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1. Introduction

The simple Galton-Watson process (GWP) (Zn)n≥0 is a temporally homogeneous Markov
chain with state space N0 = {0, 1, 2, ...} and recursively defined as

Zn =
Zn−1∑
k=1

Xn,k, n ≥ 1, (1.1)

where the Xn,k, k, n ≥ 1, are i.i.d. integer-valued random variables with common distribution
p = (pj)j≥0. Zn describes the size of the n-th generation of a population in which individuals
all have life span 1 and reproduce independently according to p, called offspring distribution.
(Zn)n≥0 has (one step) transition probabilities

P (i, j) def= P(Zn = j|Zn−1 = i) = P

(
i∑

k=1

Xn,k = j

)
= p∗nj , i, j ≥ 0

where p∗n = (p∗nj )j≥0 denotes the n-fold convolution of p. The state 0 is absorbing and means
extinction of the population. It is a classic result (see e.g. [2]) that the extinction probability
q

def= P(Zn = 0 eventually|Z0 = 1) given one ancestor can be identified as the smallest fixed
point in [0, 1] of the generating function (g.f.) f(s) def=

∑
j≥0 pjs

j of p, and that, unless p1 = 1,

q < 1 holds iff the reproduction mean m
def=
∑
j≥1 jpj is greater than 1 (supercritical case).

Hence extinction occurs almost surely in the critical (m = 1) and subcritical (m < 1) case.
Note that P(Zn = 0 eventually|Z0 = i) = qi for all i ≥ 0.

An invariant or stationary measure of (Zn)n≥0 is a measure µ = (µj)j≥0 on N0 satisfying∑
i≥0

µiP (i, j) = µj , j ≥ 0. (1.2)

We allow the µj to be ∞ and stipulate 0 · ∞ = ∞ · 0 def= 0 as usual. Note that the set I of
all invariant measures of (Zn)n≥0 forms a convex cone (µ1, µ2 ∈ I ⇒ αµ1 + βµ2 ∈ I for all
α, β ≥ 0). Of primary interest are naturally invariant Radon measures µ (which satisfy µj <∞
for all j ≥ 0). On the other hand, it was shown by Harris [3] that µ = (1, 0, 0, ...) is the only
nontrivial invariant Radon measure (modulo multiplicative constants). Given this negative
result at the outset, a proper restatement of the problem is to ask for all quasi-invariant or
quasi-stationary Radon measures of (Zn)n≥0 by which we mean any Radon measure η = (ηj)j≥1

on the positive integers which instead of (1.2) satisfies∑
i≥1

ηiP (i, j) = ηj , j ≥ 1. (1.3)

The set Q of all such measures forms again a convex cone. Since P (0, j) = 0 for all j ≥ 1
we see that every invariant Radon measure is also quasi-invariant when restricted to N. The
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simple observation that each η ∈ Q can be uniquely identified with the stationary measure
µ ∈ I, defined as

µ
def= (∞, η1, η2, ...),

shows that, conversely, quasi-stationary measures may also be viewed as those solutions to (1.2)
which are almost Radon in that they possibly carry infinite mass only in one point, namely 0.
It is further readily verified that other solutions of this type do not exists unless p1 = 1. This
trivial case as well as p0 = 1 is henceforth excluded.

The set Q, which is our main concern here, generally contains nontrivial elements.
Athreya and Ney’s classic monograph [2], Ch. II] provides a comprehensive study of Q but
appears to be incomplete in various aspects. Indeed, somewhat surprisingly in view of the vast
literature on the simple GWP we were not able to find any reference where the problem of de-
cribing Q is solved in full generality. This fact in combination with the following probabilistic
interpretation of the elements of Q in case m ≤ 1, which played a key role in [1], provided a
major motivation for the present work.

Let Pn(i, j) be the n-step transition function (P 0(i, j) def= δij),

G(i, j) def=
∑
n≥0

Pn(i, j)

the associated Green function and τ
def= inf{n ≥ 0 : Zn = 0} the extinction time of (Zn)n≥0.

Note that fkn , the k-th power of the n-fold iteration of f , gives the g.f. of Zn under Pk
def=

P(·|Z0 = k). Now, if (in)n≥1 is such that in → ∞ and ηj
def= limn→∞G(in, j) < ∞ exists for

each j ≥ 1, then η = (ηj)j≥1 constitutes a quasi-invariant measure normalized by η̂(p0) = 1,
where η̂(s) def=

∑
j≥1 ηjs

j denotes the g.f. of η. Quasi-invariance is ensured by

ηj = lim
n→∞

∑
k≥0

P k(in, j)

= lim
n→∞

∑
k≥1

∑
i≥1

P k−1(in, i)P (i, j)

=
∑
i≥1

(
lim
n→∞

∑
k≥1

P k−1(in, i)

)
P (i, j)

=
∑
i≥1

ηiP (i, j), j ≥ 1

(the interchange of limit and summation being nontrivial but justified by the general theory),
while normalization follows from (f0(s)

def= s)

∑
k≥0

∑
j≥1

P k(i, j)pj0 =
∑
k≥0

(
f ik+1(0)− f ik(0)

)
= 1, i ≥ 1. (1.4)
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An elementary computation shows that

lim
n→∞Pin(Zτ−1 = j) = lim

n→∞G(in, j)p
j
0 = ηjp

j
0 j ≥ 1

whence (ηjp
j
0)j≥1 is the limit law of Zτ−1 under Pin for n → ∞. This indicates that quasi-

invariant measures, suitably normalized, are directly connected to the limiting behavior of the
GWP at the eve of extinction when the number of ancestors increases to infinity in a suitable
fashion. More generally, we showed in [1, Lemma 4.2] that the finite dimensional distributions
of (Zτ−k)k≥0 under Pin (put Z−k

def= Z0 for k ≥ 1) converge weakly to the respective finite
dimensional distributions of a Markov chain (Wn)n≥0 with W0 = 0 and n-step transition
probabilities

Qn(i, j)
def=


0, if i = j = 0

ηjPj(τ = n), if i = 0, j ≥ 1
ηjP

n(j, i)
ηi

, if i, j ≥ 1

, n ≥ 1. (1.5)

Based on Chapter II of Athreya and Ney’s monograph [2], which is still a standard source
for potential theoretic aspects of GWP, we continue with a collection of known facts about Q.
Theorem II.1.2 in [2] tells us that a Radon measure η = (ηj)j≥1 on the integers is quasi-invariant
iff its g.f. η̂(s) is analytic for |s| < q and satisfies

η̂(f(s)) = η̂(p0) + η̂(s). (1.6)

In order to identify elements of Q that differ only by a multiplicative constant we must choose
an appropriate normalization and will later on use η̂(p0) = 1.

