sn > t}. Correspondingly, the
stationary Markov delay distribution of (M>

n , σn)n≥0 is

φs(A× {k}) def= ϑ−1Pξ∗(M>

1 ∈ A, σ1 ≥ k), A ∈ S
m+1, k ∈ IN, (1.6)

ϑ
def= Eξ∗σ1, and satisfies

V >

∗ = ϑ−1ξ∗ ⊗ λλ+
1 , (1.7)

where V >
∗ (A× {n}) def=

∫
Sm+1 V >

x (A× {n− k}) φs(dx, dk).

Markov renewal theorems for each of Uλ, U>

λ and V >

λ as well as a number of interesting
consequences for various relevant quantities associated with (Mn, Sn)n≥0 and the other se-
quences introduced above are provided in [4]. The present paper continues the work by dealing
with convergence rate results in the Markov renewal theorem. Polynomial as well as exponen-
tial rates under suitable moment conditions are established. Results of this type are already
hard to derive for ordinary random walks, see e.g. [14], but are even harder to obtain for Markov
random walks, at least when the driving chain has continuous state space as in the situation
considered here, see however [2] for another special case and [9] for some recent progress in
a more general setting based upon an analytic approach. In contrast to [9], our methods are
purely probabilistic using regeneration and coupling. Although the class of (ϕ, F )-mdMRW
is a very special one within the general class of Markov random walks with Harris recurrent
driving chain, let us point out that each such general process contains a subsequence of the
former type when sampling at a sequence of regeneration epochs. This fact in combination
with the results of this article may eventually lead to corresponding rate results in the gen-
eral setting. A major remaining obstacle is to convert suitable moment conditions on certain
occupation measures arising from such an approach into verifiable moment conditions on the
increments of the given Markov random walk itself. One can even say that this is the main
problem whenever trying to prove rate results in renewal theory by regenerative arguments.
We refer to a future publication.

Let us also point to some weakly related work on stochastic recursive sequences and
the renovation method introduced by Borovkov for proving stability theorems in queueing,
see [5], and also [6], [7]. The connection is roughly described by the fact that the considered
renovative processes have an (m+1)-block structure on certain recurrent events which provides
a regeneration scheme for these processes. Finally, we mention a recent article by Csenki [8]
where some renewal theoretic results are proved for certain (ϕ, F )-mdMRW without utilizing
the Markov renewal structure.
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Our results are stated in Section 2 followed by the construction of a regeneration scheme
(Section 3) that furnishes the use of known rate results for ordinary renewal measures and
a further coupling which must be employed to prove the results for U>

λ and V >

λ . Section 4
provides necessary moment results. The proofs of the main results can be found in Sections 5
and 6. Finally, a few facts from classical renewal theory are collected in a short Appendix.

2. Results

Let us further define for α > 0

Cλ(α) def= sup
n≥0

Eλ|Xn|α = max
0≤n≤m+1

Eλ|Xn|α,

C±λ (α) def= sup
n≥0

Eλ(X±n )α = max
0≤n≤m+1

Eλ(X±n )α,

Mλ(α) def= sup
n≥0

Eλeα|Xn| = max
0≤n≤m+1

Eλeα|Xn|,

M±λ (α) def= sup
n≥0

EλeαX±n = max
0≤n≤m+1

EλeαX±n .

In analogy to ordinary renewal theory, our convergence rate results below are given for (ϕ, F )-
mdMRW’s (Mn, Sn)n≥0 which are either 1-arithmetic with shift function 0 or spread-out. The
latter means that there is an Fm+1-positive set C such that for each x ∈ C there exists n(x) ∈ IN

such that Px((Mn(x), Sn(x)) ∈ ·) = P∗(n(x))(x, ·) has an absolutely continuous component with
respect to Fm+1 ⊗ λλ0. Here P denotes the transition kernel of (Mn, Xn)n≥0 and P∗(n) its
n-fold convolution. We also call P spread-out under the previous condition. Note that Fm+1

is the unique invariant distribution and thus a maximal irreducibility measure for the Harris
chain (Mn)n≥0. One can easily show that if (Mn, Sn)n≥0 is spread-out the same holds true for
the ladder height subsequence (M>

n , S>
n )n≥0. As in [4] we make the following

Standing assumption: Whenever in the 1-arithmetic case, initial distributions λ

are such that Pλ(Xn ∈ Z) = 1 for all n ≥ 1.

In order to state our results more efficiently, let Hα be the space of functions g : [0,∞)→
IR satisfying

∫∞
0

tα−1g(t) dt < ∞ and limt→∞ tαg(t) = 0, where α ≥ 1. Let further E be the
space of functions g : [0,∞) → IR satisfying

∫∞
0

eθtg(t) dt < ∞ and limt→∞ eθtg(t) = 0 for
some θ > 0. If V and W denote arbitrary signed measures on Sm+1 × IR and IR, respectively,
then put

V|B
def= V (· ∩ (Sm+1 ×B)) and W|B

def= W (· ∩B)

for measurable subsets B of IR.

Theorem 2.1. Let (Mn, Sn)n≥0 be a (ϕ, F )-mdMRW which is either 1-arithmetic with
shift function 0 (d = 1) or spread-out (d = 0). Let further µ ∈ (0,∞), α ≥ 1 and λ, λ′ be
distributions on Sm+1 × IR.

(a) If C+
ν (α) <∞ for ν ∈ {λ, λ′}, then ‖(Uλ − Uλ′)|t+I‖ ∈ Hα for every finite interval I.
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(b) If C+
λ (α) < ∞ and E(X+

1 )α+1 < ∞, then ‖(Uλ − µ−1Fm+1 ⊗ λλd)|t+I‖ ∈ Hα for every
finite interval I.

(c) If C+
ν (α + 1) <∞ for ν ∈ {λ, λ′}, then ‖(Uλ − Uλ′)|[t,∞)‖ ∈ Hα.

(d) If C+
λ (α + 1) <∞ and E(X+

1 )α+2 <∞, then ‖(Uλ − µ−1Fm+1 ⊗ λλd)|[t,∞)‖ ∈ Hα.
(e) If C+

λ (1) <∞ and E(X+
1 )2 <∞, then

‖U+
λ − µ−1Fm+1 ⊗ λλ+

d ‖ < ∞. (2.1)

The next theorem covers the case when t tends to −∞.

Theorem 2.2. Let (Mn, Sn)n≥0 as well as µ, α and λ be as in Theorem 2.1.

(a) If C−λ (α) <∞ and E(X−1 )α+1 <∞, then Uλ|−t+I ∈ Hα for every finite interval I.

(b) If C−λ (α + 1) <∞ and E(X−1 )α+2 <∞, then Uλ|(−∞,−t] ∈ Hα.

(c) If C−λ (1) <∞ and E(X−1 )2 <∞, then

‖U−λ ‖ = Uλ(Sm+1 × (−∞, 0]) < ∞. (2.2)

Turning to exponential rates, we will prove

Theorem 2.3. Let (Mn, Sn)n≥0 as well as µ and λ, λ′ be as in Theorem 2.1.

(a) If M+
ν (α) <∞ for ν ∈ {λ, λ′} and some α > 0, then ‖(Uλ − Uλ′)|[t,∞)‖ ∈ E.

(b) If M+
λ (α) <∞ for some α > 0, then ‖(Uλ − µ−1Fm+1 ⊗ λλd)|[t,∞)‖ ∈ E.

(c) If M−λ (α) <∞ for some α > 0, then Uλ(Sm+1 × (−∞,−t]) ∈ E.

The counterpart of Theorem 2.1 for (M>
n , S>

n )n≥0 is stated next.

Theorem 2.4. Let the situation of Theorem 2.1 be given and α ≥ 1.

(a) If Cν(α) <∞ for ν ∈ {λ, λ′}, then ‖(U>

λ − U>

λ′)|t+I‖ ∈ Hα for every finite interval I.

(b) If Cλ(α) < ∞ and E(X+
1 )α+1 < ∞, then ‖(U>

λ − (µ>)−1ξ∗ ⊗ λλd)|t+I‖ ∈ Hα for every
finite interval I.

(c) If Cν(α + 1) <∞ for ν ∈ {λ, λ′}, then ‖(U>

λ − U>

λ′)|[t,∞)‖ ∈ Hα.

(d) If Cλ(α + 1) <∞ and E(X+
1 )α+2 <∞, then ‖(U>

λ − (µ>)−1ξ∗ ⊗ λλd)|[t,∞)‖ ∈ Hα.

(e) If Cλ(1) <∞ and E(X+
1 )2 <∞, then

‖U>

λ − (µ>)−1ξ∗ ⊗ λλ+
d ‖ < ∞. (2.3)

The two-sided moment assumptions in Theorem 2.4 may be surprising because, in view
of corresponding results in classic renewal theory, Eλ(S>

1 )β <∞ for suitable β > 0 seems to be
the type of required condition which in turn follows from C+

λ (β) <∞, as can be easily verified
with the help of Theorem 2.3 in [11]. The reason is that our method of proof uses a coupling
construction which draws on the regeneration lemmata for the special class of (ϕ, F )-mdMRW
given in Section 3. But since the ladder height process (M>

n , S>
n )n≥0 is not of this type in
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general (see e.g. [11], Example 3.1), the construction must be for the original Markov random
walk (Mn, Sn)n≥0 and may thus lack the optimal coupling rate. Roughly speaking, when a
coupling of two versions of the original process occurs it generally takes an extra amount of time
ψ, say, until the imbedded ladder height processes couple. We refer to the beginning of Section
6 for a more detailed explanation. The behavior of ψ, however, is tied to the degree of negative
excursions of the two original processes before they couple. As a consequence, the existence of
a moment of order β > 0 for ψ is controlled by a moment condition of type C−λ (β) < ∞, see
Proposition 6.3 and its proof. For the same reason, two-sided moment assumptions occur in
the next theorem which is the counterpart of Theorem 2.3.

Theorem 2.5. Let the situation of Theorem 2.1 be given.

(a) If Mν(α) <∞ for ν ∈ {λ, λ′} and some α > 0, then ‖(U>

λ − U>

λ′)|[t,∞)‖ ∈ E.
(b) If Mλ(α) <∞ for some α > 0, then ‖(U>

λ − (µ>)−1ξ∗ ⊗ λλd)|[t,∞)‖ ∈ E.
Our final convergence rate results deal with V >

λ , the Markov renewal measure associated
with the ladder epoch sequence (M>

n , σn)n≥0. which is always 1-arithmetic with shift function
0 (in fact regardless of the lattice-type of (Mn, Sn)n≥0, Theorem 2.1 in [4]).

Theorem 2.6. Let the situation of Theorem 2.1 be given and α ≥ 1.

(a) If C−ν (α) <∞ for ν ∈ {λ, λ′}, then ‖(V >

λ − V >

λ′ )|t+I‖ ∈ Hα for every finite interval I.

(b) If C−λ (α) <∞ and E(X−1 )α+1 <∞, then ‖(V >

λ −ϑ−1ξ∗⊗λλ1)|t+I‖ ∈ Hα for every finite
interval I.

(c) If C−ν (α + 1) <∞ for ν ∈ {λ, λ′}, then ‖(V >

λ − V >

λ′ )|[t,∞)‖ ∈ Hα.

(d) If C−λ (α + 1) <∞ and E(X−1 )α+2 <∞, then ‖(V >

λ − ϑ−1ξ∗ ⊗ λλ1)|[t,∞)‖ ∈ Hα.

(e) If C−λ (1) <∞ and E(X−1 )2 <∞, then

‖V >

λ − ϑ−1ξ∗ ⊗ λλ+
1 ‖ < ∞. (2.4)

Theorem 2.7. Let the situation of Theorem 2.1 be given.

(a) If M−ν (α) <∞ for ν ∈ {λ, λ′} and some α > 0, then ‖(V >

λ − V >

λ′ )|[t,∞)‖ ∈ E.
(b) If M−λ (α) <∞ for some α > 0, then ‖(V >

λ − ϑ−1ξ∗ ⊗ λλ1)|[t,∞)‖ ∈ E.

