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Given the infinite Ulam-Harris tree V = ∪n≥0N
n, let T (v) = (Ti(v))i≥1,

v ∈ V, be a familiy of i.i.d. nonnegative random vectors with generic

copy (Ti)i≥1. Interpret Ti(v) as a weight attached to the edge connect-

ing the nodes v and vi in the tree. Define L(v) as the branch weight

for the unique path from the root to v obtained by multiplication of

the edge weights. The associated weighted branching process (WBP)

is then given by Zn
def
=

∑
|v|=n

L(v), n ≥ 0, and forms a nonnega-

tive martingale with a.s. limit W under the normalization assumption∑
i≥1

ETi = 1. For regularly varying functions φ(x) = xα�(x) of order

α ≥ 1 satisfying limx→∞ x−1φ(x) = ∞, the paper provides necessary

and sufficient conditions on (Ti)i≥1 for Eφ(W ) being positive and finite.

The double martingale structure of (Zn)n≥0 first observed and utilized

in [5] for similar results for Galton-Watson processes forms a major tool

in our analysis. It further requires results following from the connection

between a WBP and an associated random walk and drawing on results

from renewal theory. In particular, a pathwise renewal theorem is proved

which may also be of interest in its own right.
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1. Introduction and Main Results

The weighted branching process (WBP), first introduced by Rösler [50] in the form defined
below, may be viewed as a generalization of the classical Galton-Watson process (GWP). In
the case of nonnegative weights (which will be assumed throughout this paper) it is also known
under the name ”multiplicative cascade” (see [43] and the references therein and also [10] for
an interesting vector extension), and it is the multiplicative version of the branching random
walk [15-17] obtained after an exponential transform. This equivalence seems to be sometimes
obscured by different viewpoints and formalisms which in turn have stimulated interest in
different results and generalizations. Interest in WBP’s does not only stem from their natural
relevance in the general theory of branching processes but also because they occur in many
stochastic models ranging from recursive algorithms and data structures [49], [52], random
Cantor sets [47] and infinite particle systems [31] to interval splitting schemes [25], [11] and
fragmentation processes [12-14]. These models share the existence of a homogeneous branching
mechanism which entails that asymptotic distributions of relevant quantities are often described
by a certain type of stochastic fixed-point equation (see (1.9) below) which has therefore been
analyzed in a series of papers, see e.g. [26], [29], [41], [50], [51], [22]. WBP’s form an important
ingredient in many of these works because the a.s. limit of a normalized WBP is a particular
solution to such an equation.

The present paper addresses the problem of finding conditions that ensure the existence
of certain moments of this limit. Our main results, Theorems 1.2–4, provide necessary and
sufficient conditions for the existence of φ-moments (beyond L1) when φ is from a very general
class of regularly varying function including, of course, the Lα-case φα(x) def= xα for α > 1. For
a GWP, these results were obtained more than 30 years ago by Bingham and Doney [23] using
analytic methods and again quite recently by the first author and Rösler [5] via a different
approach based on a certain double martingale structure which is also inherent in WBP’s and
playing a key role here. As a fruitful and crucial ingredient, this latter approach allows the
double use of certain powerful convex function inequalities for martingales. However, to extend
the arguments from [5] so as to encompass WBP’s as well requires a considerable amount of
additional work due to a more complicated double martingale structure. Further explanations
will be given below. Additional relevant references containing related but weaker results are
the second author’s dissertation [38], a paper by Iksanov [32] covering the Lα-case, and another
one by Iksanov und Rösler [33]. The techniques in the last two references are quite different
from ours and based on size-biasing and a connection to perpetuities.

Model description. For the definition of a WBP consider the infinite Ulam-Harris
tree V with vertex set ∪n≥0N

n where N = {1, 2, ...} denotes the set of positive integers and
N

0 def= {∅} by convention. Each vertex v = (v1, ..., vn) of length |v| = n, shortly written as
v1v2...vn hereafter, is uniquely connected to the root ∅ by the path v|0 def= ∅ → v|1 → v|2 →
... → v|n = v, where v|k def= v1...vk for 1 ≤ k ≤ n. If w = w1...wm denotes another vertex we
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write vw for the concatenation of v and w, i.e. for v1...vnw1...wm. In the context of branching
processes v is interpreted as a (potential) individual of the n-th generation. It is the mother
of the successors vi

def= v1...vni, i ∈ N, called children, and an ancestor of any vw, w ∈ V. In
places where it occurs v1...vn

def= ∅ is stipulated whenever n = 0. Now let T (v) = (Ti(v))i≥1,
v ∈ V, be a family of i.i.d. infinite random vectors consisting of nonnegative components. A
generic copy of these vectors is denoted by T = (Ti)i≥1 and called generic weight vector. Define
L(∅) def= 1 and recursively

L(vi) def= L(v)Ti(v)

for v = v1...vn ∈ V and i ∈ N, thus

L(v) =
n∏

j=1

Tvj
(v1...vj−1).

We interpret Ti(v) as a weight attached to the edge connecting v and vi. Then L(v) forms the
total weight of the branch from the root to v accumulated under multiplication of the edge
weights. Given such a weighted branching model, the associated WBP is defined as

Zn
def=

∑
|v|=n

L(v), n ∈ N0, (1.1)

and forms a sequence of nonnegative random variables. The simple GWP yields as a special
case, namely when P(T ∈ {0, 1}N and N < ∞) = 1, where N

def=
∑

i≥1 1{Ti>0}. If Z1 is

integrable with µ
def= EZ1 =

∑
i≥1 ETi, then all Zn are so as well and EZn = µn for all n ≥ 0.

Moreover, the normalization
Wn

def= µ−nZn, n ≥ 0, (1.2)

constitutes a nonnegative martingale with respect to the filtration

Fn
def= σ(L(∅), T (v), |v| < n), n ≥ 0, (1.3)

and is hence a.s. convergent with limit W having expectation EW ≤ 1 (by Fatou’s lemma). It
is this martingale on which we will focus here by addressing the problem of finding necessary
and sufficient conditions on T such that, for a suitable class of regularly varying functions φ

with limx→∞
φ(x)

x = ∞,
0 < Eφ(W ) < ∞

holds true. For a supercritical GWP, this has been done in [5] the result being that a certain
moment condition on Z1 is equivalent. If φ(x) = x, the latter equals the well-known (L log L)-
condition ”EZ1 log Z1 < ∞”, and the result reduces to the famous Kesten-Stigum theorem [7,
Thm. II.2.1]. Theorem 1.1 below provides an extension of this result to WBP.

Let us finally note that, for any α ≥ 0, the sequence

Z(α)
n

def=
∑
|v|=n

L(v)α, n ≥ 0,
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is the WBP pertinent to the weighted branching model based on the weight family (T (v)α)v∈V,
where T (v)α def= (Ti(v)α)i≥1. It forms a super-, respectively submartingale if

g(α) def= EZ
(α)
1 =

∑
i≥1

ETα
i (µ = g(1))

is ≤ 1, respectively ∈ [1,∞). In the special case α = 0 (with convention 00 def= 0) we have that

Z(0)
n =

∑
|v|=n

1{L(v)>0}, n ≥ 0 (⇒ N
d= Z

(0)
1 )

forms an ordinary Galton-Watson process, and we denote by q its extinction probability, also
given as the smallest root in [0,1] of the offspring generating function s 	→ EsZ

(0)
1 .

Standing assumptions. Notice that (Wn)n≥0 is again a WBP, the generic weight vector
being (µ−1Ti)i≥1. It is therefore no loss of generality to make the standing assumption

µ = g(1) = EZ1 =
∑
i≥1

ETi = 1 (C1)

hereafter, thus Wn = Zn for all n ≥ 0. The study of φ-moments of W clearly makes sense only
if EW > 0 which is therefore to be guaranteed at the outset by imposing suitable conditions
on T . In the Galton-Watson case the Kesten-Stigum theorem provides us with the dichotomy
EW = 0 or = 1, with the latter being true iff EZ1 log+ Z1 < ∞. The situation is more
complicated in the present situation, but the subsequent theorem, cited from [37], justifies
that

−∞ < γ
def=

∑
i≥1

ETi log Ti < 0 and EZ1 log+ Z1 < ∞. (C2)

constitutes an appropriate standing assumption for our further analysis.

Theorem 1.1. [37, Theorem 2.7] Let (Zn)n≥0 be a WBP with EZ1 = 1 and put

γ± def=
∑
i≥1

ETi log± Ti (⇒ γ = γ+ − γ−).

(a) If κ
def= P(T ∈ {0, 1}N) < 1 and γ− < ∞, then the following assertions are equivalent:

(i) P(W > 0) > 0;

(ii) EW = 1;

(iii) EZ1 log+ Z1 < ∞ and γ < 0.

(b) If κ = 1 and P(Z1 = 1) = 1, then W = 1 a.s.

(c) If κ = 1 and P(Z1 = 1) < 1, then W = 0 a.s.