In the critical case m = 1 the problem of determining Q is completely settled by the
following result due to Papangelou [9]:

Theorem 1.1. If m = 1 there is a unique (up to multiplicative constants) quasi-inva-
riant measure π = (πj)j≥1. It has infinite mass and can be obtained as

πj = lim
n→∞

Pn(1, j)
Pn(1, r)

, (1.7)

where r
def= inf{i ≥ 1 : pi > 0} and Pn(1,j)

Pn(1,r) is increasing in n.

The same result appears in [2], Lemma I.7.2] for the case r = 1, i.e. p1 > 0. Existence
and essential uniqueness of π for general critical GWP were also proved by Seneta [10], but
instead of (1.7) he obtained π as

πj = lim
n→∞

P1(Zn = j|τ = n + k)
f jk(0)− f jk−1(0)

(1.8)

which is independent of k ∈ N. Earlier versions under stronger assumptions on (pj)j≥0 were
given in [5] (f(s) <∞ for some s > 1) and [7] (

∑
j≥1 j2pj <∞, see also [2], Thm. II.7.2]).
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In view of the previous result we are left with the noncritical case m 6= 1 and will next
quickly argue that it suffices herefore to restrict to the subcritical case m < 1.

Assuming first m > 1 and p0 = 0, we claim that the only quasi-invariant Radon measure
is η ≡ 0. Indeed, since P (i, j) = 0 for all i > j ≥ 1 and P (i, i) < 1 for all i ≥ 1, any quasi-
invariant η = (ηj)j≥1 satisfies η1 = η1P (1, 1) and thus η1 = 0. Now ηj = 0 for all j ≥ 1 follows
by induction.

If m > 1 and p0 > 0 then 0 < q < 1 and f∗(s) def= q−1f(sq) defines the g.f. of the subcrit-
ical distribution p∗ = (qj−1pj)j≥0 with mean m∗ = f ′(q). It is known that a GWP (Z∗n)n≥0

with offspring distribution p∗ can be obtained from a GWP (Zn)n≥0 with offspring distribu-
tion p by counting only individuals with a finite line of descent in the pertinent population,
see [2], I.12]. The following lemma provides a simple one-to-one correspondence between the
quasi-invariant Radon measures of (Zn)n≥0 and those of (Z∗n)n≥0.

Lemma 1.2. Given the previous notation, a Radon measure η = (ηj)j≥1 is quasi-inva-
riant for (Zn)n≥0 iff η∗ def= (qjηj)j≥1 is quasi-invariant for (Z∗n)n≥0.

Proof. Let η be quasi-invariant for (Zn)n≥0 and w.l.o.g. η̂(p0) = 1. Using characteriza-
tion (1.6) of quasi-invariance, we obtain

η̂∗(f∗(s)) =
∑
j≥1

pjq
j

(
f(sq)

q

)j
= η̂(f(sq)) = 1 + η̂(sq) = 1 + η̂∗(s)

and thus the quasi-invariance of η∗ for (Z∗n)n≥0 by another appeal to (1.6). ♦

Notice that (Z∗n)n≥0 is not only subcritical but also having moments of exponential order
because its offspring distribution p∗ has geometrically decreasing tails. Theorem 2.2 in the fol-
lowing section will give a description of all quasi-invariant Radon measures for subcritical GWP
satisfying the (L log L) moment condition. It hence applies to (Z∗n)n≥0 which in combination
with Lemma 1.2 immediately leads to a description of all quasi-invariant Radon measures of a
supercritical GWP (see Corollary 2.3).

2. Quasi-invariant radon measures for subcritical gwp

After the previous review it is clear that we will now entirely focus on the subcritical
case. So we are given a GWP (Zn)n≥0 with offspring distribution p = (pj)j≥0 having mean
0 < m < 1 and g.f. f . We first assume the (L log L) moment condition

E1Z1 log Z1 =
∑
j≥2

pjj log j < ∞. (L log L)

Defining the nonincreasing sequence

ζn
def=

P1(Zn > 0)
mn

=
1− fn(0)

mn
(2.1)
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for n ≥ 0, we then have that

ζ
def= lim

n→∞ ζn (2.2)

is positive, see [4, Thm. (2.6.1)], while ζ = 0 if (L log L) fails to hold. Next put

Qn(s)
def=

fn(s)− 1
ζmn

, n ≥ 1, s ∈ [0, 1].

As shown in [2], I.11], its derivative Q′n(s) converges pointwise to a function Q′(s) for 0 ≤ s < 1
which is positive on (0, 1) under (L log L). Setting

Q(s) def=
∫ s

1

Q′(r) dr

we hence obtain Qn(s) → Q(s) for 0 ≤ s ≤ 1. Q further satisfies Q(0) = −1, Q(1) = 0,
lims→1 Q′(s) = ζ and is the unique solution with these properties to the functional equation

Q(f(s)) = mQ(s), 0 ≤ s < 1, (2.3)

see [2], Thm. I.11.2]. The normalization of Q(s) by ζ is only given here in order to unify its
definition with the one below for the general situation.

Without assuming (L log L) a solution of (2.3) still exists but must be derived differently
because ζ = 0 and limn→∞ d

ds

( fn(s)−1
mn

) ≡ 0 on [0, 1) if
∑
j≥2 pjj log j = ∞. The details will

be presented in Section 3 where we will show that

Q(s) def= lim
n→∞

fn(s)− 1
1− fn(0)

, s ∈ [0, 1) (2.4)

forms the unique analytic solution to (2.3) satisfying Q(0) = −1 and Q(1) = 0. Hence under
(L log L) the limits of fn(s)−1

1−fn(0) and fn(s)−1
ζmn are the same for all s ∈ [0, 1).