3. Regeneration

The key to the proof of our main results is the following regeneration lemma and its
generalization (Lemma 3.2 below) which will enable us to re-construct the considered (ϕ, F )-
mdMRW (Mn, Sn)n≥0 together with a sequence of regeneration epochs that divides it into
independent cycles which are further stationary except for the first one. An assumption on
existence or positivity of the stationary drift µ = EX1 is not needed and thus not imposed
here. The type of regeneration established through the re-construction of (Mn, Sn)n≥0 is called
wide-sense regeneration in the literature, see Thorisson’s monograph [17] for details.
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Lemma 3.1. Let (Mn, Sn)n≥0 be a (ϕ, F )-mdMRW which is 1-arithmetic with shift func-
tion 0 or spread-out. Then there exist n0 ∈ IN , Fm+1-positive sets A,B ∈ Sm+1 and β > 0
such that

P∗(n0)(x, ·) ≥ βFm+1(·|B)⊗ Γ (3.1)

for all x ∈ A where Γ = δL for some L ∈ Z in the 1-arithmetic case and Γ = λλ0(·|J) for some
finite, λλ0-positive interval J ⊂ IR in the spread-out case.

Proof. In the spread-out case the assertion follows directly from a more general result
by Niemi [15] and Niemi and Nummelin [16], see their Minorization Lemma and Remark 4.2.
We therefore restrict ourselves to the 1-arithmetic case and prove the slightly stronger result

Px(M2m+2, X1, ..., X2m+2) ∈ ·) ≥ βFm+1(·|B)⊗ δl (3.2)

for all x ∈ A and some l = (l1, ..., l2m+2) ∈ Z2m+2, thus n0 = 2m + 2 and L =
∑2m+2

i=1 li.
For a = (a1, ..., am+1), b = (b1, ..., bm+1) ∈ Sm+1 put

Φ(a, b) def= (ϕ(a2, ..., am+1, b1), ..., ϕ(am+1, b1, ..., bm), ϕ(b1, ..., bm+1))

and
Λ(a, b) def= ((a2, ..., am+1, b1), ..., (am+1, b1, ..., bm), (b1, ..., bm+1)).

Hence Φ(Mn, Mn+m+1) = (Xn+1, ..., Xn+m+1) and Λ(Mn, Mn+m+1) = (Mn+1, ..., Mn+m+1),
in particular Mn+1, ..., Mn+m, Xn+1, ..., Xn+m are fully determined by Mn, Mn+m+1. Since
P (Xn ∈ Z for all n ≥ 1) = 1 there exists l ∈ Z2m+2 such that P ((X1, ..., X2m+2) = l) > 0.
Define

C
def= {(x, y) ∈ S2m+2 : Φ(x, y) = (l1, ..., lm+1)},

D
def= {(y, z) ∈ S2m+2 : Φ(y, z) = (lm+2, ..., l2m+2)},

E
def= {(x, y, z) ∈ S3m+3 : Φ(x, y) = (l1, ..., lm+1),Φ(y, z) = (lm+2, ..., l2m+2)}.

Clearly, E = (C × Sm+1) ∩ (Sm+1 ×D), F 2m+2(C) > 0, F 2m+2(D) > 0 and F 3m+3(E) > 0.
Since Sm+1 is countably generated, there is an incrasing sequence of finite σ-fields

(Sn)n≥1 such that Sm+1 = σ(∪n≥1Sn) and each Sn is generated by a finite partition of
Sm+1. For x ∈ Sm+1 and n ∈ IN denote by Gn

x the unique set containing x of the partition
generating Sn. Put Gn

x,y = Gn
x ×Gn

y . From the Differentiation Theorem for measures we infer
the existence of F 2m+2-null sets N1, N2 ∈ S2m+2 such that

lim
n→∞

F 2m+2(C ∩Gn
x,y)

F 2m+2(Gn
x,y)

= 1 for all (x, y) ∈ C −N1

and

lim
n→∞

F 2m+2(D ∩Gn
y,z)

F 2m+2(Gn
y,z)

= 1 for all (y, z) ∈ D −N2.

Fix a triplet (u, v, w) ∈ (C −N1 × Sm+1) ∩ (Sm+1 ×D −N2) and an integer j such that

F 2m+2(C ∩Gj
u,v)

F 2m+2(Gj
u,v)

≥ 3
4

and
F 2m+2(D ∩Gj

v,w)

F 2m+2(Gj
v,w)

≥ 3
4
. (3.3)
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Now put

A def= {x ∈ Gj
u : Fm+1(Gj

v ∩ {y ∈ Sm+1 : (x, y) ∈ C}) ≥ (3/4)Fm+1(Gj
v)},

B def= {z ∈ Gj
w : Fm+1(Gj

v ∩ {y ∈ Sm+1 : (y, z) ∈ D}) ≥ (3/4)Fm+1(Gj
v)},

which are both elements of Sm+1. Use (3.3) and Fubini’s theorem to obtain

F 2m+2(C ∩Gj
u,v) =

∫
Gju

Fm+1(Gj
v ∩ {y ∈ Sm+1 : (x, y) ∈ C}) Fm+1(dx)

≥ 3
4
F 2m+2(Gj

u,v) > 0

and analogously

F 2m+2(D ∩Gj
v,w) =

∫
Gjw

Fm+1(Gj
v ∩ {y ∈ Sm+1 : (y, z) ∈ D}) Fm+1(dz)

≥ 3
4
F 2m+2(Gj

v,w) > 0

and thereby Fm+1(A) > 0 and Fm+1(B) > 0. For Ex,z
def= {y ∈ Sm+1 : (x, y, z) ∈ E}, we

finally conclude for all (x, z) ∈ A× B

Fm+1(Ex,z) ≥ Fm+1(Gj
v ∩ {y ∈ Sm+1 : (x, y) ∈ C} ∩ {y ∈ Sm+1 : (y, z) ∈ D})

= Fm+1(Gj
v ∩ {y : (x, y) ∈ C}) + Fm+1(Gj

v ∩ {y : (y, z) ∈ D})− Fm+1(Gj
v)

≥ Fm+1(Gj
v)/2 > 0,

thus proving (3.2) via

Px((M2m+2 ∈ A, (X1, ..., X2m+2) = l) =
∫

A∩B
Fm+1(Ex,z) Fm+1(dz)

≥ 1
2
Fm+1(B)Fm+1(Gj

v)Fm+1(A|B)

for all x ∈ A and A ∈ Sm+1 (thus β = Fm+1(B)Fm+1(Gj
v)/2). ♦

For c ≥ 0, we define the reduced (substochastic) kernel

Pc(x, ·) def= Px((M1, X1) ∈ ·, |X1| ≤ c)

and note that
P∗(n)

c (x, ·) = Px((Mn, Sn) ∈ ·, |X1| ≤ c, ..., |Xn| ≤ c)

for each n ≥ 0. As a trivial consequence of (3.2), we have in the arithmetic case that with
n0 = 2m + 2, t0 = max(l1, ..., ln0) and Γ = δL

P
∗(n0)
t0 (x, dy, ds) ≥ βFm+1(dy|B)⊗ Γ(ds) (3.4)

for all x ∈ A. For we need this be true also in the spread-out case given some t0 sufficiently
large, we next state the following generalization of Lemma 3.1:
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Lemma 3.2. Let (Mn, Sn)n≥0 be a (ϕ, F )-mdMRW which is 1-arithmetic with shift func-
tion 0 or spread-out. Then there exist n0 ∈ IN , Fm+1-positive sets A,B ∈ Sm+1, β > 0
(in general different from those in Lemma 3.1) and t0 > 0 such that (3.4) holds true for all
x ∈ A where Γ = δL for some L ∈ Z in the 1-arithmetic case and Γ = λλ0(·|J) for some finite,
λλ0-positive interval J ⊂ IR in the spread-out case.

Proof. From the above we must only consider the spread-out case. But here the result
follows again from Niemi [15] and Niemi and Nummelin [16] if we observe that, for sufficiently
large t0, the reduced kernel Pt0 is again spread-out and has the same irreducibility properties
as P itself. Further details can thus be omitted. ♦

Observe that, upon setting In
def= 1{|Xn|≤t0} for n ≥ 1, (3.4) may be rewritten as

Px((Mn0 , Sn0 , I1, ..., In0) ∈ ·) ≥ βFm+1(·|B)⊗ Γ⊗ δ(1,...,1) (3.4′)

for all x ∈ A. Lemma 3.2 is now used for the re-construction of (Mn, Xn)n≥0 as follows: Let us
stipulate without further notice that all occurring variables indexed by -1 are defined as 0. Let
(ηn)n≥0 and (χn)n≥0 be sequences of i.i.d. Bernoulli variables with parameter β (∼ B(1, β)),
respectively i.i.d. geometric variables with parameter 1

2 , each independent of all other occurring

variables. Put m0
def= n0 + m + 1 and

υ0
def= inf{n ∈ χ0 + m0IN : Mn−n0 ∈ A}.

Hence κ0
def= m−1

0 (υ0 − χ0) − 1 has a geometric distribution with parameter Fm+1(A) under
every Pλ. Keep the segment (Mk, Xk)0≤k≤υ0−n0 unchanged. Re-generate (Mυ0 , Sυ0 − Sυ0−n0 ,

Iυ0−n0+1, ..., Iυ0) according to Fm+1(·|B) ⊗ Γ ⊗ δ(1,...,1), if ηυ0 = 1, and such that the overall
distribution of that vector given Mυ0−n0 remains the original one, otherwise. Finish this block
by re-constructing (Mk, Xk)υ0−n0<k≤υ0 according to the prescribed conditional distribution
under (Mυ0−n0 , Mυ0 , Sυ0 − Sυ0−n0 , Iυ0−n0+1, ..., Iυ0).

The next blocks are constructed similarly with υk, k ≥ 1, defined through

υk
def= inf{n ∈ υk−1 + χk + m0IN : Mn−n0 ∈ A}.

A regeneration occurs each time when ηυk = 1, more precisely at

Tk = inf{υn > Tk−1 : ηυn = 1}

for k ≥ 0. The following assertions are valid under every Pλ and readily seen from the con-
struction and given assumptions:

(R.1) The random vectors (Tn − Tn−1, MTn , STn − STn−1) are independent for n ≥ 0 and
identically distributed for n ≥ 1 with the same distribution as (T0, MT0 , ST0) under
PFm+1(·|B). Moreover, MTn and STn are independent for each n ≥ 0.

(R.2) (STn)n≥0 constitutes an ordinary delayed 1-arithmetic, respectively absolutely continu-
ous random walk. In the arithmetic case the lattice-span assertion follows along similar
lines as Lemma 3.3 in [1]. It is this property which makes use of the geometric variables
χn.
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(R.3) (Mk, Xk)0≤k≤Tn−n0 , STn−STn−n0 and (MTn+k, XTn+k+1)k≥0 are independent for every
n ≥ 0, the last sequence being distributed as (Mk, Xk+1)k≥0 under PFm+1(·|B).

(R.4) max1≤k≤n0 |XTn−n0+k| ≤ t0 for each n ≥ 0.

(R.5) κn
def= m−1

0 (υn − υn−1 − χn) − 1, n ≥ 0, are i.i.d. geometric variables with parameter
Fm+1(A). They are further independent of (χn)n≥0.

(R.6) T0 = υ% where % = inf{n ≥ 0 : ηυn = 1}. Moreover, % has a geometric distribution with
parameter β and is independent of (Mn, Xn, χn, υn)n≥0.

(R.5) and (R.6) show that T0 is essentially a geometric sum of independent geometric variables.
We determine its generating function in Lemma 3.5 at the end of the section. For the last
assertion in (R.6), note that with (ηn)n≥0 the subsequence (ηvn)n≥0 is still independent of all
other occurring random variables.

With the help of the previous construction we get the following key identity for the
Markov renewal measure Uλ. Given a set D ∈ Sm+1⊗B, x ∈ Sm+1 and z ∈ IR, let Dx ∈ B be
the x-projection of D, i.e. Dx = {y ∈ IR : (x, y) ∈ D}, and D − z

def= {(v, w − z) : (v, w) ∈ D}.

Lemma 3.3. For all initial distributions λ on Sm+1 × IR and D ∈ Sm+1 ⊗B

Uλ(D) = UT0
λ (D) +

∫
IR

UT0
Fm+1(·|B)(D − y) Uλ(dy),

= UT0
λ (D) +

∫
Sm+1×IR

Uλ(Dx − y) UT0
Fm+1(·|B)(dx, dy)

(3.5)

where Uλ =
∑

n≥0 Pλ(STn ∈ ·) equals the renewal measure of (STn)n≥0 under Pλ and

UT0
λ (D) def= Eλ

(
T0−1∑
n=0

1D(Mn, Sn)

)
.