(d) If −∞ ≤ γ < 0 and EZ1 log+ Z1 < ∞, then EW = 1.
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This result, which may also be derived from similar results in [15] and [46], leaves open
what happens in the case where γ− and EZ1 log+ Z1 are both infinite (for instance if γ− =
γ+ = ∞). A more general result including this situation is stated in [33, Prop. 1.1].

The cases where (Zn)n≥0 is a (critical) GWP or a multiplicative random walk with no
branching are of no interest here because either W = 0 a.s., or Z1 = Z2 = ... = 1 a.s. Therefore
we further assume throughout

P(T ∈ {0, 1}N) < 1, (C3)

P(N ≥ 2) > 0. (C4)

It is worth mentioning that, in contrast to many earlier related contributions, we do not exclude
the possibility

P(N = ∞) > 0.

The same allowance is made in [15-17],[32],[33] and [46] and seems to have first appeared in a
paper by Kingman [36] on age-dependent branching processes (Biggins, personal communica-
tion). The case where N is a.s. finite has been studied in some detail by Liu [43], [44] (using
the name ”multiplicative cascade”), and also by Biggins and Kyprianou in a series of papers
[15], [16], [17], [19], [20], [39] in the analysis of the branching random walk.

Assuming (C1-4) hereafter and recalling that q denotes the extinction probability of the
GWP (Z(0)

n )n≥0, the following implications besides EW = 1 are also valid:

E sup
n≥0

Wn < ∞, (1.4)

P(W = 0) = q < 1, (1.5)

EN > 1. (1.6)

The most difficult assertion (1.4) follows from (1.18) below proved in the Appendix.

The double martingale structure. Next put Lv(w) def=
∏m

i=1 Twi(w1...wi−1) for
w = w1...wm ∈ V and v ∈ V, thus Lv(w) = L(vw)

L(v) if L(v) > 0. Then our model assumptions
imply that, for each v ∈ V with |v| = m ≥ 1, the sequence

Zn(v) def=
∑

|w|=n

Lv(w), n ≥ 0, (1.7)

is independent of Fm defined in (1.3) and forms a copy of (Zn)n≥0 = (Zn(∅))n≥0, in particular
Z1(v) d= Z1

d=
∑

i≥1 Ti, where d= means equality in distribution. Defining the martingale

differences Dn
def= Wn − Wn−1 for n ≥ 1, we have

Dn =
∑

|v|=n−1

L(v)(Z1(v) − 1) (1.8)

5



which, when conditioned upon Fn−1, may be viewed as a weighted sum of i.i.d. mean zero
random variables (as E(Z1(v) − 1) = 0) and thus as a martingale limit. So (Wn)n≥0, besides
being itself a martingale, has increments also bearing a martingale structure, an observation
dating back to at least [6], see also [7]. It will be of crucial importance in our proofs and in
fact exploited in a different way than in earlier work (apart from [5] and [38]). The additional
complication incurred here is caused by the fact that an estimation of a φ-moment of Zn

eventually leads to an estimation of the φ-moments of the products L(v)(Z1(v)−1) which is not
as straightforward as one might expect unless φ is multiplicative or at least submultiplicative.
In the case of a GWP (Zn)n≥0, this problem does not occur because the L(v) are 0-1-valued
and (1.8) thus simpifies to

Dn =
Zn−1∑
j=1

(Xn−1,j − 1)

where the Xn−1,j are i.i.d. random variables giving the numbers of offspring of the members
of the (n − 1)th generation.

The stochastic fixed-point equation solved by W . It is not difficult to see that
the martingale limit W solves a stochastic fixed-point equation. Indeed, by defining W (i)

as the a.s. limit of Zn(i), as n → ∞, and applying Fatou’s lemma to the equation Zn =∑
i≥1 Ti(∅)Zn−1(i) (called backward equation), we obtain

W =
∑
i≥1

Ti(∅)W (i)
P-a.s. (1.9)

which upon iteration leads to W =
∑

|v|=m L(v)W (v)
P-a.s. for all m ≥ 1, where W (v) is given

as the a.s. limit of Zn(v), as n → ∞. The W (v), |v| = m, are i.i.d. copies of W and independent
of the L(v), |v| ≤ m. Any distribution ν on [0,∞) such that (1.9) holds true in distribution
with W

d= ν constitutes a fixed point of the so called smoothing transform K : D → D,
K(ν) def= P(

∑
i≥1 TiXi ∈ ·), where D, D denote the sets of probability distributions on [0,∞),

respectively [0,∞], and where X1, X2, ... are i.i.d. random variables with distribution ν and in-
dependent of T . The smoothing transform and its pertinent fixed-point equation have received
considerable interest in the literature due to its connections to various interesting models in
applied probability mentioned earlier, see e.g. [29], [47], [50], [26], [32], [41], [22] and [1].

The class of functions φ. Nondecreasing functions φ : [0,∞) → [0,∞) that are
regularly varying at infinity with limx→∞

φ(x)
x = ∞ form a natural class beyond the standard

one {φα : α > 1} when aiming at moment results. On the other hand, regular variation does not
appear to be the appropriate property for the application of powerful martingale inequalities
which rather require convexity. But since Eφ(W ) < ∞ is equivalent to Eψ(W ) < ∞ for any
nondecreasing ψ : [0,∞) → [0,∞) of the same asymptotic order (φ 
 ψ), which means that

0 < lim inf
x→∞

φ(x)
ψ(x)

≤ lim sup
x→∞

φ(x)
ψ(x)

< ∞,
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this obstacle may be overcome by finding, to any given regularly varying φ, a function ψ of
the same asymptotic order and with the needed convexity properties. This has been elabo-
rated in greater detail in [5] and we will take advantage of the results from there. Besides
convexity, submultiplicativity forms another property that will be useful in our analysis due to
the multiplicative structure of the branch weights L(v). A function φ is submultiplicative if
φ(xy) ≤ φ(x)φ(y) for all x, y ≥ 0. This property is shared by all φα but does not generally
hold for regularly varying functions. Section 2 contains all necessary facts about regular vari-
ation, convexity and submultiplicativity including a definition of the relevant classes of convex
functions. At this point we confine ourselves to a collection of some notation and those facts
that are needed for the statement of our results.

For α ≥ 0, let Rα be the class of locally bounded functions φ : [0,∞) → [0,∞) which are
regularly varying at infinity with exponent α (slowly varying in case α = 0), so φ(x) = xα�(x)
with slowly varying part �, thus having the form (see [24, Theorem 1.3.1])

�(x) = c(x) exp
( ∫

[1,1∨x]

ε(u)
u

λλ(du)
)

, x ≥ 0, (1.10)

where c(x) is measurable, nonnegative with limx→∞ c(x) = c ∈ (0,∞), ε(u) is measurable,
locally bounded with limu→∞ ε(u) = 0, and λλ denotes Lebesgue measure. We call � normalized
if its representation (1.10) (which is clearly not unique) may be chosen with c(x) ≡ 1, thus
�(x) = 1 for all x ∈ [0, 1]. In any case,

�(x) 
 exp
( ∫

[1,1∨x]

ε(u)
u

λλ(du)
)

, x → ∞, (1.11)

and the right-hand normalization will be shown to be submultiplicative if ε is further nonin-
creasing on [1,∞) (and thus nonnegative), see Lemma 2.4. We denote by R∗

0 the class of all
such � ∈ R0 with nonincreasing ε. Notice for this case that slow variation in combination with
submultiplicativity yields

�(x) = lim
y→∞

�(x)�(y)
�(y)

≥ lim
y→∞

�(xy)
�(y)

= 1 (1.12)

for all x > 0. For arbitrary normalized � ∈ R0, call �∗(x) = exp
(∫

[1,1∨x]
ε∗(s)

s λλ(ds)
)
∈ R∗

0 a
submultiplicative cap of �, if

lim
x→∞

∫
[1,x]

(ε(s) − ε∗(s))+

s
λλ(ds) < ∞. (1.13)

Denote by R∗
0[�] the class of all such functions. (1.13) particularly ensures lim supx→∞

�(x)
�∗(x)

< ∞, see Lemma 2.5, and the choice ε∗(s) def=ess supt≥s ε(t) shows that R∗
0[�] �= ∅.

Given any φ ∈ Rα, the smooth variation theorem [24, Thm. 1.8.2] ensures the existence
of a function ψ ∈ Rα which is smooth (infinitely often differentiable) on (0,∞) and satisfies
φ 
 ψ. If α > 0 and α �∈ N then ψ can also be chosen such that all its derivatives are monotone
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[24, Theorem 1.8.3] which implies the most useful fact (in view of the above discussion) that
φ and all its derivatives are either convex or concave. However, if α is an integer, a similar
conclusion fails without further ado due to the slowly varying part and motivates the subsequent
definitions. For any measurable φ : [0,∞) → [0,∞), we put

Uφ(x) def=
∫

[1,1∨x]

φ(y)
y

λλ(dy) and Hφ(x) def=
∫

(x,∞)

φ(y)
y

λλ(dy) (1.14)

and note that Hφ is finite only if φ(x)
x is integrable on [0,∞) which we will stipulate hereafter

whereever such a function appears. On the other hand, Uφ is always well defined, and we point
out that, if �(x) = exp

(∫
[1,1∨x]

ε(u)
u λλ(du)

)
∈ R∗

0, then � = U�0 for some �0 ∈ R0 iff ε ∈ R0,
see Lemma 2.4.