As in [2], Ch. II], we put

U(s, t) def=
∑
n∈Z

(
exp(Q(s)mn−t)− exp(Q(0)mn−t)

)
, s ∈ [0, 1), t ∈ R. (2.5)

It is easily verified that this series converges and that U(·, t) is the g.f. of a quasi-invariant
Radon measure η(t). The quasi-invariance may be checked directly by using (1.6) and (2.3).
Note also that

U(p0, t) = U(f(0), t) = 1 (2.6)

and

U(·, t) = U(·, t + 1) (2.7)

for each t ∈ R. We will show that the η(t) are the minimal elements of the convex set
Q∗ def= {η ∈ Q : η̂(p0) = 1}, but in order to explain this in more detail we first have to collect
some facts on the general construction of the minimal Martin entrance boundary in the present
context. For a more general introduction of this topic for discrete Markov chains see [6, Ch. 10].
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Given any nonzero function h : N→ [0,∞), put G(i, h) def=
∑
j≥1 G(i, j)h(j) and η(h) def=∑

j≥1 ηjh(j). Let M be the set {M(i, ·) : i ∈ N} with

M(i, j) def=


G(i, j)
G(i, h)

, if 0 < G(i, h) <∞,

0, otherwise
, i, j ∈ N,

and M be its closure under pointwise convergence. Any sequence (ik)k≥1 of positive integers
such that ik →∞ and M(ik, ·) converges pointwise to some limit η is called a Martin sequence,
and η a Martin limit relative to h. Every such η is a quasi-invariant measure satisfying η(h) = 1.
The Martin entrance boundary (w.r.t. h) is (isomorphic to) the set M\M endowed with the
topology of pointwise convergence and thus equals the set of all Martin limits. By the Poisson-
Martin representation theorem, each element of Qh def= {η ∈ Q : η(h) = 1} is obtained as
an integral over the entrance boundary w.r.t. a probability measure which, however, does not
need to be unique. An element η ∈ Qh is called minimal or extremal, if it cannot be written
as a nontrivial convex combination of two distinct elements from Qh. The minimal Martin
entrance boundary is defined as the subset of minimal elements of Qh. It is necessarily a subset
of M\M. The integral representation of a quasi-invariant (normalized) Radon measure over
this minimal boundary w.r.t. a finite (probability) measure is unique. Hence there is a one-
to-one correspondence between the set Qh and the set of probability measures on the minimal
entrance boundary. Our task is therefore to identify the minimal elements in the class of Martin
limits.

The previous construction depends on the choice of h. With view to our goal of finding all
quasi-invariant Radon measures a good choice is any h such that the associated Martin entrance
boundary consists exactly of all these measures (modulo positive scalars). Since every η ∈ Q
satisfies η̂(f(0)) < ∞ (see before (1.6)) we fix h(j) def= f j(0), j ≥ 1. Then η(h) = η̂(f(0)) and
G(·, h) ≡ 1 by (1.4) which further entails that the Martin kernel K and the Green kernel G

are the same under this choice.
We proceed with the statement of our main result, Theorem 2.1 below, which provides an

isomorphic description of the Martin entrance boundary, the Martin topology and its minimal
elements for general subcritical GWP. For x > 0 let α(x) and β(x) denote the integral and
fractional part of − logmx, respectively, where logm is the logarithm to the base m. Put

τ(x) def= sup{n ≥ 0 : 1− fn(0) ≥ 1/x}

for x ≥ 1 and note that limn→∞
1−fn+1(0)
1−fn(0) = m implies lim supx→∞ γ(x) ∈ [0, 1) for γ(x) def=

logm(x(1−fτ(x))). Indeed, setting δ(x) def= logm
( 1−fτ(x)+1(0)

1−fτ(x)(0)

)
, we have limx→∞ δ(x) = 1 which

in combination with

1 > x(1− fτ(x)+1(0)) = x(1− fτ(x))mδ(x) = mδ(x)−γ(x)

gives 1− lim supx→∞ γ(x) = lim infx→∞(δ(x)−γ(x)) > 0. Let M def= N∪ [0, 1) and the function
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ϕ :M→ C be defined as

ϕ(x) def=


x

1 + x
e−2πi logm(xζτ(x)), if x ∈ N

e2πix, if x ∈ [0, 1)

where i
def=
√−1. We note that xζτ(x) may be replaced with x(1− fτ(x)(0)) in the definition of

ϕ because both values differ only by an integral power of m. It follows that

ρ(x, y) def= |ϕ(x)− ϕ(y)|, x, y ∈M,

is a metric on M under which the closure of N is [0, 1). (M, ρ) is a compact space and [0, 1)
is endowed with the spherical topology. The latter is not true for the metric given in [11] and
[2], p. 69]. An integer sequence (in)n≥1 with in → ∞ converges to t ∈ [0, 1) w.r.t. ρ iff the
fractional part of − logm(inζτ(in)) converges to t, as n→∞.

Recall that η(t) is the quasi-invariant Radon measure with g.f. U(·, t) given in (2.5).

Theorem 2.1. Given a subcritical GWP (Zn)n≥0, its Martin entrance boundary equals
the set {η(t) : t ∈ [0, 1)} and is isomorphic to ([0, 1), ρ). All η(t), t ∈ [0, 1), are pairwise distinct
and minimal, i.e. their collection also constitutes the minimal Martin entrance boundary. There
is a bijection ν ↔ η between the set Q of quasi-invariant Radon measures η = (ηj)j≥1 and the
set of finite Borel measures ν on [0, 1), given by the integral representation

ηj =
∫

[0,1)

ηj(t) ν(dt), j ∈ N. (2.8)

A partial version of this result appears in Athreya and Ney [2], Thm. II.2.3] which asserts
that under (L log L) the η(t) are Martin limits and that any other quasi-invariant η has an
integral representation (2.8) for some not necessarily unique finite Borel measure ν. The same
result was stated earlier (without proof) by Spitzer [11] for the case 0 < p0 < p0 + p1 = 1. It is
to be emphasized that pairwise distinctness and minimality of the ν(t) constitute a nontrivial
improvement beyond not assuming (L log L). This was needed for an essential argument in [1].

If (Zn)n≥0 satisfies the (L log L) condition one may replace ρ in Theorem 2.1 with a
simpler metric. Define ϕ∗ : M→ C as

ϕ∗(x) def=


x

1 + x
e2πi logm(xζ), if x ∈ N

e2πix, if x ∈ [0, 1)
.