Proof. Using the strong Markov property, the independence of MTn and STn and
MTn ∼ Fm+1(·|B) for all n ≥ 0, we obtain under every Pλ

Uλ(D) = UT0
λ (D) +

∑
n≥0

Eλ

(
Tn+1−1∑
k=Tn

1D(Mk, Sk)

)

= UT0
λ (D) +

∑
n≥0

∫
Sm+1×IR

UT0
x (D − y) P

(MTn ,STn )
λ (dx, dy)

= UT0
λ (D) +

∫
IR

UT0
Fm+1(·|B)(D − y) Uλ(dy)

that is the first identity of (3.5). If we write the final integral in previous line as∫
IR

∫
Sm+1×IR

1D(x, y + z) UT0
Fm+1(·|B)(dx, dz) Uλ(dy)

and interchange the order of integration we also obtain the second equality in (3.5). ♦
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Let U∗ denote the renewal measure of (STn)n≥−1 under PFm+1(·|B), which is a zero-delayed
random walk under that probability measure. With the help of (3.5) we get the following bound
for supt∈IR Uλ(Sm+1 × [t, t + a]) independent of λ:

Corollary 3.4. For all initial distributions λ on Sm+1 × IR and all a > 0

sup
t∈IR

Uλ(Sm+1 × [t, t + a]) ≤ ET0

(
1 + U∗[−a, a]

)
< ∞. (3.6)

Proof. Clearly, UT0
λ has total mass EλT0 = ET0 < ∞, finiteness and independence of

λ following from (R.5) and (R.6), see Lemma 3.5 below. Moreover,

sup
t∈IR

Uλ[t, t + a] ≤ U∗[−a, a]

is a well-known inequality from classical renewal theory. Combining these facts with (3.5)
(second line) immediately gives the assertion. ♦

We close this section with an explicit computation of the generating function of T0 showing
in particular that T0 has finite moments of exponential order. Let gθ(s) = θ

1−(1−θ)s denote the
generating function of a geometric distribution with parameter θ ∈ (0, 1).

Lemma 3.5. The distribution of T0 under Pλ is the same for every λ, its generating
function given by

EsT0 =
β

1− (1− β)g1/2(s)gFm+1(A)(sm0)sm0
(3.7)

and finite for all s ∈ (0, s∗) for some s∗ > 1. Moreover,

ET0 = E(% + 1) E(χ0 + m0κ0 + m0) =
1
β

(
2 +

m0

Fm+1(A)

)
. (3.8)

Proof. In view of (R.5) and (R.6) we have

T0 = υ% =
%∑

j=0

(χj + m0κj + m0)

with mutually independent geometric variables %, χj , κj . This easily leads to the assertions of
the lemma whence we omit further details. ♦

4. Moment Results

Let (Mn, Sn)n≥0 be any (ϕ, F )-mdMRW with finite, but not necessarily positive station-
ary drift µ = EX1. The following two propositions contain the moment results which are of
essential importance when proving the main results in the next section.

Proposition 4.1. Let α > 0.
(a) If C±λ (α) <∞ then Eλ(S±T0

)α <∞.

(b) If M±λ (α) <∞ then Eλe
θS±
T0 <∞ for some θ ∈ (0, α].
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Let the occupation measure UT0
λ be defined as in Lemma 3.3.

Proposition 4.2. Let α > 0, I+ = (0,∞) and I− = (−∞, 0).
(a) If C±λ (α) <∞ then

∫
Sm+1×I±

|t|α UT0
λ (dx, dt) = Eλ(

∑T0−1
n=0 (S±n )α) <∞.

(b) If M±λ (α) < ∞ then
∫
Sm+1×I±

eθ|t| UT0
λ (dx, dt) = Eλ(

∑T0−1
n=0 eθS±n ) < ∞ for some

θ ∈ (0, α].

Remark. Since C±Fm+1(α) = E(X±1 )α ≤ C±λ (α) for every λ, the conclusions of the
previous propositions remain true when λ is replaced by Fm+1 or any ν ≤ c Fm+1 for some
c > 0 (like Fm+1(·|B)), the latter because Eν(X±1 )α ≤ c−1E(X±1 )α.

The proofs are presented after some furnishing lemmata. We keep the notation of the
previous section. Recall from the construction there that Γ is the distribution of Sυ0 − Sυ0−n0

given ηυ0 = 1 under every Pλ. One can easily see that n0 ≥ m + 1 in (3.1) which in turn
implies

inf
(x,y)∈A×B

P (Sn0 ∈ ·|M0 = x, Mn0 = y) ≥ βΓ(·)/Fm+1(B)

Let Y1, ..., Yn0 and Z1, ..., Zn0 be generic random variables with

L(Yk) = P (Xυ0−n0+k ∈ ·|ηυ0 = 1) and L(Zk) = P (Xυ0−n0+k ∈ ·|ηυ0 = 0)

under each Pλ.

Lemma 4.3. There are finite constants c1, c2 such that Eg(Yk) ≤ c1Eg(X1) and Eg(Zk) ≤
c2Eg(X1) for all k = 1, ..., n0 and all measurable functions g : IR→ [0,∞).

Proof. Our argument is based on the simple fact that, given ν ≤ cλ for a finite constant
c, EλZ < ∞ for any random variable Z ≥ 0 implies EνZ < ∞. Recall In = 1{|Xn|≤t0}, put

Jn
def=
∏n0−1

k=0 In−k and then

K(x, ·) def= P ((Mυ0 , Sυ0 − Sυ0−n0 , Jυ0) ∈ ·|ηυ0 = 0, Mυ0−n0 = x)

= (1− β)−1(Px((Mn0 , Sn0 , Jn0) ∈ ·)− βFm+1(·|B)⊗ Γ⊗ δ1)

for x ∈ A. Obviously,

Fm+1(·|D) ≤ Fm+1(D)−1Fm+1 for all D ∈ S
m+1, Fm+1(D) > 0,

Fm+1(·|B)⊗ Γ⊗ δ1 ≤ β−1Px((Mn0 , Sn0 , Jn0) ∈ ·) for all x ∈ A,

K(x, ·) ≤ (1− β)−1Px((Mn0 , Sn0 , Jn0) ∈ ·) for all x ∈ A,

where (3.4’) should be recalled. Since furthermore

L((Mυ0−n0 , Mυ0 , Sυ0 − Sυ0−n0 , Jυ0)|ηυ0 = 1) = Fm+1(·|A)⊗ Fm+1(·|B)⊗ Γ⊗ δ1,

L((Mυ0−n0 , Mυ0 , Sυ0 − Sυ0−n0 , Jυ0)|ηυ0 = 0) = K(x, dy, dz) Fm+1(dx|A),
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we now infer

Eg(Yk) =
∫
A

∫
B

∫
IR

∫
{0,1}

Ex(g(Xk)|Mn0 = y, Sn0 = z, Jn0 = j)

× Γ(dz) Fm+1(dy|B) Fm+1(dx|A) δ1(dj)

≤
(
βFm+1(A)

)−1

Eg(X1) < ∞

and similarly

Eg(Zk) =
∫
A

∫
Sm+1×IR×{0,1}

Ex(g(Xk)|Mn0 = y, Sn0 = z, Jn0 = j)

×K(x, dy, dz, dj) Fm+1(dx|A)

≤
(
(1− β)Fm+1(A)

)−1

Eg(X1) < ∞. ♦

Lemma 4.4. Let α > 0. Then Cλ(α) <∞ implies Eλ|Sυ0 |α <∞.

Proof. We only consider the case α ≥ 1. The modifications of the subsequent inequali-
ties if α ∈ (0, 1) are obvious. Put χ̂0

def= χ0 + m + 1. We start by noting

Eλ|Sυ0 |α = β Eλ(|Sυ0 |α|ηυ0 = 1) + (1− β) Eλ(|Sυ0 |α|ηυ0 = 0)

and

|Sυ0 | ≤ |Sχ̂0 | + |Sυ0 − Sυ0−n0 | +
κ0∑

j=1

|Sχ̂0+jm0 − Sχ̂0+(j−1)m0 |

= |Sχ̂0 | + |Sυ0 − Sυ0−n0 | +
∑
j≥1

|Sχ̂0+jm0 − Sχ̂0+(j−1)m0 |1{κ≥j}

As can be seen from the construction in the previous section, only the middle term depends
on ηυ0 and only the first term depends on the initial distribution λ, whence

Eλ(|Sυ0 |α|ηυ0)
1/α ≤ (Eλ|Sχ̂0 |α)1/α + E(|Sυ0 − Sυ0−n0 |α|ηυ0)

1/α

+
∑
j≥1

(E|Sχ̂0+jm0 − Sχ̂0+(j−1)m0 |α1{κ0≥j})1/α.

Use the independence of χ̂0 and (Sn)n≥0 to obtain

Eλ|Sχ̂0 |α =
∑
n≥0

2−nEλ|Sn+m+1|α ≤ Cλ(α)
∑
n≥0

2−n(n + m + 1)α < ∞.

Moreover, with the help of Lemma 4.3

Eλ(|Sυ0 − Sυ0−n0 |α|ευ0 = 1) = E|Y1 + ... + Yn0 |α < ∞
Eλ(|Sυ0 − Sυ0−n0 |α|ευ0 = 0) = E|Z1 + ... + Zn0 |α < ∞.
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Finally, recalling the definition of κ0 and the fact that it has a geometric distribution with
parameter Fm+1(A), we infer

Eλ|Sχ̂0+jm0 − Sχ̂0+(j−1)m0 |α1{κ0≥j} = P (κ0 ≥ j)E(|Sm0 |α|M0 ∈ Ac, Mm0 ∈ Ac)

= Fm+1(Ac)j

∫
Ac

∫
Ac

Ex(|Sm0 |α|Mm0 = y) Fm+1(dy|Ac) Fm+1(dx|Ac)

≤ Fm+1(Ac)j−2E|Sm0 |α < ∞

for each j ≥ 1 and thereby

∑
j≥1

(E|Sχ̂0+jm0 − Sχ̂0+(j−1)m0 |α1{κ0≥j})1/α ≤ (E|Sm0 |α)1/α
∑
j≥1

Fm+1(Ac)(j−2)/α < ∞.

Putting all previous inequalities together the assertion obviously follows. ♦

Turning to exponential moments we need

Lemma 4.5. For all α > 0 and n ∈ IN0

Eλeα|Sn| ≤
n∏

k=0

(
Eλeα(n+1)|Xk|

)1/(n+1)

≤ Mλ(α(n + 1)); (4.1)

Eλeα|Sn+m| ≤
(
Eλe2α|Sm|

)1/2(
Ee2α|Sn|

)1/2

≤ Mλ(2(m + 1)α)1/2
(
Ee2α|Sn|

)1/2

; (4.2)

Eeα|Sn| ≤ (m + 1)
(
Eeα(m+1)|X1|

)(n+m+1)/(m+1)

; (4.3)

Eλeα|Sn+m| ≤ (m + 1)Mλ(2(m + 1)α)1/2
(
Ee2α(m+1)|X1|

)(n+m+1)/2(m+1)

. (4.4)

Proof. W.l.o.g. suppose Xn ≥ 0 for all n ≥ 0. (4.1) and (4.2) follow by simple
applications of Hölder’s inequality so that we can turn immediately to (4.3). Write n =
j(m + 1) + r with 0 ≤ r ≤ m and define

Sn(1)
...

Sn(r)

Sn(r + 1)
...

Sn(m + 1)


def=



X1

...

Xr

Xr+1

...

Xm+1


+ ... +



X(j−1)(m+1)+1

...

X(j−1)(m+1)+r

X(j−1)(m+1)+r+1

...

Xj(m+1)


+



Xj(m+1)+1

...

Xj(m+1)+r

0
...

0


.