Main results. Our standing assumptions (C1-4) will always be in force throughout un-
less stated otherwise. We are now ready to state the main results on the existence of φ-moments
for W to be proved in this article. Given φ(x) = xα�(x) ∈ Rα, α ≥ 1, the first theorem
deals with the case where the slowly varying part � is submultiplicative and thus particularly
nondecreasing. They are followed by two further theorems which cover the situation where �

is not submultiplicative, or α > 1 and �(x) → 0, as x → ∞.

Theorem 1.2. Let α ≥ 1 and �(x) = exp
(∫

[1,1∨x]
ε(u)

u λλ(du)
)

∈ R∗
0, that is ε is

nonincreasing and vanishing at ∞. Suppose ε ∈ R0 if α ∈ {2n : n ≥ 0} and further � be
unbounded if α = 1. Then the following assertions are equivalent:
(a) for α > 1: EZα

1 �(Z1) < ∞ and g(α) < 1.
for α = 1: EZ1U�(Z1) < ∞, where U�(x) =

∫
[1,1∨x]

y−1�(y)λλ(dy).
(b) 0 < EWα�(W ) < ∞.

The reader may wonder about the extra condition imposed on ε in case where α is a
dyadic power. As mentioned earlier, φ(x) = xα�(x) ∈ Rα for any positive α �∈ N may be
chosen in such a way (up to asymptotic equivalence) that it be infinitely often differentiable
with all derivatives being either convex or concave. However, for α ∈ N, the latter requires an
extra condition on the slowly varying part �. Since convexity (or at least monotonicity) plays
an important role in the study of φ-moments it seems difficult to get away without such ado.
Even in the simpler situation of normalized GWP’s, Bingham and Doney [23] needed an extra
condition on � for their analytic treatment of φ-moments and tail probabilities if α ∈ N. Due to
a different approach here, which is based upon the repeated use of convex function inequalities
for martingales, we will need convexity of φ and its iterates φ(x1/2m

) ∈ Rα/2m for all m ∈ N

such that α/2m ≥ 1. As a consequence, an additional assumption on � of the form as stated
above is only required when α is a dyadic power. Although it must be admitted that any such
conditions form a nuisance in the statement of the results and might be removable by an even
more elaborate analysis, the gain of generality is relatively small in view of the fact that most
relevant special cases like φ(x) = xα logβ(1 + x) do satisfy the imposed extra conditions.
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Our next theorem extends the previous one to general φ ∈ Rα, α ≥ 1, provided that the
slowly varying part, w.l.o.g. assumed to be normalized, satisfies an extra condition involving a
submultiplicative cap.

Theorem 1.3. Let α ≥ 1, �(x) = exp
(∫

[1,1∨x]
ε(u)

u λλ(du)
)
∈ R0 and suppose ε ∈ R0

if α ∈ {2n : n ≥ 1} and further � be unbounded if α = 1. Provided that, for some �∗ ∈ R∗
0[�],∑

i≥1 ETα
i �∗(Ti) < ∞ if α > 1, respectively

∑
i≥1 ETiU�∗(Ti) < ∞ if α = 1, assertions (a) and

(b) of Theorem 1.2 remain to be equivalent.

The reader may check by a careful look at the proof that the above proviso is actually
only needed for the implication ”(a)⇒(b)”, but not for the converse.

Clearly, �∗ ≡ 1 ∈ R∗
0[�] whenever � ∈ R0 vanishes at infinity. In this case, the following

simplification of Theorem 1.3 can be stated.

Theorem 1.4. Let α > 1, �(x) = exp
(∫

[1,1∨x]
ε(u)

u λλ(du)
)
∈ R0 with limx→∞ �(x) = 0

and suppose ε ∈ R0 if α ∈ {2n : n ≥ 1}. Then the assertions (a) and (b) of Theorem 1.2 remain
to be equivalent.

Note that Theorem 1.2 comprises the particularly important Lα-case (choose � ≡ 1),
which has also been settled in a recent paper by Iksanov [32] using different methods. Here
this special case is stated as Theorem 3.1 in Section 3. Its proof, also given there along with
further references, hinges exclusively on an exploitation of the double martingale structure of
(Wn)n≥0 and is not, in contrast to the proof of the general result given in Section 7, complicated
by the use of stopping lines and renewal theory for weighted branching models as developed
to the necessary extent in Sections 4-6. Not covered by our results are α-moments of W for
negative α (conditioned upon W > 0) for which different methods are needed, see [9], [44] and
the references given there.

For supercritical GWP’s, where all Ti are 0 or 1, the condition
∑

i≥1 ETα
i �∗(Ti) < ∞

(α > 1), respectively
∑

i≥1 ETiU�∗(Ti) < ∞ (α = 1) reduces to g(α) < ∞ and is automatically
satisfied under assertion (a) as well as (b) of Theorem 1.2. Theorem 1.3 in this special case
has essentially been obtained by Bingham and Doney [23] using analytic methods and been
reproved as Corollary 2.3 in [5] by similar methods as in the present paper.

Our final result is a supplement to the previous ones and only stated for completeness.

Corollary 1.5. Suppose φ ∈ Rα, α ≥ 1, is also convex. Then the following conditions
are equivalent:

0 < Eφ(W ) < ∞; (1.15)

sup
n≥0

Eφ(Wn) < ∞; (1.16)

Eφ(W ∗) < ∞, (1.17)

where W ∗ def= supn≥0 Wn.
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The equivalence of (1.16), (1.17) holds true for any φ-integrable submartingale (Wn)n≥0,
but the equivalence with (1.15) hinges on the tail inequality

P (W ∗ > ax) ≤ C P (W > x), x ≥ 0 (1.18)

for suitable a, C > 0 which is well-known for supercritical normalized GWP’s with positive
limit (see [5, Lemma II.2.6]) and has been extended by Biggins [16] to branching random
walks. A further extension involving stopping lines is stated as Lemma A.1 in the Appendix
and can be proved by an adaptation of Biggins’ argument.

The further organization of the paper is as follows. As already mentioned, Section 2
provides the necessary details about how regular variation links to convexity and submul-
tiplicativity for the functions φ appearing in our results. Section 3 treats the Lα-case but
further contains a series of lemmata that are also relevant for the more general results. The
definition of homogeneous stopping lines for weighted branching models and the connection
between WBP and renewal theory are the subject of Section 4, followed by the introduction
of an imbedded model based on ladder epochs in Section 5 which builds on this connection.
Section 6 provides a pathwise renewal theorem for weighted branching models which is crucial
for the proof of Theorem 1.2, ”(b)⇒(a)” in the case α = 1. These results are also of interest
in their own right. The proofs of Theorems 1.2-4 are then presented in Section 7, followed by
an Appendix.

2. Regular variation, convexity and submultiplicativity

A regular varying function is generally neither convex nor smooth. Since, on the other
hand, our approach relies on the application of certain convex function inequalities, we first
collect a number of facts which link regular variation, convexity, submultiplicativity and other
useful properties. Apart from those concerning submultiplicativity, these facts are essentially
taken from the Sections 2 and 3 in [5], and in part from [38].

Let us stipulate hereafter that any function φ defined on [0,∞) is extended to the real
line by putting φ(x) def= φ(−x) for x < 0. The usual primed notation for derivatives of a convex
or concave function on (0,∞) is always to be understood in the right-hand sense if the latter
differs from the left-hand one. Now let C0 be the class of convex differentiable functions φ

which are (strictly) increasing on [0,∞) with φ(0) = 0 and concave derivative φ′ on (0,∞)
satisfying limx↓0 φ′(x) = 0. Obviously, each φα(x) = xα, 1 < α ≤ 2, belongs C0, but the
identity function φ1 does not. We further note for each φ ∈ C0 that φ′ is nondecreasing and
positive on (0,∞) and that lim infx→∞

φ(x)
x > 0. For n ≥ 1, we define recursively

Cn
def= {Sφ ∈ G : φ ∈ Cn−1} = SCn−1,

where the operator S is given by Sφ(x) def= φ(x2), thus S
nφ(x) = φ(x2n

) for n ≥ 1. The
functions φ to be considered throughout shall be elements from one of these classes, i.e. from

10



C
def= ∪n≥0Cn, and they are clearly always differentiable and convex, so S : C → C. As two

further useful properties of functions in C we mention (see [5, Lemmata 3.3 and 3.4])

φ(2x) ≤ C φ(x), x ≥ 0, (2.1)

for some C = Cφ ∈ (0,∞), and

φ ∈ Cn ⇒ lim inf
x→∞

φ(x)
x2n > 0 and lim sup

x→∞
φ(x)
x2n+1 < ∞ (2.2)

for each n ≥ 0. Note that (2.1) and the monotonicity of φ yield

φ(ax) ≤ Cφ(x), x ≥ 0, (2.3)

for any a > 0 and some C = Cφ,a ∈ (0,∞).
Next define (slightly differing from [5])

C
∗
0

def= {φ ∈ C0 : φ′′(0) ∈ (0,∞)}

and C∗ def= ∪n≥0C
∗
n, where C∗

n
def= S

nC∗
0 for n ≥ 1. Notice that φ′′(0) = 0 for any φ ∈ C∗\C∗

0.
Lemma 3.3 in [5] asserts that to each φ ∈ C0 there exists a function φ̂ ∈ C∗

0 such that φ ∼ φ̂,
the latter having the usual meaning limx→∞

φ(x)

φ̂(x)
= 1.