It then follows that
ρ∗(x, y) def= |ϕ∗(x)− ϕ∗(y)|, x, y ∈M,

is another metric on M. An integer sequence (in)n≥1 with in →∞ converges to t ∈ [0, 1) w.r.t.
ρ∗ iff the fractional part of − logm(ζin) = − log(ζin)

logm converges to t, as n → ∞. Our second
theorem asserts that (M, ρ) and (M, ρ∗) are in fact isomorphic.
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Theorem 2.2. Given a subcritical GWP (Zn)n≥0 satisfying (L log L), the assertions of
Theorem 2.1 remain true if the metric ρ is replaced with ρ∗.

A combination of Theorem 2.2 with Lemma 1.2 immediately leads to the following result
for supercritical GWP we state here for completeness.

Corollary 2.3. Given a supercritical GWP (Zn)n≥0 with associated subcritical process
(Z∗n)n≥0 as defined in Section 1, the Martin entrance boundary M of (Zn)n≥0 is isomorphic to
(M, ρ∗) where ζ in the definition of ρ∗ is defined by (2.2) for (Z∗n)n≥0. If {η∗(t) : t ∈ [0, 1)}
denotes the minimal Martin entrance boundary of (Z∗n)n≥0, then there is a bijection ν ↔ η

between the set Q of quasi-invariant Radon measures η = (ηj)j≥1 of (Zn)n≥0 and the set of
finite Borel measures ν on [0, 1), given by the integral representation

ηj = q−j
∫

[0,1)

η∗j (t) ν(dt), j ∈ N. (2.9)

We mention for historical account that Harris [3, p. 25] was the first to give an example of a
quasi-invariant Radon measure in the subcritical case and that Kingman [8] first demonstrated
the non-uniqueness of such measures in the supercritical case.

The proof of Theorem 2.1 and 2.2 are presented in Section 5. The existence and essential
uniqueness of an analytic solution Q(s) to (2.3) is shown in Section 3, while Section 4 studies a
useful function in connection with the g.f. U(·, t) of the minimal quasi-invariant measures η(t).
In essence the results given there provide minimality and pairwise distinctness of the η(t).

3. The function Q(s)

Given an arbitrary subcritical GWP (Zn)n≥0 with offspring mean 0 < m < 1, we will
now show the existence and uniqueness of an analytic function Q(s) on (−1, 1) solving equation
(2.3) and satisfying Q(1) = 0 and Q(0) = c for any fixed c < 0. Define

Qn(s)
def=

fn(s)− 1
1− fn(0)

, n ≥ 1, s ∈ [−1, 1]. (3.1)

and note that Qn(0) = −1, Qn(1) = 0. Then

Qn(s) =
E1

(
sZn1{Zn>0}

)− P1(Zn > 0)
P1(Zn > 0)

= E1(sZn |Zn > 0)− 1
(3.2)

for all n ≥ 1 and s ∈ [−1, 1]. By Yaglom’s theorem [2], Cor. I.8.1], P1(Zn ∈ ·|Zn > 0) converges
weakly to a probability distribution with g.f. B(s) satisfying

B(f(s))− 1 = m(B(s)− 1), −1 < s < 1, (3.3)
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that is, Q(s) def= B(s) − 1 is a solution to (2.3). Moreover, Q′(1−) = B′(1−) < ∞ iff (L log L)
holds true (see [2], Cor. I.11.2]). In view of (3.2) the following lemma is now immediate.

Lemma 3.1. Qn(s) converges pointwise to Q(s) on (−1, 1], the convergence being in-
creasing on [0, 1) and uniform on every compact subset of (−1, 1).

Proof. We only note for the asserted increasing convergence that

Qn+1(s)
Qn(s)

=
1−f(fn(s))

1−fn(s)

1−f(fn(0))
1−fn(0)

≥ 1

for all n ≥ 0 and s ∈ [0, 1), where the last inequality holds by the convexity of f on [0, 1). ♦

If (L log L) holds true then, by Theorem I.11.2 in [2], Q(s) must equal a positive constant
times limn→∞

fn(s)−1
mn because the latter limit forms another solution to (2.3) with Q(1) = 0

and finite left derivative Q′(1−) at 1. Without assuming (L log L) the essential uniqueness of
Q(s) as a solution to (2.3) is more difficult. In fact, the following lemma will provide this only
within the smaller class of analytic functions on (−1, 1) which is fortunately enough for our
purposes.

Lemma 3.2. The function Q(s) = B(s)− 1 forms the unique solution to (2.3) which is
analytic on (−1, 1) and satisfying Q(0) = −1 and Q(1) = 0.

Proof. Let R be another solution with the desired properties and put D
def= Q − R.

Then D(0) = D(1) = 0 and, by iterating (2.3),

D(fn(s)) = mnD(s) (3.4)

for all s ∈ (−1, 1). Hence D(fn(0)) = 0 for all n ≥ 1. It follows the existence of ξ ∈ (0, f(0))
such that D′(ξ) = 0. We first prove by induction over k that

D(k)(fn(ξ)) = 0 (3.5)

for all n ≥ 0 and k ≥ 1.

Since, by (3.4), mnD′(s) = D′(fn(s))f ′n(s) for all n ≥ 1 and s ∈ (−1, 1), and since all f ′n
are positive at ξ, D′(ξ) = 0 implies (3.5) with k = 1.

For the inductive conclusion suppose that D(j)(fn(ξ)) = 0 for all n ≥ 1 and 1 ≤ j ≤ k.
It is easily verified that

mnD(j)(s) = D(j)(fn(s))(f ′n)
j(s) +

j−1∑
l=1

D(l)(fn(s))hj,l(s)
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for all j ≥ 1 and suitable functions hj,l(s) which are ≥ 0 for s ∈ [0, 1). Hence the inductive
assumption gives

mnD(k+1)(fi(ξ)) = D(k+1)(fn+i(ξ))(f ′n)
k+1(fi(ξ)) (3.6)

for all i ≥ 0 and n ≥ 1. Now, if D(k+1)(fi0(ξ)) > 0 then, by (3.6), D(k+1)(fn+i0(ξ)) > 0 for all
n ≥ 0 in which case we may take ratios on both sides of (3.6) to get

D(k+1)(fi(ξ))
D(k+1)(fi+1(ξ))

=
D(k+1)(fn+i(ξ))

D(k+1)(fn+i+1(ξ))
· (f ′n)

k+1(fi(ξ))
(f ′n)k+1(fi+1(ξ))

(3.7)

for all i ≥ 0 and n ≥ 1. Use f ′n(fi(ξ)) =
∏n−1
j=0 f ′(fj+i(ξ)) to infer

lim
n→∞

(f ′n)
k+1(fi(ξ))

(f ′n)k+1(fi+1(ξ))
= lim

n→∞
1

(f ′)k+1(fn+i(ξ))
= m−k−1

and thus via (3.7) that

κ
def= lim

n→∞
D(k+1)(fn(ξ))

D(k+1)(fn+1(ξ))

exists and is positive. However, this is impossible because, by taking the limit n → ∞ and
then i → ∞ in (3.7), it leads to κ = κm−k−1 and thus κ = 0. We therefore arrive at the
desired conclusion D(k+1)(fi(ξ)) = 0 for all i ≥ 0.