Plainly, Sn = Sn(1) + ... + Sn(m + 1) and by m-dependence each Sn(k) is a sum of j + 1 (if
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k ≤ r) or j (if k > r) i.i.d. random variables under P = PFm+1 . Thus we conclude

EeαSn =
∫ ∞

0

αeαtP (Sn > t) dt

≤
m+1∑
k=1

∫ ∞
0

αeαtP

(
Sn(k) >

t

m + 1

)
dt

=
m+1∑
k=1

∫ ∞
0

α(m + 1)eα(m+1)sP (Sn(k) > s) ds

=
m+1∑
k=1

Eeα(m+1)Sn(k)

= r
(
Eeα(m+1)X1

)j+1

+ (m + 1− r)
(
Eeα(m+1)X1

)j

≤ (m + 1)
(
Eeα(m+1)X1

)j+1

≤ (m + 1)
(
Eeα(m+1)|X1|

)(n+m+1)/(m+1)

which is (4.3). (4.4) is an obvious consequence of (4.2) and (4.3). ♦

We are now ready for the

Proof of Proposition 4.1. Defining S
(±)
n

def=
∑n

k=0 X±k , we clearly have S±n ≤ S
(±)
n

for all n ≥ 0. Moreover, (Mn, S
(+)
n )n≥0 and (Mn, S

(−)
n )n≥0 are (ψ, F )-mdMRW’s for obvious

choices of ψ with the same Tn’s as regeneration epochs as (Mn, Sn)n≥0 itself. It is therefore
enough to prove the proposition for the case of nonnegative Xn’s.

(a) Again we restrict ourselves to the case α ≥ 1, our assumption being Cλ(α) = C+
λ (α) <

∞. Recall n0 ≥ m + 1, put Λ def= (1− β)−1(Fm+1 − βFm+1(·|B)) and note that

L(Mυn |ηυn = 0) = L(Mυn |% = k) = Λ

for k > n as well as

L(Sυn − Sυn−1 |% = n) = PΛ(Sυ0 ∈ ·|ηυ0 = 1),

L(Sυn − Sυn−1 |% > n) = PΛ(Sυ0 ∈ ·|ηυ0 = 0),

L(Sυn − Sυn−1 |% ≥ n) = PΛ(Sυ0 ∈ ·)

for all n ≥ 0 and under each Pλ. Now use the latter fact to obtain

(EλSα
T0

)1/α ≤ (EλSα
υ0

)1/α +
∑
n≥1

(Eλ(Sυn+1 − Sυn)α1{%≥n})1/α

= (EλSα
υ0

)1/α +
∑
n≥1

(EΛ(Sα
υ0

)1/αP (% ≥ n)1/α

= (EλSα
υ0

)1/α + (EΛ(Sα
υ0

)1/α
∑
n≥1

(1− β)n/α

which is finite because EνSα
υ0

< ∞ for ν ∈ {λ, Λ} by Lemma 4.4. In case ν = Λ we mention
that EΛXα

n <∞ for all n ≥ 0 follows from EXα
1 <∞ and Λ ≤ (1− β)−1Fm+1.
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(b) Note first that Lemma 3.5 yields

Pλ(T0 ≥ n) = P (T0 ≥ n) ≤ C1γ
−n
1 (4.5)

for all n ≥ 1, some C1 ∈ (0,∞) and γ1 ∈ (1,∞). Since EeaX1 ↓ 1 for a ↓ 0 and Mλ(α) < ∞,
we infer from (4.4) for sufficiently small positive θ that

Eλe2θSn ≤ C2γ
n
2 (4.6)

for all n ≥ 0, some C2 ∈ (0,∞) and γ2 < γ1. Hence by Hölder’s inequality

EλeθST0 =
∑
n≥1

EλeθSn1{T0=n} ≤
∑
n≥1

(
Eλe2θSn

)1/2

P (T0 = n)1/2

≤ C1C2

∑
n≥1

(γ2/γ1)n/2 < ∞.
(4.7)

This completes the proof of Proposition 4.1. ♦

For the proof of Proposition 4.2(a), we need a further lemma. Let G be the σ-field
generated by (χn, ηn, υn)n≥1 and note that the Tn, κn are all G-measurable.

Lemma 4.6. There is a finite constant C0 such that

Pλ(Xk ∈ ·|G) ≤ C0Pλ(Xk ∈ ·) Pλ-a.s.

for all k ∈ IN0 and initial distributions λ.

Proof. The following listing shows that Pλ(Xk ∈ ·|G), if not equal to Pλ(Xk ∈ ·), can
vary only within a set of finitely many distributions which are all bounded by some constant
times Pλ(Xk ∈ ·) as claimed. Note that the latter is the same as P (X1 ∈ ·) for all k ≥ m + 1
by m-dependence. It is convenient to put

λn
def=


λ, if n = 0

Fm+1(·|B), if n ≥ 1, ηυn = 1

Λ, if n ≥ 1, ηυn = 0

and to observe that Pλn ≤ [Fm+1(B) ∧ (1− β)]−1PFm+1 for all n ≥ 1.

Case 1. υn ≤ k ≤ υn + χn+1 for some n ≥ −1. Then

Pλ(Xk ∈ ·|G) = Pλn(Xk ∈ ·).
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Case 2. k = υn + χn+1 + jm0 + r < υn+1 for some j ≥ 0, n ≥ −1 and 1 ≤ r ≤ m + 1.
Then

Pλ(Xk ∈ ·|G) =


Pλn(Xr+χn+1 ∈ ·|Mm+1+χn+1 ∈ A), if j = 0, κn+1 = 0

Pλn(Xr+χn+1 ∈ ·|Mm+1+χn+1 6∈ A), if j = 0, κn+1 > 0

PFm+1(·|Ac)(Xr ∈ ·|Mm+1 ∈ A), if j ≥ 1, κn+1 = j

PFm+1(·|Ac)(Xr ∈ ·|Mm+1 6∈ A), if j ≥ 1, κn+1 > j

.

Case 3. k = υn +χn+1 +(j+1)m0−n0 +r ≤ υn+1 for some j ≥ 0, n ≥ −1 and 1 ≤ r ≤ n0.
Then

Pλ(Xk ∈ ·|G) =


P (Yr ∈ ·), if κn+1 = j, ηυn+1 = 1

P (Zr ∈ ·), if κn+1 = j, ηυn+1 = 0

PFm+1(·|Ac)(Xr ∈ ·), if κn+1 > j

. ♦

Proof of Proposition 4.2. It suffices again to assume all Xn’s to be nonnegative.
(a) As before, we consider only α ≥ 1. By Lemma 4.6 and the conditional Minkowski

inequality

Eλ(Sα
n |G)1/α ≤

n∑
k=0

Eλ(Xα
k |G)1/α ≤ C

1/α
0

n∑
k=0

(EλXα
k )1/α ≤ (C0Cλ(α))1/α(n + 1)

a.s. for all n ≥ 0. Since T0 is G-measurable, this further implies

Eλ(Sα
n |T0 > n) = Eλ(Eλ(Sα

n |G)|T0 > n) ≤ C0Cλ(α)(n + 1)α

a.s. for all n ≥ 0. Combining this with (4.5) we finally obtain

Eλ

(
T0−1∑
n=0

Sα
n

)
=
∑
n≥0

EλSα
n1{T0>n}

=
∑
n≥0

Eλ(Sα
n |T0 > n)P (T0 > n)

≤ C0C1Cλ(α)
∑
n≥0

(n + 1)αγ−n
1 < ∞

which is the assertion.
(b) Here we obtain for sufficiently small θ > 0 in a similar manner as in (4.7)

Eλ

(
T0−1∑
n=0

eθSn

)
=
∑
n≥0

EλeθSn1{T0>n}

≤
∑
n≥0

(Eλe2θSn)1/2P (T0 > n)1/2

≤ C1C2

∑
n≥0

(γ2/γ1)n/2 < ∞

and thus again the desired result. ♦
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Remark. All previous moment results remain true when replacing T0 by the associated
first level 1 ladder epoch

T̂0
def= Tφ, φ

def= inf{n : STn > 1}.

This can be easily shown when combining the previous results with

Eν(S+
T0

)α <∞ for ν ∈ {λ, Fm+1} ⇒ Eν(S+

T̂0
)α <∞ for ν ∈ {λ, Fm+1};

Eν(S−T0
)α <∞ for ν ∈ {λ, Fm+1} ⇒ Eνφα <∞ for ν ∈ {λ, Fm+1}

and similar conclusions for exponential moments, which are well-known facts from standard
renewal theory (see [10]).

However, it should be observed for later purposes, notably Proposition 6.3, that T̂0 needs
no longer have moments of arbitrary order under Pλ as being true for T0 (by Lemma 3.5).
Indeed, assuming µ > 0 and defining φ(x) = inf{n ≥ 0 : STn > x}, a straightforward argument
in combination with Theorem I.5.2 in [10] gives for α ≥ 1

EλT̂α
0 = EλTα

φ ≤ EλTα
0 +

∫
(−∞,1]

EFm+1(·|B)T
α
φ(x) Pλ(ST0 ∈ dx)

≤ EλTα
0 + const EFm+1(·|B)T

α
0

∫
(−∞,1]

EFm+1(·|B)φ(x)α Pλ(ST0 ∈ dx).

But the latter expression is finite if Eν(S−T0
)α < ∞ for ν ∈ {λ, Fm+1}, whence we conclude

with Proposition 4.2 (in case µ > 0)

C−λ (α) <∞ ⇒ Eν T̂α
0 <∞ for ν ∈ {λ, Fm+1} (4.8)

By a similar argument, one can show for α > 0 that

M−λ (α) <∞ ⇒ EνeθT̂0 <∞ for some θ ∈ (0, α] and ν ∈ {λ, Fm+1}. (4.9)

For the remainder of this section suppose µ ∈ (0,∞). Our next lemma deals with the
moments of the Xn’s under Pνs , νs the stationary Markov delay distribution defined in (1.4).
The notation from there should be recalled, in particular ϑ = Eξ∗σ1.

Lemma 4.7. There is a finite constant K such that C+
νs(α) ≤ K E(X+

1 )α+1 and C−νs(α) ≤
K E(X−1 )α for all α > 0.

Proof. Fm+1 = ϑ−1Eξ∗(
∑σ1−1

n=0 1{Mn∈·}) implies ξ∗ = Pξ∗(M0 ∈ ·) ≤ ϑFm+1 and thus
for each n ≥ 1 and α > 0

Eνs(X±n )α =
∫

Ex(X±n )α Pνs(M0 ∈ dx) =
∫

Ex(X±n )α ξ∗(dx)

≤ ϑ

∫
Ex(X±n )α Fm+1(dx) = ϑE(X±1 )α < ∞
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since ϑ = µ>/µ < ∞. Notice that this is the same for Eξ∗(X±n )α. For n = 0, X−0 = 0 and a
simple computation gives

Eνs(X+
0 )α =

1
µ>

∫ ∞
0

tαPξ∗(Sσ1 > t) dt =
Eξ∗S

α+1
σ1

(α + 1)µ>

and this is again bounded by a constant times E(X+
1 )α+1 because, by using (4.2) in [4] and

the previous estimates,

Eξ∗S
α+1
σ1

≤ Eξ∗(X+
σ1

)α+1 ≤ Eξ∗

(
σ1+m∑
n=1

(X+
n )α+1

)

= Eξ∗

(
m∑

n=1

(X+
n )α+1

)
+ Eξ∗σ1E(X+

1 )α+1

≤ (m + 1)ϑE(X+
1 )α+1.

This completes the proof of the lemma. ♦

The moments of the first passage times τ(t) = inf{n ≥ 1 : Sn > t}, t ≥ 0, and the
associated stopped sums Sτ(t) are considered in the following proposition which may be viewed
as the natural extension of a well-known result for i.i.d. increments due to Gut, see [10], Section
III.3. Keep in mind that σ1 = τ(0).

Proposition 4.8. Let α ≥ 1 in parts (a),(b) and α > 0 in parts (c),(d) below.
(a) If C+

λ (α) <∞ and C−λ (1) <∞, then EλSα
τ(t) ≤ const (t + 1)α for all t ≥ 0.

(b) If C−λ (α) <∞, then Eλτ(t)α ≤ const (t + 1)α for all t ≥ 0.
(c) If M+

λ (α) <∞ and C−λ (1) <∞, then EλeθSτ(t) ≤ const (t+1)eθt for all t ≥ 0 and θ ≤ α.
(d) If M−λ (α) < ∞, then Eλeθτ(t) ≤ g(θ)erθt for all t ≥ 0 and θ ≤ θ0 ≤ α where r ≥ 1 does

not depend on θ and g(θ)→ 1 as θ → 0.