Given any slowly varying function �, recall from (1.14) the definition of the functions
U� and H� and that the everywhere finiteness of them is stipulated wherever they appear.
The function U� is nondecreasing, while H� is nonincreasing. Furthermore, if �0, �1 ∈ R0

satisfy �0 
 �1 and both, U�0 and U�1, are everywhere finite, then U�0 
 U�1. Finally, if U�

is everywhere finite then, by Karamata’s theorem [24, Proposition 1.5.9a], U� is also slowly
varying and grows faster than �, i.e. limx→∞

U�(x)
�(x) = ∞.

The following lemma links regularly varying functions and the function classes just in-
troduced and may be proved by combining Lemmata 2.1 and 3.3 of [5].

Lemma 2.1. Given φ(x) = xα�(x) ∈ Rα for some α ≥ 1, the following assertions hold
true:
(a) If 2n < α < 2n+1 for some n ≥ 0, then φ 
 ψ for some ψ ∈ C∗

n ∩ Rα.
(b) If α = 2n for some n ≥ 0 and � 
 U�0 for some �0 ∈ R0, then φ 
 ψ for some

ψ ∈ C∗
n ∩ Rα.

(c) If α = 2n for some n ≥ 1 and � 
 H�0 for some �0 ∈ R0, then φ 
 ψ for some
ψ ∈ C∗

n−1 ∩ Rα.

The second lemma collects further relevant properties shared by all elements of C∗ and
summarizes Lemmata 3.3 and 3.4 of [5].

Lemma 2.2. Let ψ ∈ C∗
n for some n ≥ 0. Then the following assertions hold true:

11



(a) ψ(x)
x2n is nondecreasing and ψ(x)

x2n+1 is nonincreasing in x ≥ 0.

(b) limx↓0
ψ(x)
x2n = (S−nψ)′(0) = 0 and limx↓0

ψ(x)

x2n+1 = 1
2 (S−nψ)′′(0) ∈ (0,∞).

The lemma shows that any ψ ∈ C∗
n (n ≥ 0) satisfies

ψ(s) = O(s2n+1
), s ↓ 0, (2.4)

so a fortiori

ψ(s) = o(sα), s ↓ 0, (2.5)

whenever 0 < α < 2n+1.
Given any nondecreasing convex function φ : [0,∞) → [0,∞), we next define the operator

L through

Lφ(x) def=
∫ x

0

∫ s

0

φ′(r)
r

dr ds, x ≥ 0. (2.6)

If φ ∈ C∗, then Lφ is everywhere finite, i.e. C∗ ⊂ {φ ∈ C : Lφ(z) < ∞ for all z ≥ 0}. Lφ will
be of importance in our analysis in the case φ ∈ C∗

0. Therefore the subsequent lemma collects
a number of properties of the function Lφ associated with φ ∈ C∗. For the proof we refer once
again to [5, Lemmata 2.2 and 3.5].

Lemma 2.3. Let φ ∈ C∗
n for some n ≥ 0. Then Lφ is everywhere finite and convex and

satisfies

lim inf
x→∞

Lφ(x)
φ(x)

> 0

as well as

lim inf
x→∞

Lφ(x)
x log x

> 0.

If n ≥ 1, then 2φ(x/2) ≤ Lφ(x) ≤ φ(x) for all x ≥ 0, in particular Lφ 
 φ by (2.1), whereas
in case n = 0, Lφ ≥ φ. More specifically, if φ(x) = xα�(x) ∈ C∗ ∩ Rα for some α > 1, then

Lφ(x) ∼ φ(x)
α − 1

,

while in case φ(x) = x�(x) ∈ C∗
0 ∩ R1

Lφ(x) ∼ x U�(x) = x

∫
(0,x]

�(s)
s

λλ(ds) (2.7)

and

lim
x→∞

Lφ(x)
φ(x)

= ∞.

Remark. Any increasing convex function φ : [0,∞) → [0,∞) satisfies the relation
φ(x) ≤ xφ′(x) ≤ φ(2x) (see [5]). If φ ∈ C then φ also satisfies (2.1) and therefore

φ(x) 
 xφ′(x). (2.8)

12



Moreover, if φ and ψ are asymptotically equivalent elements (φ 
 ψ) of {ϕ ∈ C0 : Lϕ < ∞},
then Lφ, Lψ belong to C0 as well (by Lemma 3.5 of [5]) and Lφ 
 Lψ. For the last assertion
observe that, by (2.8), Lφ 
 Lψ holds true iff

(Lφ)′(x) =
∫ x

0

φ′(s)
s

ds 

∫ x

0

ψ′(s)
s

ds = (Lψ)′(x)

which is readily verified when combining (2.8), φ 
 ψ with φ′(s)
s 
 φ(s)

s2 and ψ′(s)
s 
 ψ(s)

s2 .

We finally turn to the property of submultiplicativity, more precisely to the question
which slowly varying functions � are also submultiplicative. Recalling (1.11) it suffices for our
purposes to consider normalized � ∈ R0, thus of the form

�(x) = exp
( ∫

[1,1∨x]

ε(s)
s

λλ(ds)
)

(2.9)

with some locally integrable, asymptotically vanishing ε : [1,∞) → R. Put �̂(x) def= log �(ex)
for x ∈ R, that is

�̂(x) =
∫

[1,1∨ex]

ε(s)
s

λλ(ds) =
∫

[0,0∨x]

ε(eu) λλ(du), x ∈ R,

and observe that � is submultiplicative iff �̂ is subadditive. Recall from the Introduction that
R∗

0 consists of those normalized � ∈ R0 with nonincreasing ε.

Lemma 2.4. For each �(x) = exp
( ∫

[1,x∨1]
ε(s)

s λλ(ds)
)
∈ R∗

0, the following assertions
hold true
(a) � is submultiplicative.
(b) �a ∈ R∗

0 for each a > 0.
(c) �(x) =

∫ x

0
�′(y) dy with �′(x) = ε(x)

x �(x)1(1,∞)(x) = o(�(x)), as x → ∞.
(d) � = U�0 with �0 ∈ R0 iff ε ∈ R0.

Proof. We show the subadditivity of any �̂ with � ∈ R∗
0. If x ∨ y ≤ 0, then �̂(x + y) =

�̂(x) + �̂(y) = 0. Otherwise, suppose w.l.o.g. x = x ∨ y > 0. Then, by the monotonicity of ε,

�̂(x + y) =
∫

[0,0∨(x+y)]

ε(eu) λλ(du)

≤
∫

[0,x]

ε(eu) λλ(du) +
∫

[x,x∨(x+y)]

ε(eu) λλ(du)

=
∫

[0,x]

ε(eu) λλ(du) +
∫

[0,0∨y]

ε(eu+x) λλ(du)

≤ �̂(x) + �̂(y)

which is the desired conclusion for (a). The other assertions of the lemma are easily verified
and details therefore omitted. ♦
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Lemma 2.5. For any normalized � ∈ R0 and �∗ ∈ R∗
0[�], it holds true that

�(xy) ≤ C�(x)�∗(y) (2.10)

for all x, y ≥ 1 and some C > 0, in particular �(y) ≤ C�∗(y) for all y ≥ 1.

Proof. As usual, write �∗(x) = exp
( ∫

[1,x∨1]
ε∗(s)

s λλ(ds)
)

and put

C
def= sup

x≥1
exp

(∫
[1,x]

(ε(s) − ε∗(s))+

s
λλ(ds)

)
,

which is finite by (1.13). We then infer for all x, y ≥ 1

�(xy)
�(x)

= exp
( ∫

[x,xy]

ε(s)
s

λλ(ds)
)

≤ C exp
( ∫

[x,xy]

ε∗(s)
s

λλ(ds)
)

= C
�∗(xy)
�∗(x)

≤ C�∗(y),

and thus (2.10), from which the second assertion follows by putting x = 1 (�(1) = 1). ♦

3. Auxiliary lemmata and the Lα-case

The purpose of this section is to present a proof of Theorem 1.2 specialized to ordinary
moments of order α > 1, i.e. to the Lα-case. This is a situation where our method of exploiting
the double martingale structure works in a particular transparent and instructive way, due
to the fact that the function φα(x) = xα, beyond being in C∗ ∩ Rα, is also multiplicative,
viz φα(xy) = φα(x)φα(y). However, besides settling the Lα-case, the result being stated as
Theorem 3.1 below, we will prove a number of auxiliary lemmata that will also be needed later
when proving Theorem 1.2 in full generality in Section 7.