To finish the proof of the lemma, we next observe that a Taylor expansion of D(s)
about s = ξ in combination with D(k)(ξ) = 0 for all k ≥ 1 gives that D(s) = D(ξ), i.e.
Q(s) = R(s) + D(ξ), for all s in a neighborhood of ξ. But then the same must hold true for
all s ∈ (−1, 1) because Q, R are analytic. Finally, invoking (2.3) for Q and R, we obtain

Q(s) =
Q(f(s))

m
=

R(f(s)) + D(ξ)
m

= R(s) +
D(ξ)
m

= Q(s) +
(

1
m
− 1
)

D(ξ)

and thereby D(ξ) = 0, i.e. Q = R on (−1, 1). ♦

4. A useful function

Define the function Ψ : (0,∞)2 × ((0,∞)\{1})→ R by

Ψ(x, y, z) def=
∑
n∈Z

(e−xyz
n − e−yz

n

). (4.1)

The connection of Ψ with the U(·, t) in (2.5) is established through the identity

U(s, t) = Ψ(−Q(s), m−t, m) (4.2)

for all s ∈ [0, 1) and t ∈ R, where Q(0) = −1 should be recalled. We collect some elementary
properties of Ψ in the following lemma.
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Lemma 4.1. The function Ψ is well defined and satisfies

Ψ(x, y, z) = Ψ(x, zy, z), (4.3)

Ψ(zx, y, z) = Ψ(x, y, z) + Ψ(z, y, z), (4.4)

Ψ(x, y, z) = Ψ
(

x, y,
1
z

)
, (4.5)

Ψ(x, y, z) = Ψ
(

ax,
y

a
, z

)
+ Ψ

(
1
a
, y, z

)
, (4.6)

Ψ(x, y, z) = Ψ(x, y, z2) + Ψ(x, zy, z2), (4.7)

Ψ(z, y, z) = 1(0,1)(z)− 1(1,∞)(z), (4.8)

Ψ(1, ·, z) ≡ 0 (4.9)

for all a, x, y, z > 0, z 6= 1.

Notice that a combination of (4.5) and (4.3) shows that (4.2) generalizes to

U(s, t) = Ψ(−Q(s), mn−t, m) = Ψ(−Q(s), mn−t, 1/m) (4.10)

for all s ∈ [0, 1), t ∈ R and n ∈ Z.

Proof. (4.3) and (4.5) follow because the definition of Ψ remains unaffected when
replacing n with n + 1, respectively −n. Use

e−zxyz
n − e−yz

n

= (e−xyz
n+1 − e−yz

n+1
) + (e−zyz

n − e−yz
n

)

to get (4.4), and

e−xyz
n − e−yz

n

= (e−ax
y
a z
n − e−

y
a z
n

) + (e−
y
a z
n − e−yz

n

), a > 0

to get (4.6). (4.7) follows from

Ψ(x, y, z) =
∑
n∈Z

(e−xyz
2n − e−yz

2n
) +

∑
n∈Z

(e−xyz
2n+1 − e−yz

2n+1
).

Since

Ψ(z, y, z) = lim
N→∞

N∑
n=−N

(e−xyz
n − e−yz

n

) = lim
N→∞

(e−xyz
N − e−yz

−N
),

we infer (4.8). Finally, (4.9) is obvious from the definition of Ψ. ♦

The next three, more difficult lemmata provide us with key tools to identify {η(t) : t ∈
[0, 1)} as the minimal Martin entrance boundary.

Lemma 4.2. For all sufficiently large z, the map [1, z) 3 y 7→ Ψ(·, y, z) is one-to-one.
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Proof. For fixed z > 1, consider G(y) def= {a > 0 : Ψ(·, y, z) = Ψ(·, ay, z)} and notice
first that z ∈ G(y) by (4.3).

Claim 1. G(y) = G(1) for all y > 0.

Fix y > 0, pick any a ∈ G(y), i.e. Ψ(·, ay, z) = Ψ(·, y, z), and use (4.6) to infer

Ψ
(

bx,
y

b
, z

)
+ Ψ

(
1
b
, y, z

)
= Ψ

(
bx,

ay

b
, z

)
+ Ψ

(
1
b
, ay, z

)
for all b, x > 0. Consequently, Ψ(·, y/b, z) = Ψ(·, ay/b, z) and thus G(y) ⊂ G(y/b) for all b > 0.
By symmetry G(y) = G(y/b) for all b > 0 and the claim is proved.

Claim 2. G def= G(1) is a multiplicative group.

Given a, b ∈ G, we infer b−1 ∈ G(a) and therefore Ψ(·, 1, z) = Ψ(·, a, z) = Ψ(·, a/b, z)
implying ab−1 ∈ G.

Claim 4. G is closed.

The function Ψ(x, ·, z) is continuous for fixed x, z. Let (an)n≥1 be a sequence in G which
converges to a > 0. Then Ψ(x, 1, z) = limn→∞Ψ(x, an, z) = Ψ(x, a, z) for all x > 0 implies
a ∈ G.

As a closed subgroup of (0,∞), either G = (0,∞) or G = 〈a〉 def= {an : n ∈ Z} for some
a ≥ 1. In the second case, z ∈ G implies 1 < a ≤ z and an0 = z for some n0 ∈ N. Recall that
G depends on the fixed value z > 1. Now the assertion of the lemma follows if we finally prove

Claim 5. G = 〈z〉 for all sufficiently large z > 1.