Proof. Parts (a) and (b) follow from Theorem 2.3 of [11] in the stationary case λ =
Fm+1. For the extension to general λ observe that

Eλ(Sτ(t) − t)α ≤ Eλ(X+
τ(t))

α ≤ Eλ

(
τ(t)+m∑

k=0

(X+
k )α

)
≤ (m + 1)C+

λ (α) + E(X+
1 )αEλτ(t) ≤ const (t + 1),

(4.10)

where (4.2), (4.4) from [4] have been utilized, as well as

Eλτ(t)α ≤ EλTα
τ̂(t) ≤ const (t + 1)α (4.11)

where τ̂(t) def= inf{n ≥ 0 : STn > t}. The final inequality is a standard renewal result applied
to the ordinary delayed random walk (STn − STn−1)n≥0 which, by Proposition 4.1(a), satisfies
Eλ(S−T0

)α <∞ and Eλ(STn − STn−1)
α = EFm+1(·|B)S

α
T0

<∞ for n ≥ 1 if C−λ (α) <∞.
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Similar arguments lead to (c) and (d): Instead of (4.10), we get

Eeα(Sτ(t)−t) ≤ Eλ

(
τ(t)+m∑

k=0

eαX+
k

)
≤ (m + 1)M+

λ (α) + EeαX+
1 Eτ(t) ≤ const (t + 1)

for all t ≥ 0 providing M+
λ (α) <∞. This clearly implies (c).

By Proposition 4.1(b), M−λ (α) ensures Eλe
θS−
T0 < ∞ and EFm+1(·|B)e

θS−
T0 < ∞ for all

θ ≤ θ1 ≤ α, whence EλeθTτ̂(t) ≤ g(θ)erθt for all t ≥ 0, θ ≤ θ0 ≤ α and some g as stated above
may again be deduced by standard renewal arguments in combination with Theorem III.3.2 in
[10]. Since τ(t) ≤ Tτ̂(t) for all t ≥ 0, (d) follows. ♦

The moments of the occupation measure Uσ1
ξ∗ = Eξ∗(

∑σ1−1
n=0 1{(Mn,Sn)∈·}) will also be of

interest, see the proof of Theorems 2.6 and 2.7 at the end of Section 6.

Lemma 4.9. Let α > 0.
(a) If C−λ (α + 1) <∞ then

∫
Sm+1×IR

|t|α Uσ1
λ (dx, dt) = Eλ(

∑σ1−1
n=0 (S−n )α) <∞.

(b) If M−λ (α) < ∞ then
∫
Sm+1×IR

eθ|t| Uσ1
λ (dx, dt) = Eλ(

∑σ1−1
n=0 eθS−n ) < ∞ for some θ ∈

(0, α].

Proof. (a) First note that C−λ (α + 1) <∞ implies Eλσα+1
1 <∞ by Proposition 4.8(b).

By combining this with Theorem 1.3 in [11], which may easily be adapted to the nonsta-
tionary case λ 6= Fm+1, we further obtain Eλ(S(−)

σ1 )α+1 ≤ const Eλσα+1
1 C−λ (α + 1) where

S
(−)
n =

∑n
k=0 X−k should be recalled. Using the inequality

σ1−1∑
n=0

1{S−n >t} ≤ σ11{σ1>t} + t 1{S(−)
σ1 >t}

we now conclude∫
Sm+1×IR

|t|α Uσ1
λ (dx, dt) = Eλ

(∫ ∞
0

αtα−1
σ1−1∑
n=0

1{S−n >t} dt

)

≤ Eλ

(
σ1

∫ ∞
0

αtα−11(0,σ1)(t) dt

)
+ Eλ

(∫ ∞
0

αtα1
(0,S

(−)
σ1 )

(t) dt

)
= Eλσα+1

1 +
α

α + 1
Eλ(S(−)

σ1
)α+1 < ∞.

(b) The procedure here is similar so that we restrict ourselves to the only critical point,
namely an argument why EλeθS(−)

σ1 < ∞ for some θ > 0 follows from M−λ (α) < ∞. Indeed,
using Hölder’s inequality and (4.4) of Lemma 4.5, we obtain for sufficiently small θ > 0

EλeθS(−)
σ1 =

∑
n≥0

EλeθS(−)
n 1{σ1=n} ≤

∑
n≥0

(
Eλe2θS

(−)
n+m

)1/2
Pλ(σ1 = n)1/2

≤ (m + 1)1/2M−λ (4(m + 1)θ)1/2
∑
n≥1

(
Ee4θ(m+1)X−1

)(n+m+1)/(4m+4)

Pλ(σ1 = n)1/2
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which is finite because Eλeθσ1 <∞ by Proposition 4.8(d) for sufficiently small θ > 0. ♦

5. Proof of Theorems 2.1 - 2.3

Proof of Theorem 2.1. (a) It clearly suffices to prove the assertion for I = [0, 1].
Given C+

ν (α) <∞ for ν ∈ {λ, λ′}, we have Eν(S+
T0

)α <∞ for ν ∈ {λ, λ′, Fm+1} by Proposition
4.1(a). A coupling argument in classical renewal theory (see [14] and the Appendix) gives

‖Uλ|t+I − Uλ′|t+I‖ ≤ Hλ,λ′(t)

for all t ≥ 0 and a decreasing function Hλ,λ′ on [0,∞) satisfying∫ ∞
0

tα−1Hλ,λ′(t) dt < ∞,

thus in particular limt→∞ tαHλ,λ′(t) = 0. Moreover,

sup
s∈IR
‖Uλ|s+I − Uλ′|s+I‖ ≤ sup

s∈IR
(Uλ(s + I) ∨ Uλ′(s + I)) ≤ U∗[−1, 1] < ∞. (5.1)

For each ν ∈ {λ, λ′, Fm+1(·|B)}, ‖UT0
ν ‖ = ET0 <∞ holds by Lemma 3.5 and∫

[0,∞)

tα UT0
ν (Sm+1 × dt) =

∫ ∞
0

αtα−1UT0
ν (Sm+1 × (t,∞)) dt < ∞

by Proposition 4.2(a) and the subsequent Remark. The latter equation further implies

lim
t→∞ tαUT0

ν (Sm+1 × (t,∞)) = 0.

Using these facts and (3.5) of Lemma 3.3, the assertion follows from

‖Uλ|t+I − Uλ′|t+I‖ ≤ ‖UT0
λ|t+I − UT0

λ′|t+I‖

+
∫

IR

‖Uλ|t−y+I − Uλ′|t−y+I‖ UT0
Fm+1(·|B)(Sm+1 × dy)

≤ ‖UT0
λ|t+I − UT0

λ′|t+I‖ + sup
s≥t/2

‖Uλ|s+I − Uλ′|s+I‖ET0

+ sup
s∈IR
‖Uλ|s+I − Uλ′|s+I‖UT0

Fm+1(·|B)(Sm+1 × (t/2,∞)).

(5.2)

(b) follows directly from (a) with λ′ = νs when using Lemma 4.7.
(c) Using part (a) (with α + 1 instead of α), we infer the inequality

tα‖Uλ|[t,∞) − Uλ′|[t,∞)‖ ≤ tα
∑

n≥btc
‖Uλ|n+I − Uλ′|n+I‖ ≤ tαKλ,λ′(t)

∑
n≥btc

n−α−1

for a suitable function Kλ,λ′(t) convergent to 0 as t→∞. Moreover,∫ ∞
0

tα−1‖Uλ|[t,∞) − Uλ′|[t,∞)‖ dt ≤
∑
n≥0

(n + 1)α−1‖Uλ|[n,∞) − Uλ′|[n,∞)‖
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≤
∑
n≥0

(n + 1)α−1
∑
k≥n

‖Uλ|k+I − Uλ′|k+I‖

=
∑
k≥0

‖Uλ|k+I − Uλ′|k+I‖
k∑

n=0

(n + 1)α−1

≤
∑
k≥0

(k + 1)α‖Uλ|k+I − Uλ′|k+I‖

≤
∑
k≥0

∫ k+1

k

(t + 1)α‖Uλ|t−1+2I − Uλ′|t−1+2I‖ dt

=
∫ ∞

0

(t + 1)α‖Uλ|t−1+2I − Uλ′|t−1+2I‖ dt < ∞.

This proves the assertion.
(d) is again just a specialization of (c).
(e) Here the moment assumptions guarantee EνS+

T0
< ∞ for ν ∈ {λ, νs, Fm+1(·|B)}

whence classical renewal theory (see [14] and the Appendix) yields ‖Uλ−Uνs‖ <∞. Moreover,
UT0

ν is a finite measure with total mass ET0 < ∞ for every distribution ν on Sm+1 × IR.
Assertion (2.1) now easily follows from (5.2) with t = 0, I = [0,∞) and λ′ = νs. ♦

Proof of Theorem 2.2. (a) The arguments are very similar to those for Theorem
2.1(a), but t is negative here. Given C−λ (α) < ∞ and E(X−1 )α+1 < ∞, Proposition 4.1(a)
implies Eλ(S−T0

)α < ∞ and E(S−T0
)α+1 < ∞. This can further be used (see the Appendix) to

obtain

Uλ(t + I) ≤ Hλ(t)

for all t ≤ 0 and an increasing function Hλ on (−∞, 0] satisfying∫ 0

−∞
|t|α−1Hλ(t) dt < ∞,

thus in particular limt→−∞ |t|αHλ(t) = 0. By Proposition 4.2(a) and the subsequent Remark,∫
(−∞,0]

|t|α UT0
Fm+1(·|B)(Sm+1 × dt) =

∫ 0

−∞
α|t|α−1UT0

Fm+1(·|B)(Sm+1 × (−∞, t]) dt < ∞.

Now one can easily conclude the asserted result from the inequality

Uλ(Sm+1 × t + I) ≤ UT0
λ (Sm+1 × t + I) + ET0 sup

s≤t/2

Uλ(s + I)

+ UT0
Fm+1(·|B)(Sm+1 × (−∞, t/2)) sup

s∈IR
Uλ(s + I).

(5.3)

which in turn follows from (3.5) of Lemma 3.3.
(b) This is shown by the same argument as Theorem 2.1(c).
(c) The moment assumptions give here EλS−T0

<∞ and E(S−T0
)2 <∞. It is a well-known

fact from ordinary renewal theory that under these conditions ‖U−λ ‖ = Uλ(−∞, 0] < ∞ and
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Uλ(−∞, x] ≤ K(x + 1) for all x ≥ 0 and some constant K. By another appeal to (3.5) of
Lemma 3.3, we thus infer

‖U−λ ‖ ≤ ‖(UT0
λ )−‖ +

∫
IR

Uλ(−∞,−x] UT0
Fm+1(·|B)(Sm+1 × dx)

≤ ‖(UT0
λ )−‖ + ‖U−λ ‖ ‖(UT0

Fm+1(·|B))
+‖ +

∫
(−∞,0]

K(|x|+ 1) UT0
Fm+1(·|B)(Sm+1 × dx)

≤ (K + 1 + ‖U−λ ‖)ET0 + K

∫
(−∞,0]

|x| UT0
Fm+1(·|B)(Sm+1 × dx) < ∞,

where the latter integral is finite by Proposition 4.2(a). ♦

Proof of Theorem 2.3. Here it suffices to note that the assertions are proved similarly
to those of Theorem 2.1(c),(d) and Theorem 2.2(b), of course, with the help of Proposition
4.1(b) and 4.2(b). ♦

6. Coupling at Ladder Epochs and Proof of Theorems 2.4 - 2.7

In order to prove convergence rate results for the ladder variable sequence (M>
n , S>

n )n≥0,
the regeneration scheme of Section 3 cannot be used directly because the Tn need not be ladder
epochs and therefore do not provide a regeneration scheme for the above sequences as well.
However, it can still be employed for the following coupling construction, unfortunately at the
price of stronger moment conditions than possibly necessary. Although the technical details
of the construction are rather involved, its basic outline is simple and may be described as
follows:

First we construct two coupled versions (M ′n, S′n)n≥0 and (M ′′n , S′′n)n≥0 of (Mn, Sn)n≥0

with different initial distributions. This is accomplished by using regeneration lemma 3.2.
Hence there are a.s. finite random times τ ′ and τ ′′, in fact regeneration times for the respective
sequences, such that (M ′τ ′+n, S′τ ′+n)n≥0 = (M ′′τ ′′+n, S′′τ ′′+n)n≥0. The coupling process

(M̂n, Ŝn) def=

{
(M ′n, S′n), if 0 ≤ n ≤ τ ′

(M ′′n−τ ′+τ ′′ , S
′′
n−τ ′+τ ′′), if n ≥ τ ′

, n ≥ 0,

then provides us with a copy of (M ′n, S′n)n≥0 which concides with (M ′′n , S′′n)n≥0 after time τ ′.
In order to see that the ladder epochs of (M̂n, Ŝn)n≥0 and (M ′′n , S′′n)n≥0 eventually coincide,
notice that τ ′ + ψ, where

ψ
def= inf{n ≥ τ ′ : Ŝn > max{S′1, ..., S′τ ′ , S′′1 , ..., S′′τ ′′},

is a joint ladder epoch. It is this extra amount of time ψ it takes to synchronize the ladder
epochs of (M̂n, Ŝn)n≥0 and (M ′′n , S′′n)n≥0 which has led to the stronger moment assumptions
in our theorems.