Theorem 3.1. For α > 1, the following assertions are equivalent:
(a) µ(α) def= EZα

1 < ∞ and g(α) < 1.
(b) 0 < EWα < ∞.

The same result has recently been obtained by Iksanov [32, Proposition 4] via dif-
ferent methods based on spinal trees. Earlier versions under varying restrictions on α or
N =

∑
i≥1 1{Ti>0} also appeared in [16],[17],[40] and [53]. If α ∈ N and supi≥1 Ti ≤ 1 a.s., our

result coincides with Theorem 2.1 of Mauldin and Williams [47] who used their result for the
calculation of the Hausdorff dimension of the limit set in a random recursive construction.

The proof of the theorem requires a number of preparations. Recall from the Introduction
that Z

(α)
n =

∑
|v|=n L(v)α and put

W (α)
n

def= g(α)−nZ(α)
n [⇒ Wn = W (1)

n = Z(1)
n = Zn],
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D(α)
n

def= W (α)
n − W

(α)
n−1 = g(α)−n

∑
|v|=n−1

L(v)α
(
Z

(α)
1 (v) − g(α)

)
[⇒ Dn = D(1)

n ],

and
D

(α)

n
def= g(α)nD(α)

n

for n ≥ 1 and α > 0 with g(α) < ∞. All variables with index 0 are defined as 1 unless stated
otherwise. Both, (Z(α)

n )n≥0 and (W (α)
n )n≥0, are WBP’s with generic weight sequences (Tα

i )i≥1

and (g(α)−1Ti)i≥1, respectively. Moreover, each (W (α)
n )n≥0 forms a nonnegative martingale

exhibiting the double martingale structure explained in the Introduction for (Wn)n≥0. This
will form the key to our analysis.

The following simple lemma on the function g(α) can be stated without proof. We only
note for part (b), that g′(1) =

∑
i≥1 ETi log Ti = γ < 0 by (C2).

Lemma 3.2. (a) If g(α) < ∞ for some α > 1, then g is strictly convex on [1, α].
(b) If g(α) < 1 for some α > 1, then g(β) < 1 for all β ∈ (1, α).

The second lemma asserts that W has always unbounded support under our standing
assumptions, thereby ruling out the possibility of EWα < ∞ being a trivial fact.

Lemma 3.3. Suppose that EW = 1 and P(Z1 = 1) < 1. Then W is unbounded in the
sense that P(W > t) > 0 for all t > 0.

Proof. Since EZ1 = 1 and P(Z1 = 1) < 1, we find some ε > 0 and m ∈ N such that
δ

def= P(Z ′
1 > 1 + ε) > 0, where

Z ′
n

def=
∑

v∈{1,...,m}n

L(v), n ≥ 0.

Since Z ′
n =

∑
|v|=n−1 L(v)Z ′

1(v) ≥ ∑
v∈{1,...,m}n−1 L(v)Z ′

1(v) with all Z ′
1(v) being independent

copies of Z1 and also independent of Z ′
n−1, we infer

P(Z ′
n > (1 + ε)n) ≥ P(Z ′

n−1 > (1 + ε)n−1, Z ′
1(v) > 1 + ε), v ∈ {1, ..., m}n−1)

≥ δm
P(Z ′

n−1 > (1 + ε)n−1)

which inductively yields P(Z ′
n > (1 + ε)n) ≥ δnm > 0 and thus, using Wn ≥ Z ′

n,

P(W ∗ > (1 + ε)n) ≥ P(Wn > (1 + ε)n) ≥ P(Z ′
n > (1 + ε)n) > 0

for all n ≥ 1. Finally, the assertion follows by an appeal to the tail inequality (1.18). ♦

Remark. In view of the previous lemma it is worthwile to point out that Biggins and
Grey [18] have shown (also assuming EW = 1 and P(Z1 = 1) < 1) that the distribution of W

restricted to (0,∞) is continuous, and that it even has a continuous Lebesgue density provided
that EN < ∞. The latter may be omitted in the particular case of homogeneous branching
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random walks (see [42, Section 0] or [45, Section 8] for a model description), as shown by Liu
[42], see also [44].

The key lemma for the proof of Theorem 3.1 stated next will also be needed later for
the proof of Theorem 1.2. It is therefore stated for a larger set of functions than only φα.
An extension of this lemma will be presented in Section 7. Denote by Z the class of all even
nonnegative functions ψ which are continuous, nondecreasing on [0,∞) and satisfy the growth
condition (2.3). Notice that for any ψ ∈ Z and m ∈ Z, the function S

mψ(x) = ψ(|x|2m

) lies in
Z, too. It is further to be mentioned that C ⊂ Z. Given two expressions A, B, we write A � B

if B < ∞ implies A < ∞. In what follows, C always denotes a suitable finite constant which
may differ from line to line.

Lemma 3.4. Let m ∈ N and ψ ∈ Z. Suppose that Eψ(Z1) < ∞, µ(2m) < ∞ and
g(2m) < 1. Then

sup
n≥0

Eψ(Wn) � Q(m, ψ) def= Q1(m, ψ) + Q2(m, ψ),

where

Q1(m, ψ) def= ES
−mψ

∑
n≥0

D
(2m)

n

 and Q2(m, ψ) def=
m−1∑
l=0

∑
n≥0

ES
−lψ

(
D

(2l)

n

)
.

Furthermore,

0 ≤
∑
k≥0

D
(2m)

k < ∞ P-a.s.

Proof. The proof runs by induction over m and hinges on a repeated application of
the Burkholder-Davis-Gundy inequality (abbreviated as BDG-inequality hereafter), see [28,
Theorem 11.3.2].

If m = 1, a first application of that inequality yields

Eψ(W ) ≤ sup
n≥0

Eψ(Wn) � C

ES
−1ψ

∑
n≥0

E(D2
n|Fn−1)

 +
∑
n≥0

Eψ(Dn)

 .

As g(1) = 1 and Dn = D
(1)

n , ∑
n≥0

Eψ(Dn) = Q2(1, ψ).

Moreover, if n ≥ 1, the independence of T (v) and T (w) for v �= w ensures

E(D2
n|Fn−1) =

∑
|v|=n−1

∑
|w|=n−1

L(v)L(w) E

(∑
i≥1

Ti(v) − 1

)(∑
i≥1

Ti(w) − 1

)
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= E

(∑
i≥1

Ti − 1

)2 ∑
|v|=n−1

L(v)2

≤ µ(2)g(2)n−1W
(2)
n−1

= µ(2)g(2)n−1
n−1∑
k=0

D
(2)
k P-a.s.,

whence

∑
n≥0

E(D2
n|Fn−1) ≤ µ(2)

∑
n≥0

g(2)n−1
n∑

k=0

D
(2)
k

=
µ(2)

1 − g(2)

∑
k≥0

g(2)kD
(2)
k

=
µ(2)

1 − g(2)

∑
k≥0

D
(2)

k P-a.s.

Now use supk≥0 E|D(2)
k | ≤ 2 to infer

E

∑
k≥0

∣∣∣D(2)

k

∣∣∣
 =

∑
k≥0

g(2)k
E|D(2)

k | ≤ 2
∑
k≥0

g(2)k < ∞,

in particular
∑

k≥0 D
(2)

k ∈ [0,∞) a.s. Finally, in view of D2
0 = 1 and (2.3),

sup
n≥0

Eψ(Wn) ≤ C

ES
−1ψ

1 +
µ(2)

1 − g(2)

∑
k≥0

D
(2)

k

 + Q2(1, ψ)


� Q1(1, ψ) + Q2(1, ψ).