Suppose G 6= 〈z〉. Then zk/n0 ∈ G for some n0 ≥ 2 and all k ∈ Z which implies
G ∩ [z1/3, z2/3] 6= ∅ because this intersection contains y(z) def= zbn0/2c/n0 . Since

0 = DxΨ(x, y(z), z)−DxΨ(x, 1, z) =
∑
n∈Z

(zne−xz
n − y(z)zne−xy(z)zn)

for all x > 0, where Dx denotes the partial derivative w.r.t. x, we conclude for all sufficiently
large z that

y(z)e−y(z) − e−1 = DxΨ(1, y(z), z)− DxΨ(1, 1, z) + y(z)e−y(z) − e−1

=
∑
n≥1

(z−ne−z
−n − y(z)z−ne−y(z)z−n) +

∑
n≥1

(zne−z
n − y(z)zne−y(z)zn)

≥ −y(z)

(∑
n≥1

z−n +
∑
n≥1

zne−nz
)

= − y(z)
z − 1

− y(z)ze−z

1− ze−z
.

But the first expression of this inequality converges to −e−1, whereas the last one converges
to 0, as z → ∞. Consequently, the inequality fails to hold for all sufficiently large z and the
claim follows. ♦
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Lemma 4.3. For all sufficiently large z, the set Cz
def= {Ψ(·, y, z) : y ∈ [1, z)} endowed

with the metric of pointwise convergence is canonically isomorphic (y ↔ Ψ(·, y, z)) to the
compact space ([1, z), ρz), where ρz(y1, y2)

def= ρ(y1−1
z−1 , y2−1

z−1 ). Furthermore, each Ψ(·, y, z) is
minimal in the convex hull of Cz, that is

Ψ(·, y0, z) =
∫

[1,z)

Ψ(·, y, z) ν(dy) (4.11)

for a probability measure ν on [0, 1) implies ν = δy0 .

Plainly, the spaces ([1, z), ρz) and ([0, 1), ρ) are isomorphic, too, the first one being an
affine linear transformation of the second.

Proof. By the previous lemma, Cz consists of pairwise distinct elements for sufficiently
large z. By combining this with the continuity of Ψ(x, y, z) in y and the periodicity property
(4.3), the first assertion follows. Now suppose (4.11) for fixed sufficiently large z, some y0 ∈
[1, z) and a probability measure ν 6= δy0 . We will produce the contradiction that under this
assumption Cz contains no minimal element at all. Using (4.6) for the integrand in (4.11) leads
to

Ψ(x, y0, z) =
∫

[1,z)

Ψ
(

ax,
y

a
, z

)
ν(dy) +

∫
[1,z)

Ψ
(

1
a
, y, z

)
ν(dz)

for all a, x > 0. Setting x = 1
a , we see with (4.9) that Ψ( 1

a , y0, z) =
∫

[1,z)
Ψ( 1

a , y, z) ν(dy). By
another appeal to (4.6) we hence obtain

Ψ
(

ax,
y0

a
, z

)
+ Ψ

(
1
a
, y0, z

)
= Ψ(x, y0, z) =

∫
[1,z)

Ψ
(

ax,
y

a
, z

)
ν(dy) + Ψ

(
1
a
, y0, z

)
for all a, x > 0 and thus

Ψ
(

x,
y0

a
, z

)
=
∫

[1,z)

Ψ
(

x,
y

a
, z

)
ν(dy)

for all a, x > 0 which implies the desired contradiction that no Ψ(·, y, z) is minimal. ♦

Lemma 4.4. The assertions of Lemma 4.2 and 4.3 hold true for all z > 1.

Proof. It only remains to prove that the map [1, z) 3 y 7→ Ψ(·, y, z) is one-to-one for all
z > 1. So fix any z > 1 and suppose Ψ(·, y0, z) = Ψ(·, y1, z) for some 1 ≤ y0, y1 < z. We must
show y0 = y1. Choose n so large that Lemma 4.3 applies to Cz2n . A repeated application of
(4.7) yields for i = 0, 1

Ψ(·, yi, z) =
2n−1∑
j=0

Ψ(·, zjyi, z2n) =
∫

Ψ(·, y, z2n) νi,n(dy)



15

with νi,n
def=
∑2n−1
j=0 δzjyi . Hence∫

Ψ(·, y, z2n) ν0,n(dy) =
∫

Ψ(·, y, z2n) ν1,n(dy).

Since all elements of Cz2n are minimal, this equality can only hold if ν0,n = ν1,n (uniqueness
of integral representations) and thus y0 = y1. ♦

5. Proof of Theorem 2.1 and 2.2

Throughout this section the assumptions of Theorem 2.1 as well as the notation of Section
2 are in force. In particular, the definitions of U(s, t) and η(t) should be recalled. The proof of
Theorem 2.1 is provided by a series of lemmata (5.1–5.6) given after the following additional
notation and prerequisites.

Recall that α(x) and β(x) denote the integral and fractional part of − logm x for x >

0. Put i′k
def= ikζτ(ik), αk

def= α(ik), βk
def= β(ik), α′k

def= α(i′k) and β′k
def= β(i′k). Hence

ik = m−αk−βk and i′k = m−α
′
k−β′k . The assumption ρ(ik, t) → 0 implies β′k → t. Since

i′k = ik(1− fτ(ik))m−τ(ik) and since β(ik(1− fτ(ik))) ∈ [0, 1) for large k as argued in Section 2
after the definition of τ(x), we see that α′k = τ(ik) and β′k = β(ik(1− fτ(ik))) for large k.

Defining

cN (k) def= inf
α′
k
−N≤n≤α′

k
+N

ζn
ζα′

k

and CN (k) def= sup
α′
k
−N≤n≤α′

k
+N

ζn
ζα′

k

,

and using ζ1 ≥ ζ2 ≥ ..., we infer for any fixed N ∈ N

lim
k→∞

cN (k) = lim
k→∞

ζα′
k
+N

ζα′
k

= lim
k→∞

1− fN (fα′
k
(0))

(1− fα′
k
(0))mN

= 1, (5.1)

and similarly

lim
k→∞

CN (k) = lim
k→∞

ζα′
k
−N

ζα′
k

= lim
k→∞

(1− fα′
k
−N (0)))mN

1− fN (fα′
k
−N (0))

= 1. (5.2)

This will be used in the proof of Lemma 5.3 below.