Turning to the details, let (Mn, Xn)n≥0, with regeneration epoch sequence (Tn)n≥0, be
as constructed in the previous section. Put

Gλ
def= Pλ(ST0 ∈ ·) and G

def= PFm+1(·|B)(ST0 ∈ ·).
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We summarize the main properties of the regeneration scheme described in Section 3:

(R.1) (STn)n≥0 is an ordinary delayed 1-arithmetic or absolutely continuous random walk with
delay distribution Gλ and increment distribution G under Pλ.

(R.2) (MTn)n≥−1 forms a sequence of independent random variables which are identically
distributed as Fm+1(·|B) for n ≥ 0.

(R.3) For each n ≥ 0, MTn is independent of (Mk, Xk)0≤k≤Tn−n0 , STn − STn−n0 and thus in
particular independent of (Tk, STk)0≤k≤n.

(R.4) max1≤k≤n0 |XTn−n0+k| ≤ t0 for each n ≥ 0.

Since these facts remain unaffected when switching to the level 1 ladder epochs of (STn)n≥0

by considering (T̂n, MT̂n
, ST̂n

)n≥−1, where

T̂n
def= inf{Tk > T̂n−1 : STk − ST̂n−1

> 1},

it is no loss of generality to assume hereafter Gλ, G be concentrated on (1,∞). The reason
for taking level 1 instead of level 0 as usual is only a simplification in the proof of Lemma 6.2
below. We refer to our remark preceding 4.7 for the fact that the moment results of Section
4 are still applicable. In the following, we confine ourselves to the little more complicated case
of absolutely continuous G.

Given arbitrary initial distributions λ, λ′ on Sm+1 × IR, we proceed by several steps:
Step 1. Following Lindvall’s approach for absolutely continuous renewal processes, we

first give a construction of an exact coupling (Ŝ1,n, Ŝ2,n)n≥0 for the distributions of (STn)n≥0

under Pλ and Pλ′ , i.e.

IPλ,λ′((Ŝ1,n)n≥0 ∈ ·) = Pλ((STn)n≥0 ∈ ·),
IPλ,λ′((Ŝ2,n)n≥0 ∈ ·) = Pλ′((STn)n≥0 ∈ ·).

and
(Ŝ1,n)n≥τ̂1,ζ = (Ŝ2,n)n≥τ̂2,ζ . (6.1)

for a suitable coupling pair (τ̂1,ζ , τ̂2,ζ). We have to do so in some detail because of the moment
considerations further below. Let (S̃0,n)n≥0 and (S̃2,n)n≥0 be two independent renewal pro-
cesses with delay distributions Gλ and Gλ′ , respectively, and common increment distribution
G under IPλ,λ′ , say. Put X̃i,n

def= S̃i,n − S̃i,n−1 for n ≥ 1 and i = 0, 2. The backward and
forward recurrence time processes of (S̃i,n − S̃i,0)n≥1 are denoted by (B̃i,t)t≥0 and (F̃i,t)t≥0.
Of course, (B̃0,t, F̃0,t)t≥0 and (B̃2,t, F̃2,t)t≥0 have the same distribution which does not depend
on λ, λ′. Absolute continuity of G yields the existence of c1, c2, t

∗ > 0 such that

IPλ,λ′(B̃t ∈ ·) ≥ c11[0,c2]λλ0 (6.2)

for all t ≥ t∗, [14], Lemma III.5.1. Let Qt, ht denote the distribution and absolutely continuous
component density of B̃t, thus ht ≥ c11[0,c2] for t ≥ t∗. For a ≥ 0, define Ga by

Ga(x, x + b] def=


G(a + x, a + x + b]

G(a,∞)
, if G(a,∞) > 0

δ0(x, x + b], otherwise
.
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Hence Ga is the conditional distribution of F̃t under B̃t = a for every t. Now put (V0,0, V2,0)
def=

(S̃0,0, S̃2,0), W0
def= t∗ + (V0,0 ∨ V2,0) and

τ̂i,0
def= inf{n ≥ 1 : S̃i,n − S̃i,0 > W0 − Vi,0}.

Given B̃i,W0−Vi,0 = bi, the forward recurrence time F̃i,W0−Vi,0 has distribution Gbi because
W0 − Vi,0 is independent of (S̃i,n − S̃i,0)n≥0. Let (V0,1, V2,1) be a maximal coupling (see [14],
p. 19) with these conditional marginals, independent of (S̃i,τ̂i,0+n − S̃i,τ̂i,0)

i=0,2
n≥0 , and define

Ŝi,0
def= S̃i,0, X̂i,n

def= X̃i,n for 0 ≤ n < τ̂i,0 and X̂i,τ̂i,0
def= B̃i,W0−Vi,0 + Vi,1.

The same procedure is next applied to the post-τ̂i,0-processes (S̃i,τ̂i,0+n− S̃i,τ̂i,0)n≥0 with back-

ward recurrence times (B̃1
t )t≥0: Put W1

def= t∗ + V0,1 ∨ V2,1,

τ̂i,1
def= inf{n ≥ τ̂i,0 + 1 : S̃i,n − S̃i,τ̂i,0 > W1 − Vi,1},

let (V0,2, V2,2) be a maximal coupling with conditional marginals Gb1 , Gb2 , given (B̃1
i,W1−Vi,1

,

B̃1
i,W1−Vi,1

) = (b1, b2), which is independent of (S̃i,τ̂i,1+n − S̃i,τ̂i,1)
i=0,2
n≥0 . Define

X̂i,n
def= X̃i,n for τ̂i,0 < n < τ̂i,1 and X̂i,τ̂i,1

def= B̃1
i,W1−Vi,1 + Vi,2.

It is clear how the construction continues leading to strictly increasing sequences (τ̂i,k)k≥0 of
random times such that

X̂i,n
def= X̃i,n for τ̂i,k < n < τ̂i,k+1 and X̂i,τ̂i,k

def= B̃k
i,Wk−Vi,k

+ Vi,k+1

where the meaning of Wk, Vi,k and B̃k
t should now be clear. For each i = 0, 2, the resulting

renewal process (Ŝi,n)n≥0 is a copy of (S̃i,n)n≥0 and a coupling of both occurs at (τ̂0,ζ , τ̂2,ζ),
i.e.

Ŝ0,τ̂0,ζ = Ŝ2,τ̂2,ζ ,

where

ζ
def= inf{k ≥ 1 : V0,k = V2,k}.

As shown in [14], the absolute continuity of G (notably (6.2)) implies IPλ,λ′(ζ > n) ≤ κn for
some κ ∈ (0, 1) and all n ≥ 0. The coupling process (Ŝ1,n)n≥0 takes the form

Ŝ1,n
def=

{
Ŝ0,n, if n ≤ τ̂0,ζ

Ŝ2,τ̂2,ζ+n−τ̂0,ζ , if n ≥ τ̂0,ζ

.

Put also

τ̂1,n
def=

{
τ̂0,n, if n ≤ ζ

τ̂0,ζ + τ̂2,n − τ̂2,ζ , if n ≥ ζ
.

Step 1 is herewith complete.
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Step 2. Our next task is to define regeneration epochs Ti,n for i = 1, 2 and n ≥ 0. To
that end notice that by (R.1)

Pλ(T0 ∈ ·|(STk)k≥−1) = K λ
1 (ST0 , ·),

Pλ(Tn − Tn−1 ∈ ·|(STk)k≥−1) = K1(STn − STn−1 , ·), n ≥ 1,

for suitable kernels K1, K
λ
1 . Put T1,−1 = T2,−1 = Ŝi,−1

def= 0 (as stipulated), K1,0
def= K λ

1 ,

K2,0
def= K λ′

1 and K1,n = K2,n
def= K1 for n ≥ 1. Generate Ti,n − Ti,n−1, given (Ŝ1,k, Ŝ2,k,

V0,k, V2,k)k≥0, according to Ki,n(Ŝi,n − Ŝi,n−1, ·) for n ≥ 0 and i = 1, 2. By (6.1) this can
obviously be done in such a way that

T1,τ̂1,ζ+n − T1,τ̂1,ζ+n−1 = T2,τ̂2,ζ+n − T2,τ̂2,ζ+n−1 (6.3)

for all n ≥ 1. Put τi,n
def= Ti,τ̂i,n .

Step 3. The final step is to define two coupled sequences (M1,n, S1,n)n≥0, (M2,n, S2,n)n≥0

which are copies of (Mn, Sn)n≥0 under Pλ and Pλ′ , respectively. Put Xi,n = Si,n − Si,n−1 for
n ≥ 1, as usual.

From (R.3) in the previous section, we infer the existence of a kernel K2 satisfying

Pλ((MTn+k, XTn+k)k≥0 ∈ ·|(M0, S0), (Tj , STj )j≥0) = K2((Tj+1 − Tj , STj+1 − STj )j≥n), ·)

for all n ≥ 0 and λ. Generate (M1,τ1,ζ+k, X1,τ1,ζ+k)k≥0 = (M2,τ2,ζ+k, X2,τ2,ζ+k)k≥0, given ζ,
(Ti,k, Ŝi,k, τ̂i,k)i=1,2

k≥0 , (V0,k, V2,k)k≥0, according to K2((T1,τ1,ζ+k−T1,τ1,ζ , Ŝ1,τ1,ζ+k−Ŝ1,τ1,ζ )k≥0, ·)
(a reasonable definition in view of (6.1) and (6.3)).

The regeneration scheme in the previous section further yields the existence of a kernel
K3 such that

Pλ((Mk, Xk)0≤k≤Tn ∈ ·|(M0, S0),(Tj , STj )j≥1, (Mj , Sj)j≥Tn)

= K3((M0, MTn), (Tj , STj )1≤j≤n, ·)

for all n ≥ 0 and λ. Let (M1,0, S1,0) and (M2,0, S2,0) be independent random vectors with distri-
bution λ and λ′ under IPλ,λ′ . Given these and all other variables generated so far, we generate
(Mi,k, Xi,k)0≤k≤τi,ζ according to K3((Mi,0, Mi,τi,ζ ), (Ti,j , Ŝi,Ti,j )1≤j≤τ̂i,ζ , ·) for i = 1, 2. This
completes the definition of (Mi,n, Si,n)n≥0 for i = 1, 2. The main properties are summarized
below:

IPλ,λ′((M1,n, S1,n)n≥0 ∈ ·) = Pλ((Mn, Sn)n≥0 ∈ ·);
IPλ,λ′((M2,n, S2,n)n≥0 ∈ ·) = Pλ′((Mn, Sn)n≥0 ∈ ·);

IPλ,λ′((M1,0, S1,0, M2,0, S2,0) ∈ ·) = λ⊗ λ′;

(Si,Ti,n)n≥0 = (Ŝi,n)n≥0 for i = 1, 2;

(M1,n, S1,n)n≥τ1,ζ = (M2,n, S2,n)n≥τ2,ζ .

Defining the filtrations

Fi,n
def= σ((Si,k)0≤k≤n, (Ti,k1{Ti,k≤n})k≥0, (1{τi,k≤n}(V0,k, V2,k))k≥0), n ≥ 0
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for i = 1, 2, it can be easily checked that

(F.1) the Ti,k, τi,k as well as τi,ζ are stopping times with respect (Fi,n)n≥0;
(F.2) (Ti,k − Ti,k−1, STi,k − STi,k−1)k>n and Fi,Ti,n are independent for all n ≥ 0.
(F.3) (Ti,k − Ti,k−1, STi,k − STi,k−1)k>ζ and Fi,Ti,ζ are independent.
for each i = 1, 2.

Let (M>

i,n, S>

i,n)n≥0 be the Markov renewal process of strictly ascending ladder heights
associated with (Mi,n, Si,n)n≥0. The process of forward recurrence times is denoted by (M̂i,t,

Ri,t)t≥0, i.e.