Now suppose the claim be proved for some m ∈ N, put r
def= 2m and assume that

g(2m+1) < 1, µ(2m+1) < ∞ and
∑

k≥0 D
(r)

k ∈ [0,∞) a.s. Note that g(r) < 1 (Lemma
3.2(b)) and µ(r) < ∞. Hence, by the inductive hypothesis, supn≥0 Eψ(Wn) � Q1(m, ψ) +
Q2(m, ψ). Another application of the BDG-inequality in combination with Fatou’s lemma
gives the estimate

Q1(m, ψ) = ES
−mψ

∑
k≥0

D
(r)

k


≤ lim inf

n→∞ ES
−mψ

(
n∑

k=0

D
(r)

k

)

≤ C

ES
−m−1

∑
k≥0

E

(
D

(r)2

k

∣∣∣Fk−1

) +
∑
k≥0

ES
−m

(
D

(r)

k

) ,
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because the sequence
(∑m

k=0 D
(r)

k

)
m≥0

forms a martingale. Similarly to the case m = 1, it

follows for k ≥ 1

E

(
D

(r)

k

2∣∣∣Fk−1

)
≤

∑
|v|=k−1

L(v)2r
E

∑
i≥1

T r
i − g(r)

2

≤
∑

|v|=k−1

L(v)2r
E

∑
i≥1

T r
i

2

≤ EZ2r
1

∑
|v|=k−1

L(v)2r

= µ(2r)g(2r)k−1W
(2r)
k−1 P-a.s.

where
∑

i≥1 T r
i ≤ Zr

1 has been utilized. Consequently, writing W
(2r)
k =

∑k
l=0 D

(2r)
l ,

∑
k≥1

E

(
D

(r)

k

2∣∣∣Fk−1

)
≤ µ(2r)

∑
k≥0

g(2r)k
k∑

l=0

D
(2r)
l

=
µ(2r)

1 − g(2r)

∑
k≥0

g(2r)kD
(2r)
k

=
µ(2r)

1 − g(2r)

∑
k≥0

D
(2r)

k P-a.s.

By using supk≥0 E|D(2r)
k | ≤ 2, we find

∑
k≥0 g(2r)k

E|D(2r)
k | < ∞ and thus

∑
k≥0 D

(2r)

k ∈ [0,∞)
a.s. To finish the proof, it suffices to verify that

Q(m, ψ) � Q(m + 1, ψ).

Suppose that Q(m + 1, ψ) < ∞. Then the finiteness of Q2(m, ψ) is easily obtained from

∞ > Q(m + 1, ψ) ≥ Q2(m + 1, ψ) ≥ Q2(m, ψ).

Left with Q1(m, ψ), note that, by the previous findings,

Q1(m, ψ) ≤ C(I1(m, ψ) + I2(m, ψ))

with

I1(m, ψ) def= ES
−m−1ψ

1 +
µ(2r)

1 − g(2r)

∑
k≥0

D
(2r)

k


� µ(2m+1) ∨ ES

−m−1ψ

∑
k≥0

D
(2r)

k


� Q1(m + 1, ψ) < ∞
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and
I2(m, ψ) def=

∑
k≥0

ES
−mψ

(
D

(r)

k

)
≤ Q2(m + 1, ψ) < ∞,

as required. ♦

Remark. Lemma 3.4. reveals some additional technical difficulty not encountered in
the situation of supercritical GWP’s (see [5]): When estimating moments of type Eψ(W ) by
means of the BDG-inequality, processes depending on the random variables D

(2m)

n , n ≥ 0, come
into play, where m ≥ 1. In the Galton-Watson case, the weights L(v), v ∈ V, take only the
values 0 or 1 with the effect that the underlying process remains unchanged. This entails the
pleasant technical simplification that the result of such estimations can be expressed in terms
of the original process rather than of the random variables we had to introduce (cf. Lemmata
4.1 and 4.2 in [5]). On the other hand, our calculations comprise the case of supercritical
GWP’s.

Our final preparative lemma is a technical prerequisite.

Lemma 3.5. Suppose that (Zn)n≥0 is a WBP with generic weight vector (T i)i≥1 such
that, for some q > 1,

g(1) ∨ g(q) < 1,

where g(α) def=
∑

i≥1 ET
α

i . Then there exists another WBP (Ẑn)n≥0 with generic weight vector
(T̂i)i≥1 such that

Z1 = c + Ẑ1 and Zn ≤ Ẑn P-a.s.

for some c > 0 and all n ≥ 0, and hence Ef(Ẑ1) � Ef(Z1) for any f ∈ Z. Furthermore,

ĝ(1) < 1 and ĝ(q) < ĝ(1)q,

where ĝ(α) def=
∑

i≥1 ET̂α
i .

Proof. To begin with, fix c > 0 such that 1 > (c + g(1))q > 1
2 (g(q) + 1) ∈ (0, 1). For

m ∈ N, let (Ẑm,n)n≥0 be the WBP with weights

T̂m,i(v) def=


c

m
, if 1 ≤ i ≤ m,

T i−m(v), if i ≥ m + 1.
, v ∈ V.

Then Ẑm,n ≥ Zn a.s. for all n ≥ 0 and Ẑm,1 = c + Z1. Put ĝm(α) def=
∑

i≥1 ET̂α
m,i, which

satisfies

ĝm(α) = m

(
c

m

)α

+ g(α), α ≥ 1,

in particular ĝm(1) = c + g(1) < 1. Now choose m so large that

ĝm(q) = g(q) +
cq

mq−1
<

g(q) + 1
2

< (c + g(1))q = ĝm(1)q.
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The assertions of the lemma follow upon choosing (Ẑn)n≥0 = (Ẑm,n)n≥0 for such m. ♦

Proof of Theorem 3.1. We first show ”(a)⇒(b)”, thus assuming EZα
1 < ∞ and

g(α) < 1 for some α > 1. In analogy to Theorem 1.1 in [5], this is done by distinguishing the
cases α ∈ (2m, 2m+1].

Step 1. (see also [53, Theorem 6]) If α ∈ (1, 2], the function φα(x) = xα is convex with
concave derivative on (0,∞). Hence an application of the classical von Bahr-Esseen inequality
[8, Thm. 2] (abbreviated as BE-inequality hereafter) to the nonnegative martingale (Wn)n≥0

combined with W0 = 1 gives

EWα
n ≤ 1 + 2

n∑
k=1

E|Dk|α

for all n ≥ 1, and then

EWα ≤ sup
n≥0

EWα
n ≤ 1 + 2

∑
k≥1

E|Dk|α.

Next we use that each Dk may itself be viewed as a martingale limit. To be more precise, fix
k and an enumeration (vj)j≥1 of N

k−1, define Θ0
def= 0 and (see (1.8))

Θn
def=

n∑
j=1

L(vj)(Z1(vj) − 1), n ≥ 1,

and observe that Dk = limn→∞ Θn. The limit is independent of the chosen enumeration
because all summands are nonnegative. With H0

def= Fk−1 and Hn
def= σ(Fk−1, (T (vj)1≤j≤n)

for n ≥ 1, it is now obvious that (Θn,Hn)n≥0 forms a martingale. Hence another application
of the BE-inequality together with Fatou’s lemma and (4.3) leads to

E|Dk|α ≤ lim inf
n→∞ E|Θn|α

≤ 2
∑
j≥1

E
∣∣L(vj)(Z1(vj) − 1)

∣∣α
= 2 E|Z1 − 1|α

∑
|v|=k−1

L(v)α

= 2 E|Z1 − 1|αg(α)k−1

if k ≥ 2, and this estimate also holds in case k = 1, for D1 = Z1 − 1. Consequently, as
E|Z1 − 1|α � EZα

1 and g(α) < 1,

EWα ≤ sup
n≥0

EWα
n ≤ 1 + 4 E|Z1 − 1|α

∑
n≥1

g(α)n−1 < ∞.

Step 2. Now let m ≥ 0 and suppose that the claim is proved for all β ∈ (1, 2m+1].
Pick α ∈ (2m+1, 2m+2] and assume g(α) < 1 and EZα

1 < ∞. Since EZ2m+1

1 � EZα
1 < ∞ and
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Lemma 3.2(b) ensures g(2m+1) < 1, Lemma 3.4 shows that it is enough to prove

Q1(m + 1, φα) + Q2(m + 1, φα) = E

∑
k≥0

D
(2m+1)

k

α/2m+1

+
m∑

l=0

∑
k≥0

E

∣∣∣∣D(2l)

k

∣∣∣∣α/2l

< ∞.

To this end, put s
def= 2m+1 and β

def= α/s ∈ (1, 2]. Then, as the sequence (
∑n

k=0 D
(s)

k ,Fn)n≥0

forms a martingale with D
(s)

0 = 1, another application of the BE-inequality and Fatou’s lemma
provide us with

Q1(m + 1, φα) ≤ lim inf
n→∞ E

∣∣∣∣∣
n∑

k=0

D
(s)

k

∣∣∣∣∣
β

≤ 1 + 2 lim inf
n→∞

n∑
k=1

E

∣∣∣D(s)

k

∣∣∣β = 1 + 2
∑
k≥1

E

∣∣∣D(s)

k

∣∣∣β .

By viewing each D
(s)

k as a martingale limit, we can use the BE-inequality once more. Using
similar arguments as in Step 1, we conclude for each k ≥ 1

E

∣∣∣D(s)

k

∣∣∣β ≤ 2
∑

|v|=k−1

EL(v)sβ
E

∣∣∣Z(s)
1 − g(s)

∣∣∣β
≤ 2 E(1 + Z

(s)
1 )βg(α)k−1

and also

E(1 + Z
(s)
1 )β � E

(∑
i≥1

T s
i

)β

≤ E

(∑
i≥1

Ti

)sβ

= EZα
1 < ∞.