In order to formulate the first lemma we put

U0(s, t, k, N) def=
N∑

n=−N

(
exp(Q(s)mn−β′k)− exp(−mn−β′k)

)
for s, t ∈ [0, 1) and k, N ∈ N. Notice that

U0(s, t, k, N) =
α′k+N∑

n=α′
k
−N

(
exp(Q(s)i′km

n)− exp(−i′km
n)
)
.
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Lemma 5.1. If ρ(ik, t)→ 0, i.e. β′k → t, then, for each s ∈ [0, 1) and ε > 0, there exists
N0 ∈ N such that

lim sup
k→∞

|U(s, t)− U0(s, t, k, N)| < ε

for all N ≥ N0.

Proof. Fix s ∈ [0, 1), ε > 0 and then N0 ∈ N such that∣∣∣∣∣U(s, t)−
N∑

n=−N

(
exp(Q(s)mn−t)− exp(−mn−t)

)∣∣∣∣∣
=

∑
n:|n|>N

(
exp(Q(s)mn−t)− exp(−mn−t)

)
< ε

for all N ≥ N0. Combining this with

lim sup
k→∞

∣∣∣∣∣U0(s, t, k, N)−
N∑

n=−N

(
exp(Q(s)mn−t)− exp(−mn−t)

)∣∣∣∣∣
≤

∑
r∈{0,s}

lim sup
k→∞

N∑
n=−N

∣∣∣ exp(Q(r)mn−β′k)− exp(Q(r)mn−t)
∣∣∣ = 0

for all N ∈ N the assertion easily follows. ♦

Next put V (s, i) def=
∑
j≥1 G(i, j)sj and note that V (s, i) =

∑
n≥0(f

i
n(s) − f in(0)). Put

further

V0(s, k, N) def=
α′k+N∑

n=α′
k
−N

(
f ikn (s)− f ikn (0)

)
for s ∈ [0, 1) and k, N ∈ N. In order to provide a similar result for V (s, ik)− V0(s, k, N) as in
Lemma 5.1, we first prove:

Lemma 5.2. There exists n0 ∈ N such that

exp
(− 2ikζnm

n
) ≤ f ikn (s) ≤ exp

(− (1− s)ikζnmn
)

(5.3)

for all s ∈ [0, 1), k ∈ N and n ≥ n0.

Proof. Use 1 − s = |Q0(s)| ≤ |Qn(s)| ≤ |Q(s)| ≤ 1, log(1 + x) ≤ x for x > −1, and
log(1− x) ≥ −2x for x ∈ [0, 1/2] to obtain

f ikn (s) = (1 + mnζnQn(s))ik

= exp
(
ik log(1 + mnζnQn(s))

)
≤ exp

(− (1− s)ikζnmn
)
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for s ∈ [0, 1) and n ≥ 0, and similarly the left inequality in (5.3) for s ∈ [0, 1) and n ≥ n0 for
a suitably chosen n0 ∈ N not depending on s or k. ♦

Lemma 5.3. For each s ∈ [0, 1) and ε > 0, there exists N0 ∈ N such that

lim sup
k→∞

|V (s, ik)− V0(s, k, N)| < ε

for all N ≥ N0.

Proof. Let k be so large that α′k = τ(ik), hence i′k = ikζα′
k
, and consider

V1(s, k, N) def=
α′k−N−1∑
n=0

(
f ikn (s)− f ikn (0)

)
,

V2(s, k, N) def=
∑

n>α′
k
+N

(
f ikn (s)− f ikn (0)

)
.

The assertion obviously follows if we prove that the terms V1 and V2 become small for k, N

sufficiently large. Let l ∈ N be such that fl−1(0) < s ≤ fl(0). Then

V1(s, k, N) ≤
α′k−N−1∑
n=0

(
f ikn+l(0)− f ikn (0)

)

=
α′k−N+l−1∑
n=α′

k
−N

f ikn (0)−
l−1∑
n=0

f ikn (0).

The second sum in the previous line clearly converges to 0 as k →∞. As to the first sum, we
infer with Lemma 5.2

α′k−N+l−1∑
n=α′

k
−N

f ikn (0) ≤
α′k−N+l−1∑
n=α′

k
−N

exp
(− ikm

nζn
)

≤ l exp
(− ikζα′

k
cN (k)mα′k−N+l−1

)
= l exp

(− cN (k)m−N+l−β′k−1
)

≤ l exp
(− cN (k)m−N+l−1

)
and therefore with (5.1)

lim sup
k→∞

α′k−N+l−1∑
n=α′

k
−N

f ikn (0) ≤ l exp
(−m−N+l−1

)
which can be made arbitrarily small if N is chosen large enough.
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As to V2, we obtain by another appeal to Lemma 5.2

V2(s, k, N) ≤
∑

n>α′
k
+N

(
f ikn+l(0)− f ikn (0)

)

=
α′k+N+l∑

n=α′
k
+N+1

(
1− f ikn (0)

)

≤
α′k+N+l∑

n=α′
k
+N+1

exp
(− 2ikζnm

n
)

≤ l
(
1− exp(−2ikζα′

k
cN+l(k)mα′k+N+1)

)
≤ l

(
1− exp(−2cN+l(k)mN+1)

)
so that upon using (5.2)

lim sup
k→∞

V2(s, k, N) ≤ l
(
1− exp(−2mN+1)

)
which again becomes arbitrarily small if N is large enough. ♦

A major step towards the proof of Theorem 2.1 is provided by the next lemma

Lemma 5.4. For any integer sequence (ik)k≥1, ρ(ik, t) → 0 for some t ∈ [0, 1) implies
that G(ik, ·) converges pointwise to the quasi-invariant Radon measure η(t).

Proof. It suffices to show that limk→∞ V (s, ik) = U(s, t) for s ∈ [0, 1). This was also
done in [2], p. 70 and 100f] under (L log L), but an argument at the end of their proof does
not work under the (L log L)-condition (see the Remark after this lemma for further details).
A refinement of their argument is therefore needed even if (L log L) holds true.

Fix s ∈ [0, 1), an arbitrary ε > 0 and then N so large that, by Lemmata 5.1 and 5.3,

lim sup
k→∞

|U(s, t)− U0(s, t, k, N)| <
ε

2
and lim sup

k→∞
|V (s, ik)− V0(s, k, N)| <

ε

2
.