(M̂i,t, Ri,t)
def= (Mi,τ(t), Si,τi(t) − t), τi(t)

def= inf{n ≥ 0 : Si,n > t}.

Let (M̂t, Rt)t≥0 be that process for (Mn, Sn)n≥0 and put λt
def= Pλ((M̂t, Rt) ∈ ·) for each t ≥ 0.

So far we have not yet shown that our construction also provides an exact coupling for
the afore-mentioned ladder variable sequences. Indeed, for τi,ζ needs not be a ladder epoch for
(Mi,n, Si,n)n≥0, we have to look for a pair (τ∗1 , τ∗2 ) = (τ1,ζ +ψ, τ2,ζ +ψ), ψ a random time, such
that τi,ζ + ψ is one for i = 1, 2. Since S1,τ1,ζ = S2,τ2,ζ > 0 and the maximal upward excursion
of (Si,n)0≤n≤τi,ζ is bounded by

τi,ζ∑
n=0

X+
i,n ≤

τi,ζ−n0∑
n=0

X+
i,n + n0t0

def= Zi

(for the inequality recall (R.4)), an obvious admissible choice for ψ is

ψ
def= τ∗(Z1 ∨ Z2 − Si,τi,ζ ),

where
τ∗(t) def= inf{n ≥ 0 : Si,τi,ζ+n − Si,τi,ζ > t}

(does not depend on i = 1, 2). We then have

R1,t = R2,t for all t ≥ S∗ def= S1,τ∗1 = S2,τ∗2 ,

and therefore

‖λt − λ′t‖ = ‖IPλ,λ′((M̂1,t, R1,t) ∈ ·)− IPλ,λ′((M̂2,t, R2,t) ∈ ·)‖
≤ ‖Pλ,λ′((M̂1,t, R1,t) ∈ ·, S∗ > t)− IPλ,λ′((M̂2,t, R2,t) ∈ ·, S∗ > t)‖
≤ IPλ,λ′(S∗ > t)

(6.4)

for all t > 0. Dealing with moments of S∗ below we first show two auxiliary lemmata:

Lemma 6.1. Mτi,ζ and (Z1, Z2, Si,τi,ζ ) are independent under IPλ,λ′ for i = 1, 2.

Proof. The assertion follows directly from our coupling construction, regeneration prop-
erty (R.3) and the definition of the Zi, i = 1, 2. ♦

Lemma 6.2. Let (τ̂i,n)n≥0, i = 1, 2, and ζ be as defined further above and let α > 0.
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(a) If C+
λ (α) <∞ and C+

λ′(α) <∞, then Eλ,λ′ τ̂
α
i,ζ <∞ for i = 1, 2.

(b) If M+
λ (α) <∞ and M+

λ′(α) <∞, then Eλ,λ′e
θτ̂i,ζ <∞ for some θ ∈ (0, α] and i = 1, 2.

Proof. (a) Since ζ has geometrically decreasing tail under IPλ,λ′ it is enough to prove
Eλ,λ′ τ̂

α
i,n ≤ const (n + 1)α+2 for all n ≥ 0 and i = 0, 2. Notice that τ̂i,n − τ̂i,n−1 = inf{k ≥

1 : S̃i,τ̂i,n−1+k − S̃i,τ̂i,n−1 > Wn − Vi,n} is the first passage time Φi,n(Wn − Vi,n) beyond
level Wn − Vi,n for the ordinary renewal process (S̃i,τ̂i,n−1+k − S̃i,τ̂i,n−1)k≥0 (independent of
Wn − Vi,n and with increment distribution G = PFm+1(·|B)(ST0 ∈ ·)) and hence a well-studied

object. Setting Φ(t) def= inf{n ≥ 1 : S̃0,n − S̃0,0 > t}, we thus have

IPλ,λ′(τ̂i,n−τ̂i,n−1 ∈ ·|Gn−1, Wn = w, Vi,n = v) = IPλ,λ′(Φi,n(w−v) ∈ ·) = IPλ,λ′(Φ(w−v) ∈ ·)

where G−1
def= σ(V0,0, V2,0) and

Gn
def= σ((V0,k, V2,k)0≤k≤n+1, (τ̂i,k)i=1,2

0≤k≤n−1, (S̃i,k)i=0,2
0≤k≤τ̂i,n−1

)

for n ≥ 0. Furthermore, G(1,∞) = 1 clearly implies Φ(w) ≤ w+1. Use Proposition 4.1(a) and
the subsequent remark to infer Eλ,λ′ S̃

α
i,n <∞ as well as Eλ,λ′W

α
n <∞ for all n ≥ 0 and i = 0, 2

from C+
λ (α) < ∞ and C+

λ′(α) < ∞. As shown in [14], III.6, even Eλ,λ′W
α
n ≤ const (n + 1)

holds under these assumptions. Combining these facts, we conclude

Eλ,λ′ τ̂
α
i,n ≤ (n + 1)α

n∑
k=0

Eλ,λ′(τ̂i,k − τ̂i,k−1)α

= (n + 1)α
n∑

k=0

Eλ,λ′E(Φi,k(Wk − Vi,k)α|Gk−1)

≤ (n + 1)α

∫
Eλ,λ′Φ(w)α

n∑
k=0

IPλ,λ′(Wk ∈ dw)

≤ (n + 1)α
n∑

k=0

Eλ,λ′(Wk + 1)α

≤ const(n + 1)α
n∑

k=0

(k + 1) ≤ const (n + 1)α+2

as claimed.
(b) Here it suffices to verify Eλ,λ′e

θτ̂i,n ≤ g(θ)n for all sufficiently small θ > 0 and a
suitable function g satisfying g(θ) → 1 as θ → 0. By Proposition 4.1(b), M+

λ (α) < ∞ and
M+

λ′(α) < ∞ implies Eλ,λ′e
θS̃i,n < ∞ as well as Eλ,λ′e

θWn < ∞ for some θ ∈ (0, α], all
n ≥ 0 and i = 0, 2. It can further be shown that E(eθWn |Gn−2) ≤ g(θ) IPλ,λ′ -a.s. for all
n ≥ 0, g a function as claimed above and G−2 the trivial σ-field. Indeed, Wn conditioned
upon (V0,n−1, V2,n−1) = (v1, v2) is distributed as the maximum of the two forward recurrence
times F̃t∗+v1∨v2−v1 , F̃t∗+v1∨v2−v2 and the family eθ(F̃1,t+F̃2,t), t ≥ 0 is uniformly integrable, in
particular L1-bounded for all θ ∈ (0, θ0], θ0 > 0. By combining these facts with Φ(w) ≤ w + 1
we obtain

Eλ,λ′e
θτ̂i,n ≤ Eλ,λ′e

θ(φi,0(W0)+...+Φi,n(Wn))
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≤ Eλ,λ′e
θ(W0+...+Wn+n+1)

≤ eθ(n+1)Eλ,λ′e
θ(W0+...+Wn−1)E(eθWn |Gn−2)

≤ g(θ)eθ(n+1)Eλ,λ′e
θ(W0+...+Wn−1) ≤ ... ≤

(
g(θ)eθ

)n+1

for all sufficiently small θ which is the desired conclusion. ♦

Now we are ready to prove

Proposition 6.3. Let S∗ be as defined above.
(a) For each α ≥ 1, Cλ(α) <∞ and Cλ′(α) <∞ imply Eλ,λ′(S∗)α <∞.
(b) For each α > 0, Mλ(α) <∞ and Mλ′(α) <∞ imply Eλ,λ′e

θS∗ <∞ for some θ ∈ (0, α].

Proof. This time we only prove (a). Setting S
(+)
i,n

def=
∑n

k=0 X+
i,k, we have

S∗ ≤ Z1 + Z2 + S1,τ1,ζ+τ∗(Z1∨Z2) − S1,τ1,ζ

≤ S
(+)
1,τ1,ζ

+ S
(+)
2,τ2,ζ

+ (S1,τ1,ζ+τ∗(Z1∨Z2) − S1,τ1,ζ ) + 2n0t0
(6.5)

Observe that S
(+)
1,τ1,ζ

≤∑τ̂1,ζ
k=0 Y1,k, where Y1,k

def=
∑Ti,k−n0

j=Ti,k−1
X+

1,j +n0t0. Under IPλ,λ′ , the latter

variables are independent for k ≥ 0 and identically distributed for k ≥ 1 as S
(+)
T0−n0

+n0t0 under
PFm+1(·|B). Moreover, Y1,0, ..., Y1,n are F1,T1,n-measurable, (Y1,k)k>n is independent of F1,T1,n

and τ̂1,ζ a stopping time with respect to (F1,T1,n)n≥0. Consequently, we infer from Theorem
I.5.2 in [10] that

Eλ,λ′(S
(+)
1,τ1,ζ

)α ≤ const

(
Eλ,λ′Y

α
1,0 + Eλ,λ′

( τ̂1,ζ∑
k=1

Y1,k

)α
)

≤ const
(
Eλ(S(+)

T0
+ n0t0)α + EFm+1(·|B)(S

(+)
T0

+ n0t0)α Eλ,λ′ τ̂
α
1,ζ

)
.

We get Eλ,λ′ τ̂
α
1,ζ < ∞ by Lemma 6.2. C−λ (α) < ∞ yields EνTα

0 < ∞ for ν ∈ {λ, Fm+1(·|B)}
(see (4.8)) and then together with C+

λ (α) <∞ also EFm+1(·|B)(S
(+)
T0

)α <∞, by Theorem 1.3(ii)
in [11]. It is this conclusion which needs the stronger Cλ(α) < ∞ instead of C+

λ (α) < ∞.
Clearly, the same arguments show Eλ,λ′(S

(+)
2,τ2,ζ

)α < ∞ under Cλ′(α) < ∞. Hence, in view of
(6.5), it remains to prove

Eλ,λ′(S1,τ1,ζ+τ∗(Z1∨Z2) − S1,τ1,ζ )
α <∞

under Cλ(α) + Cλ′(α) <∞. Lemma 6.1 and the strong Markov property lead to

Eλ,λ′(S1,τ1,ζ+τ∗(Z1∨Z2) − S1,τ1,ζ )
α

=
∫

IR

∫
Sm+1

ExSα
τ(z) IPλ,λ′(Mτi,ζ ∈ dx) IPλ,λ′(Z1 ∨ Z2 ∈ dz)

=
∫

IR

EFm+1(·|B)S
α
τ(z) IPλ,λ′(Z1 ∨ Z2 ∈ dz)
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where τ(t) = inf{n ≥ 0 : Sn > t}. Now use Proposition 4.8 for

EFm+1(·|B)S
α
τ(z) ≤ const (z + 1)α

whence

Eλ,λ′(S1,τ1,ζ+τ∗(Z1∨Z2) − S1,τ1,ζ )
α ≤ constEλ,λ′(Z1 ∨ Z2 + 1)α

≤ constEλ,λ′(S
(+)
1,τ1,ζ

∨ S
(+)
2,τ2,ζ

+ 1)α < ∞. ♦

Proof of Theorems 2.4 and 2.5. Recall from Section 2 that Uλ|J = Uλ(·∩(Sm+1×J))
for intervals J ⊂ IR. Let I = (0, 1]. By Corollary 3.4, for all distributions λ on Sm+1 × IR

sup
t∈IR

U>

λ (Sm+1 × t + I) ≤ sup
t∈IR

Uλ(Sm+1 × t + I) def= H(1) < ∞. (6.6)

Put τ>(t) = inf{n ≥ 0 : S>
n > t} and notice Rt = S>

τ>(t) − t as well as∑
n≥0

1{M>
n ∈·,S>n ∈t+J} =

∑
n≥0

1{M>

τ>(t)+n
∈·,Rt+(S>

τ>(t)+n
−S>

τ>(t)
)∈J}

for every J ⊂ (0,∞). Using this, the strong Markov property, (6.4) and (6.6), we infer

‖U>

λ|t+I − U>

λ′|t+I‖ = ‖U>

λt|I − U>

λ′t|I‖

=
∥∥∥∥∫Sm+1×(0,∞)

U>

s,x|I (λt − λ′t)(ds, dx)
∥∥∥∥

≤ H(1) ‖λt − λ′t‖
≤ H(1) IPλ,λ′(S∗ > t)

(6.7)

for all t > 0 and then further

‖U>

λ|(t,∞) − U>

λ′|(t,∞)‖ ≤
∑
n≥0

‖U>

λ|t+n+I − U>

λ′|t+n+I‖

≤ H(1)
∑
n≥0

Pλ,λ′(S∗ > t + n)

≤ H(1)
∑
n≥0

∫ t+n

t+n−1

Pλ,λ′(S∗ > s) ds

= H(1)
∫

(t−1,∞)

Pλ,λ′(S∗ > s) ds (6.8)

for all initial distributions λ, λ′ on Sm+1 × IR. All assertions are now easily verified when
combining (6.7) and (6.8) with the moment results of Proposition 6.3. We thus omit further
details. ♦

Proof of Theorems 2.6 and 2.7. (a) Given λ, λ′ with C−λ (α) <∞ and C−λ′(α) <∞,
consider the following coupling model: Let Y ′−m, ..., Y ′0 , Y−m, ..., Y0, ... be (S,S)-valued random
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variables on a probability space (Ω,A, IPλ,λ′) such that

IP
((M0,S0),(M ′0,S′0),(Yn)n≥1)
λ,λ′ = λ⊗ λ′ ⊗ F∞.

where M0
def= (Y−m, ..., Y0) and M ′0

def= (Y ′−m, ..., Y ′0). Put further

M1 = (Y−m+1, ..., Y1), M ′1 = (Y ′−m+1, ..., Y
′
0 , Y1)

...