Putting these estimates together, we get

Q1(m + 1, φα) ≤ 1 + 4 E(1 + Z
(s)
1 )β

∑
k≥1

g(α)k−1 < ∞.

As to Q2(m + 1, φα), it suffices to prove that, for each l ∈ {0, ..., m},

U(l, α) def=
∑
k≥2

E

∣∣∣∣D(2l)

k

∣∣∣∣α/2l

(3.1)

is finite because

E

∣∣∣∣D(2l)

1

∣∣∣∣α/2l

= E

∣∣∣Z(2l)
1 − g(2l)

∣∣∣α/2l

≤ E

(
1 + Z

(2l)
1

)α/2l

� EZα
1 < ∞.

If k ≥ 2, we make use again of the fact that D
(2l)

k may be viewed as a martingale limit, namely
of (

∑n
j=1 Yj ,Hn)n≥0 with

Yj
def= L(vj)p

(
Z1(vj)p − g(p)

)
, j ≥ 1,
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where p
def= 2l. Put δ

def= α/p > 2. Then, by the BDG-inequality, for some constant C ∈ (0,∞)
not depending on k

E

∣∣∣D(p)

k

∣∣∣δ = E

∣∣∣∣∣∣
∑
j≥1

Yj

∣∣∣∣∣∣
δ

≤ C(J1(k, p, δ) + J2(k, p, δ)), (3.2)

where

J1(k, p, δ) def= E

(∑
j≥1

E(Y 2
j |Hj−1)

)δ/2

= E

(∑
j≥1

L(vj)2p
E

(
Z

(p)
1 − g(p)

)2
)δ/2

≤ E

( ∑
|v|=k−1

L(v)2p
EZ2p

1

)δ/2

= µ(2p)δ/2
E

( ∑
|v|=k−1

L(v)2p

)δ/2
(3.3)

and

J2(k, p, δ) def=
∑
j≥1

E|Yj |δ =
∑

|v|=k−1

EL(v)pδ
E

∣∣∣Z(p)
1 − g(p)

∣∣∣δ
≤ E

(
1 + Z

(p)
1

)δ ∑
|v|=k−1

EL(v)α = E

(
1 + Z

(p)
1

)δ

g(α)k−1.

(3.4)

Noting that E(1 + Z
(p)
1 )δ � E(Z(p)

1 )δ ≤ EZpδ
1 = EZα

1 < ∞, we infer

U2(l, α) def=
∑
k≥2

J2(k, p, δ) �
∑
k≥2

g(α)k−1 < ∞.

In view of (3.1) and (3.2) it remains to verify that

U1(l, α) def=
∑
k≥2

J1(k, p, δ) < ∞.

We start by observing that

J1(k, p, α) ≤ µ(2p)δ/2
E

( ∑
|v|=k−1

L(v)2p

)δ/2

= µ(2p)δ/2
EZ

δ/2

k−1

where (Zn)n≥0 denotes the WBP with generic weight sequence (T i)i≥1
def= (T 2p

i )i≥1. As in
Lemma 3.5, write g(u) =

∑
i≥1 ET

u

i =
∑

i≥1 ET 2pu
i for u ≥ 1 and note that δ/2 = α/2p > 1.

By assumption and Lemma 3.2. g(1)∨g(δ/2) = g(2p)∨g(α) < 1. Hence Lemma 3.5 ensures the
existence of another WBP Ẑn)n≥0 with generic weight sequence (T̂i)i≥1 such that Zn ≤ Ẑn for
all n ≥ 0, EẐ

δ/2
1 � EZ

δ/2

1 and ĝ(1) < 1, ĝ(δ/2) < ĝ(1)δ/2, where ĝ has the obvious meaning.
Put

Ŵn
def= Ẑn/EẐn = Ẑn/ĝ(1)n, n ≥ 0,
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and notice that EŴn = 1 for all n ≥ 0. This leads to

J1(k, p, δ) ≤ µ(2p)δ/2
EZ

δ/2

k−1 ≤ µ(2p)δ/2
EẐ

δ/2
k−1 ≤ µ(2p)δ/2ĝ(1)(k−1)δ/2 sup

n≥0
EŴ δ/2

n .

Evidently, (Ŵn)n≥0 can also be viewed as a normalized WBP with generic weight sequence
(T̂i/ĝ(1))i≥1. Applying the inductive hypothesis to (Ŵn)n≥0 instead of (Wn)n≥0, it follows
that

sup
n≥0

EŴ δ/2
n < ∞,

because

(1) δ/2 = α/2p ∈ (1, 2m+1],
(2) EŴ

δ/2
1 = ĝ(1)−δ/2

EẐ
δ/2
1 � EZ

δ/2

1 = E(
∑

i≥1 T 2p
i )δ/2 ≤ EZpδ

1 = EZα
1 < ∞, and

(3)
∑

i≥1 E

(
T̂i

ĝ(1)

)δ/2

= ĝ(1)−δ/2ĝ(δ/2) < 1.

To finish the proof, observe that

U1(l, α) =
∑
k≥2

J1(k, p, α) ≤ µ(2p)δ/2 sup
n≥0

EŴ δ/2
n

∑
k≥1

ĝ(1)kδ/2 < ∞,

because µ(2p) � µ(α) < ∞ and ĝ(1)δ/2 < ĝ(1) < 1.
Turning to ”(b)⇒(a)” suppose that EWα ∈ (0,∞) for some α > 1. By using the fixed-

point equation (1.9) for W and the superadditivity of φα, we infer

Wα ≥
∑
i≥1

Ti(∅)αW (i)α
P-a.s.

and even strict inequality with positive probability as a consequence of (C4), the independence
of T (∅) and W (1), W (2), ... and the fact that EW > 0. Therefore

EWα >
∑
i≥1

E

(
Ti(∅)αW (i)α

)
= g(α) EWα,

showing g(α) < 1 because EWα is positive. The latter argument has also been employed in
[29] and [40] in the context of stochastic fixed-point equations. ♦

4. The associated multiplicative random walk

In the following, the measure Λ defined by

Λ(A) def= E

(∑
i≥1

TiδTi(A)

)
=

∑
i≥1

ETi1A(Ti), A ∈ B(R),

will play an important role and thus studied in some detail. We first note that it is a probability
measure on (0,∞) due to our standing assumption g(1) =

∑
i≥1 ETi = 1. Let X1, X2, ... be
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i.i.d. random variables with common distribution Λ and denote by by (Mn)n≥0 the associated
multiplicative random walk starting at 1, i.e. M0

def= 1 and

Mn
def=

n∏
i=1

Xi, n ≥ 1.

The following result provides the connection of (Mn)n≥0 to WBP’s and is due to Biggins
and Kyprianou [20, Lemma 4.1(iii)] if P(N < ∞) = 1. Since the extension to the present
situation does not require any extra argument, it is stated without proof. In the case where
P(N ≤ k) = 1 for some k ∈ N, the very same random walk, more precisely its additive version
log Mn, was already used by Durrett and Liggett [29].

Lemma 4.1. The following assertions hold true under (C1).

(a) For all n ≥ 0 and measurable functions g : R
n → [0,∞),

Eg(M0, ..., Mn) = E

 ∑
|v|=n

L(v)g(L(v|0), ..., L(v|n − 1), L(v))

 , (4.1)

in particular

Ef(Mn) = E

 ∑
|v|=n

L(v)f(L(v))

 , (4.2)

g(α)n = E

 ∑
|v|=n

L(v)α

 = EMα−1
n (4.3)

for all measurable f : R → [0,∞), n ∈ N0 and α > 1.

(b) Let Ψ : R
2 → [0,∞) be a measurable function. If, for fixed n ∈ N0, Π(v), v ∈ N

n, denote
i.i.d. real-valued random variables with generic copy Π such that

• (Π(v))v∈Nn is independent of Fn, and

• Π is independent of (Mn)n≥0,

then

E

 ∑
|v|=n

L(v)Ψ(L(v),Π(v))

 = EΨ(Mn,Π). (4.4)

The following common partial order relations ≺ and � on V will be needed hereafter:
Write v ≺ w if v �= w and v belongs to the ancestral line of w, while v � w also allows v = w.
Moreover, v ≺ (�) C for any C ⊂ V shall mean v ≺ (�) w for some w ∈ C.

We will now extend the previous lemma to a certain class of stopping lines, called homo-
geneous stopping lines (HSL) hereafter. For this purpose let σ : [0,∞)N0 → N0 ∪ {∞},

σ(x0, x1, ...)
def= inf{n ≥ 0 : (x0, ..., xn) ∈ Bn}
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be a formal stopping rule, where Bn ∈ B(Rn+1) for n ≥ 0 and inf ∅ def= ∞. For each v =
(v1, v2, ...) ∈ N

N (viewed as the boundary of V), we further define

σv
def= σ(L(v)), L(v) def= (L(∅), L(v1), L(v1v2), ...),

and then

S
def= {v|σv : v ∈ N

N} ∩ V = {v|σv : v ∈ N
N, σv < ∞},

where v|0 def= ∅, v|n def= v1...vn for n ∈ N, and v|∞ def= v. We call S the HSL associated with
σ. It consists of all nodes v ∈ V that are obtained as stopping places when applying the same
rule σ along all infinite sequences of branch weights L(v). Notice that S may be empty. Define

FS
def= σ(L(∅), T (v), v ≺ S) and ZS

def=
∑
v∈S

L(v).