Hence

lim sup
k→∞

|V (s, ik)− U(s, t)| ≤ lim sup
k→∞

|V0(s, k, N)− U0(s, t, k, N)| + ε

which leaves us with the proof of

lim
k→∞

|V0(s, k, N)− U0(s, t, k, N)| = 0. (5.4)

Put

D(s, k, N) def=
α′k+N∑

n=α′
k
−N

(
f ikn (s)− exp

(
i′kQ(s)mn

))
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and note that V0(s, k, N) − U0(s, t, k, N) = D(s, k, N) − D(0, k, N). Let k be so large that
α′k = τ(ik) and thus i′k = ikζα′

k
. Using |xk − yk| ≤ k|x− y| for x, y ∈ [0, 1] we obtain

|D(s, k, N)| ≤ ik

α′k+N∑
n=α′

k
−N

∣∣∣fn(s)− exp(ζα′
k
Q(s)mn)

∣∣∣ (5.5)

for s ∈ [0, 1). Since |ex − 1− x| ≤ x2 for |x| ≤ 1, we further see with i′k = m−α
′
k−β′k that

ik

α′k+N∑
n=α′

k
−N

∣∣∣ exp(ζα′
k
Q(s)mn)− 1− ζα′

k
Q(s)mn

∣∣∣
≤ i′k

α′k+N∑
n=α′

k
−N

Q(s)2m2n

≤ i′km
2(α′k−N)/(1−m2)

= mα′k−2N−β′k/(1−m2)

≤ mα′k−2N−1/(1−m2),

which converges to 0 as k → ∞. Combining this with fn(s) − 1 = ζnQn(s)mn for n ≥ 0 and
setting ΛN (k) def= |cN (k)− 1| ∨ |CN (k)− 1|, we infer in (5.5)

|D(s, k, N)| ≤ o(1) + ik

α′k+N∑
n=α′

k
−N

∣∣fn(s)− 1− ζα′
k
Q(s)mn

∣∣
= o(1) + ik

α′k+N∑
n=α′

k
−N

mn
(∣∣ζnQn(s)− ζα′

k
Qα′

k
(s)
∣∣+ ζα′

k

∣∣Qα′
k
(s)−Q(s)

∣∣)

≤ o(1) + i′k

α′k+N∑
n=α′

k
−N

mn
(
|Qα′

k
(s)|ΛN (k) +

∣∣Qα′
k
(s)−Q(s)

∣∣)
≤ o(1) + i′km

α′k−N (1−m)−1
(
ΛN (k) +

∣∣Qα′
k
(s)−Q(s)

∣∣)
≤ o(1) + m−N−1(1−m)−1

(
ΛN (k) +

∣∣Qα′
k
(s)−Q(s)

∣∣)
as k →∞. Since ΛN (k)→ 0 by (5.1), (5.2) and Qα′

k
(s)→ Q(s) by Lemma 3.1, we have proved

limk→∞D(s, k, N) = 0 for all s ∈ [0, 1) and therefore also (5.4). ♦

Remark. By a simpler estimation than ours, Athreya and Ney [2], p. 100f] showed that
limk→∞ V (s, ik) = U(s, t) follows from∑

n≥1

|Qn(s)−Q(s)| < ∞ (5.6)
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and claim this in turn be true under (L log L). However, assertion (5.6) actually requires the
stronger moment assumption (L log2 L), i.e.

∑
j≥1 pjj log2 j <∞, and is therefore too weak to

give Lemma 5.4 under (L log L).

The next lemma is the converse of the previous one.

Lemma 5.5. If G(ik, ·) converges pointwise to a quasi-invariant Radon measure η then
ρ(ik, t)→ 0 for some t ∈ [0, 1) and η = η(t).

Proof. Since (M, ρ) is a compact space, (ik)k≥1 contains a ρ-convergent subsequence
(jk)k≥1. If jk were eventually constant, i.e. jk0 = jk0+1 = ... = j for some k0, j ≥ 1, then
η = limk→∞G(jk, ·) = G(j, ·) which is impossible because G(j, ·) is not quasi-invariant. Con-
sequently, jk →∞ and ρ(jk, t)→ 0 for some t ∈ [0, 1). Now we conclude from the first part of
the lemma that η = limk→∞G(jk, ·) = η(t). ♦

Lemma 5.6. The η(t), t ∈ [0, 1), are pairwise distinct and minimal.

Proof. We consider the g.f. U(·, t) of η(t) and recall from (4.10) that U(s, t) = Ψ(−Q(s),
mn−t, m) for all (s, t) ∈ [0, 1)2 and n ∈ Z. Suppose that U(·, t1) = U(·, t2) for t1, t2 ∈
[0, 1). Since Q(s) is strictly increasing from −1 to 0 for s ∈ [0, 1), we infer Ψ(·, m−t1 , m) =
Ψ(·, m−t2 , m) on (0, 1]. But both functions are also easily seen to be complex differentiable
in the open complex strip (0,∞) × iR. Since holomorphic functions are uniquely determined
by its values on an interval, we conclude Ψ(·, m−t1 , m) = Ψ(·, m−t2 , m) on the whole strip
(0,∞) × iR. Hence Lemmata 4.3 and 4.4 ensure that m−t1 = m−t2 and thus t1 = t2. This
proves the pairwise distinctness of the η(t).

Minimality follows by a similar argument. If

U(·, t0) =
∫

[0,1)

U(·, t) ν(dt)

for t0 ∈ [0, 1) and a finite measure ν on [0, 1), then we infer

Ψ(·, m−t0 , m) =
∫

[0,1)

Ψ(·, m−t, m) ν(dt)

on the whole strip (0,∞)× iR and thus ν = δt0 by another appeal to Lemmata 4.3, 4.4. ♦

Proof of Theorem 2.2. It obviously suffices to show that ρ(ik, t)→ 0 and ρ∗(ik, t)→ 0
are equivalent for t ∈ [0, 1) and any integer sequence (ik)k≥1. Write a ≡ b[mZ] to mean that
a/b = mn for some n ∈ Z. We have

ikζτ(ik) ≡ mβ′k [mZ] and ikζ ≡ mβ′′k [mZ]
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for suitable β′k, β
′′
k ∈ [0, 1) and thus, by taking the ratio,

ζτ(ik)

ζ
≡ mβ′k−β′′k [mZ].

Since, given (L log L), the left hand side converges to 1 as k →∞ and since β′k − β′′k ∈ (−1, 1)
for all k ≥ 1, we conclude that β′k → t, i.e. ρ(ik, t)→ 0, holds iff β′′k → t, i.e. ρ∗(ik, t)→ 0. ♦
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