Mm = (Y0, ..., Ym), M ′m = (Y ′0 , Y1, ..., Ym)

Mn = M ′n = (Yn−m, ..., Yn) for n ≥ m + 1

and then

Xn
def= ϕ(Mn), X ′n = ϕ(M ′n) for n ≥ 1.

Obviously, (Mn, Sn)n≥0 and (M ′n, Sn)n≥0 are (ϕ, F )-md MRWs with initial distributions λ, λ′,
respectively, under IPλ,λ′ and

(Mn, Xn)n≥m+1 = (M ′n, X ′n)n≥m+1.

The ladder epoch MRWs of (Mn, Sn)n≥0 and (M ′n, S′n)n≥0 are denoted by (M>
n , σn)n≥0 and

(M>
n
′, σ′n)n≥0, respectively, where σ0 = σ′0 = 0 should be recalled. Let further (Rn)n≥0 and

(R′n)n≥0 be the associated sequences of forward recurrence times and put λn
def= IPλ,λ′(Rn ∈ ·),

λ′n
def= IPλ,λ′(R′n ∈ ·).

Since the first regeneration time T0 as constructed in Section 3 does not depend on the first
m+1 values of (Mn, Xn)n≥0 it can here be defined in such a way that it is a regeneration time for
both chains (Mn, Xn)n≥0 and (M ′n, X ′n)n≥0. As a consequence, (Mn, M ′n, Xn, X ′n)0≤n≤T0−n0

and (MT0 , MT ′0) ∼ F 2m+2(·|B) are independent. The important observation is now that the
downward excursions max0≤n≤T0 Sn − ST0 ,max0≤n≤T0 S′n − S′T0

of the two MRWs at T0 are
both bounded by

S
(−)
T0
∨ S

(−)′

T0
=

T0∑
n=0

X−n ∨
T0∑

n=0

X ′n
−

which, by (R.4), is further bounded by

Z
def= S

(−)
T0−n0

∨ S
(−)′

T0−n0
+ 2n0t0.

Consequently, a joint ladder epoch occurs at T0 + Φ(Z) where

Φ(t) def= inf{n ≥ 0 : ST0+n − ST0 > t},

and leads to the conclusion that

(Mn, Rn)n≥T0+Φ(Z) = (M ′n, R′n)n≥T0+Φ(Z)
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and thereby to (compare (6.7) and (6.8))

sup
n∈IN0

|V >

λ {n} − V >

λ′{n}| ≤ IPλ,λ′(T0 + Φ(Z) > n), (6.9)

‖V >

λ|[n,∞) − V >

λ′|[n,∞)‖ ≤
∑
k≥n

IPλ,λ′(T0 + Φ(Z) > k) (6.10)

for all n ≥ 0. Instead of (6.6) we have used here the trivial inequality

sup
n∈IN0

V >

λ {n} ≤ 1.

The proof is now obviously completed by providing suitable moment results for T0 + Φ(Z).
Since the distribution of T0 is always geometrically bounded (Lemma 3.5), only Φ(Z) remains
to be considered. But the independence of Z and (MT0+n, ST0+n−ST0)n≥0 = (M ′T0+n, S′T0+n−
S′T0

)n≥0 in combination with Proposition 4.8(b) (if C−λ (α) + C−λ′(α) <∞) gives

Eλ,λ′Φ(Z)α =
∫

EFm+1(·|B)τ(z)α IPλ,λ′(Z ∈ dz) ≤ constEλ,λ′Z
α

and a similar inequality for Eλ,λ′e
θΦ(Z), θ > 0 if M−λ (α) + M−λ′(α) < ∞. The assertions of

Theorem 2.6(a),(c) and 2.7(a) are now easily verified because, by Proposition 4.1, C−λ (α) +
C−λ′(α) <∞ further implies Eλ,λ′Z

α <∞ and M−λ (α)+M−λ′(α) <∞ further implies Eλ,λ′e
θZ <

∞ for sufficiently small θ > 0.
(b),(d),(e) The use the former coupling construction for the comparison of V >

λ with V >
∗ =

ϑ−1ξ∗ ⊗ λλ+
1 requires a modification of the previous arguments. The first step is to define a

distribution λ′ on Sm+1 × IR such that Pλ′((Mρ, ρ) ∈ ·) = φs for a suitable stopping time ρ

satisfying Pλ′(ρ ∈ {σn : n ≥ 0}) = 1. We define

λ′(C) def= ϑ−1Eξ∗

(
σ1−1∑
n=0

1{(Mn,Sn)∈C}

)

for C ∈ Sm+1⊗B and claim that ρ = τ(−S0) has the desired properties. Since Pλ′(S0 ≤ 0) = 1,
ρ is indeed a ladder epoch for (Mn, Sn)n≥0. Moreover,

Pλ′(Mρ ∈ A, ρ = k) = ϑ−1Eξ∗

(
σ1−1∑
n=0

1{Mn+k∈A,τ(−Sn)=k}

)

= ϑ−1Eξ∗

(
σ1−1∑
n=0

1{Mn+k∈A,σ1−n=k}

)

= ϑ−1Eξ∗

(
σ1−1∑
n=0

1{Mσ1∈A,σ1=n+k}

)
= ϑ−1

∑
n≥0

Pξ∗(σ1 > n, Mσ1 ∈ A, σ1 = n + k)

= ϑ−1Pξ∗(M>

1 ∈ A, σ1 ≥ k) = φs(A× {k}) (6.11)

for all A ∈ Sm+1 and k ∈ IN which proves the other asserted property of ρ.
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The second step is to verify that E(X−1 )α+1 <∞ implies C−λ′(α) <∞. Since λ′(·× IR) =
Fm+1 and Pλ′((Xn)n≥1 ∈ ·) = Pλ′(·×IR)((Xn)n≥1 ∈ ·), we infer C−λ′(α) = Eλ′(S−0 )α ∨E(X−1 )α.
It hence remains to show Eλ′(S−0 )α < ∞ providing E(X−1 )α+1 < ∞. Note that the latter
implies C−ξ∗(α + 1) <∞ for ξ∗ ≤ ϑFm+1. The definition of λ′ gives

Eλ′(S−0 )α = ϑ−1Eξ∗

(
σ1−1∑
n=0

(S−n )α

)

and this is indeed finite under the former condition by Lemma 4.9(a). The same type of
argument shows that EeαX−1 <∞ for some α > 0 implies M−λ′(θ) <∞ for some θ ∈ (0, α].

Now one can use Theorem 2.6(a),(c) and 2.7(a) to infer the assertions of all other parts
of these theorems, however, with V >

∗ = ϑ−1ξ∗ ⊗ λλ1 replaced by V >

λ′ . What hence remains to
be done in order to get the same results without this replacement is to show (as n→∞)

|V >

λ′{n} − V >

∗ {n}| = o(n−α), respectively o(e−θn) for some θ > 0, (6.12)

providing E(X−1 )α+1 <∞, respectively EeαX−1 <∞ for some α > 0. But

V >

λ′ − V >

∗ ≤ Eλ′

(
ρ−1∑
k=0

1{(Mk,k)∈·}

)

and therefore

0 ≤ V >

λ′{n} − V >

∗ {n} = Eλ′

(
ρ−1∑
k=0

1{k=n}

)
= Pλ′(ρ > n).

Use (6.11) with A = Sm+1 to see that

Eλ′ρ
α ≤ const Eξ∗σ

α+1
1 < ∞

by Proposition 4.8(b) for E(X−1 )α+1 < ∞ also gives C−ξ∗(α + 1) < ∞. A similar argument

shows Eλ′e
θρ < ∞ for some θ > 0 if EeαX−1 < ∞ for some α > 0. (6.12) is now a trivial

consequence. ♦

Appendix

We finally want to collect some basic facts from standard renewal theory that have
been used somewhere before. Let (Sn)n≥0 be an ordinary random walk with i.i.d. increments
X1, X2, ... having positive mean µ and a delay S0 which is independent of (Xn)n≥1. Let G be the
increment distribution and λ that of S0 under Pλ, also called initial distribution of (Sn)n≥0. We
only write P for P0. The renewal measure of (Sn)n≥0 under Pλ is denoted by Uλ, i.e. Uλ = λ∗U
with U def=

∑
n≥0 G∗(n). Let (σn, S>

n )n≥0 be the sequence of strictly ascending ladder epochs

and ladder heights associated with (Sn)n≥0 and put µ>
def= ES>

1 ,U> def=
∑

n≥0 P (S>
n ∈ ·) and

U>
λ

def= λ ∗ U>, the renewal measure of (S>
n )n≥0 under Pλ.
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Suppose (Sn)n≥0, and thus also (S>
n )n≥0, is 1-arithmetic or spread-out. As usual, we

consider without further notice only initial distributions λ on Z in the 1-arithmetic case. By
using a coupling of forward recurrence times (to some extent described in Section 6) and the
inequality

sup
t≥0

U>(t + I) ≤ U>(I), (A.1)

one can show that
‖U>

λ|t+I − U>
λ′|t+I‖ ≤ U>(I)IPλ,λ′(T > t) (A.2)

where IPλ,λ′ is the underlying probability measure in a suitable coupling model, T the coupling
time and I = [0, 1]. Provided Eν(S+

0 )α < ∞ for ν ∈ {λ, λ′} and E(X+
1 )α < ∞, it can be

shown that Eλ,λ′T
α <∞.

In order to get a similar bound for ‖Uλ − Uλ′‖ we first note that

U = Uσ1 ∗ U>, Uσ1 def= E0

(
σ1−1∑
n=0

1{Sn∈·}

)
. (A.3)

Moreover, letting Z
def= minn≥0(Sn − S0) and ϑ = Eσ1,

Pλ(Z ∈ ·) = ϑ−1Uσ1 , (A.4)

for every λ, see [13], Lemma 2, so that

U = ϑEU>(· − Z) and Uλ = ϑEU>
λ (· − Z). (A.5)

By using this in (A.2), we obtain

‖Uλ|t+I − Uλ′|t+I‖ ≤ ϑE
(
‖U>

λ|t−Z+I − U>
λ′|t−Z+I‖

)
≤ ϑU>(I)IPλ,λ′(T + Ẑ > t) ≤ ϑU>(I)IPλ,λ′(T > t),

(A.6)

where Ẑ is a copy of Z independent of the coupling time T . Hence we get the same coupling
bound and thereby the same convergence rate results as in (A.2) if t tends to ∞.

Since E|Z|α <∞ iff E(X−1 )α+1 <∞, see e.g. Theorem IV.4.9 in [10], and by using (A.1),
(A.5) further yields an appropriate estimate for the convergence of Uλ(t + I) to 0 as t tends to
−∞. Indeed,

Uλ(t + I) ≤ ϑEU>
λ (t− Z + I) = ϑEλU>(t− Z − S0 + I)

≤ ϑU>(I)Pλ(Z + S0 < t + 1),
(A.7)

and the final probability is of order o(|t|−α) as t→ −∞ if E(X−1 )α+1 <∞ and Eλ(S−0 )α <∞.
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