Stopping lines, also called optional lines, have been used in various works on branching models,
e.g. [27], [39] [20] and [21]. Jagers [34] has the most general definition of an optional line and
provides also the basic framework, while [21] contains the definition that is closest to that of
an HSL and called very simple line there.

Given two stopping rules σ1, σ2 with associated HSL S1, S2, let S1 ∧ S2 be the HSL
associated with σ1 ∧ σ2. In case σ2 = n for some n ∈ N0, we simply write S1 ∧ n. Finally, we
put σ

def= σ(M0, M1, ...). In slight abuse of terminology, but justified by the next lemma, we
call S hereafter also the HSL associated with σ. Recall from the Introduction that W (v) equals
the a.s. limit of Zn(v) =

∑
|w|=n Lv(w), as n → ∞. The following lemma may be essentially

derived from related results in [21, Section 14]. Its proof is therefore omitted.

Lemma 4.2. Given any HSL S associated with a stopping rule σ, the following assertions
hold true under (C1).

(a) For all n ≥ 0 and measurable functions g : R
n → [0,∞),

∫
{σ=n}

g(M0, ..., Mn) dP = E

 ∑
v∈S,|v|=n

L(v)g(L(v|0), ..., L(v|n − 1), L(v))

 , (4.5)

in particular

P(σ = n) = E

 ∑
v∈S,|v|=n

L(v)

 and P(σ < ∞) = EZS. (4.6)

Moreover,

Ef(Mσ)1{σ<∞} = E

(∑
v∈S

L(v)f(L(v))

)
(4.7)

for all measurable f : R → [0,∞) and n ∈ N0.
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(b) Suppose that Ψ : R
2 → [0,∞) is a measurable function. If Π(v), v ∈ V, denotes a family

of i.i.d. real-valued random variables with generic copy Π such that

• (Π(v))v∈Nn is independent of Fn for each n ∈ N0, and
• Π is independent of (Mn)n≥0,

then

E

(∑
v∈S

L(v)Ψ(L(v),Π(v))

)
= EΨ(Mσ,Π)1{σ<∞} (4.8)

and

E

(∑
v≺S

L(v)Ψ(L(v),Π(v))

)
= E

(
σ−1∑
n=0

Ψ(Mn,Π)

)
. (4.9)

(c) If P(σ < ∞) = 1 and (C2) holds true, then

W =
∑
v∈S

L(v)W (v), (4.10)

and (ZS∧n)n≥0 forms a uniformly integrable martingale with respect to (FS∧n)n≥0 satis-
fying ZS∧n = E(W |FS∧n) a.s. for all n ≥ 0 as well as ZS = E(W |FS) a.s.

5. A weighted branching model derived from ladder epochs

Unlike the previous two lemmata which only required condition (C1) (apart from 4.2(c))
we continue to assume from now on (C1-4) as we did before. Then the additive random walk
(log Mn)n≥0 has finite negative drift because, by (4.1) and (C2),

E log M1 = E

∑
i≥1

Ti log Ti

 = γ ∈ (−∞, 0).

Hence Mn → 0 a.s. Note also that each Mn is a.s. (strictly) positive as following from (4.2)
with f = 1(0,∞).

Now fix any a ∈ (0, 1] with E log(M1/a) < 0, put S0
def= 0 and Sn

def= log Mn − n log a

for n ≥ 1, and let (σ<
n )n≥0 denote the sequence of a.s. finite strictly descending ladder epochs

associated with (Sn)n≥0, so σ<

0
def= 0 and

σ<

n
def= inf{k > σ<

n−1 : Sk − Sσ<
n−1

< 0} = inf

{
k > σ<

n−1 :
Mk

ak
<

Mσ<
n−1

aσ<
n−1

}

for n ≥ 1. Let S<
n denote the HSL associated with σ<

n , put V
< def= ∪n≥0S

<
n and, for each n ≥ 0

and v ∈ S<
n ,

T<(v) def= (Lv(w))vw∈S<
n+1

,

where for sake of definiteness the positions of the Lv(w) in the right-hand sequence are in
decreasing order as to their size. The reader should observe that T<(v) is a.s. an infinite
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sequence because Lv(i) → 0, as i → ∞, and vi ∈ S<
n+1 for all i ≥ 1 with Lv(i) < a. As a

consequence of our model assumptions, the family

{T<(v), v ∈ V
<}

consists of i.i.d. weight vectors, the components of which are all bounded by a. Let us view
V

< as the subtree of V with the same root (for S<
0 = {∅}) obtained by discarding all nodes in

V\V
< and drawing edges between any v and vw with v ∈ S<

n and vw ∈ S<
n+1 for some n ≥ 0.

In natural compliance with the original weighted branching model we interpret any component
Lv(w) from T<(v) as the weight attached to the edge from v to vw. This provides us with
a new weighted branching model imbedded in the original one and derived from the ladder
epochs σ<

n , as announced in the section title. The WBP associated with this model is given by

Z<
n

def= ZS<
n

=
∑

v∈S<
n

L(v), n ≥ 0. (5.1)

Put F<
n

def= FS<
n

for n ≥ 0. The following result ensures that our basic assumptions (C1-4) carry
over to the imbedded model including the important fact that the a.s. limit of Z<

n is still W .

Proposition 5.1. In the previous notation, the imbedded weighted branching model
based on (T<(v))v∈V< also satisfies (C1-4). Moreover, (Z<

n ,F<
n )n≥0 is a uniformly integrable

martingale with a.s. limit W , thus Z<
n = E(W |F<

n ) a.s. for all n ≥ 0, and

W =
∑

v∈S<
n

L(v)W (v) (5.2)

Proof. Let T< = (T<
i )i≥1 denote a generic copy of T<. Since each σ<

n is a.s. finite, we
have EZ<

n = P(σ<
n < ∞) = 1 for all n ≥ 0 by (4.6). This shows (C1) for the imbedded model.

As to (C3), note that, since all T<
i < a ≤ 1 and

∑
i≥1 ET<

i = 1, we infer

P(T< ∈ {0, 1}N) = P(T<
i = 0 for all i ≥ 1) < 1.

The same facts further imply for N< def=
∑

i≥1 1{T <
i

>0}

a EN< > E

(
N<∑
i=1

T<
i

)
=

∑
i≥1

ET<
i = 1

and so EN< > 1/a > 1 which proves (C4). Next use Eσ<

1 < ∞, E log M1 ∈ (−∞, 0), (4.7) and
Wald’s identity to obtain∑

i≥1

ET<
i log T<

i =
∑

v∈S<
1

EL(v) log L(v) = E log Mσ<
1

= Eσ<

1 E log M1 ∈ (−∞, 0)
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and thus the first half of (C2) for the imbedded model. Left with the verification of the second
half, that is

EZ<
1 log+ Z<

1 < ∞,

it suffices to invoke Theorem 1.1(a) if we still prove that W is also the a.s. limit of (Z<
n )n≥0.

But since all σ<
n are a.s. finite, we infer from Lemma 4.2(c) that Z<

n = E(W |F<
n ) a.s. for all

n ≥ 0 as well as (5.2). In particular, (Z<
n ,F<

n )n≥0 constitutes a uniformly integrable martingale
with a.s. limit W . This completes the proof of the proposition. ♦

For the next lemma we first have to recall some facts from renewal theory as applied to
Sn = log Mn − n log a, n ≥ 0. Put S∗ def= supn≥0 Sn and M∗ def= eS∗

= supn≥0 a−nMn. By
Lemma 2 in [35],

Ef(S∗) =
1

Eσ<

1

E

σ<
1 −1∑
n=0

f(Sn)

 (5.3)

for any nonnegative measurable function f as σ<

1 is the first descending ladder epoch of (Sn)n≥0.
Moreover, S∗ possesses a useful distributional representation in terms of the first strictly as-
cending ladder height distribution, known as the Pollaczek-Khintchine formula, see e.g. [6,
Theorem IX.2.3]. To state it, let σ> def= inf{n : Sn > 0} be the defective first strictly ascending
ladder epoch of (Sn)n≥0, thus ν

def= P(σ> < ∞) ∈ (0, 1), and put Q> def= P(Sσ> ∈ ·|σ> < ∞).
Let further (Ŝn)n≥0 be a zero-delayed renewal process with increment distribution Q> and ζ

an independent geometric random variable with parameter ν, i.e. P(ζ = n) = (1 − ν)νn for
n ∈ N0. Then S∗ satisfies the distributional relation

S∗ d= Ŝζ (5.4)

or, equivalently,

P(S∗ ∈ ·) = (1 − ν)
∑
n≥0

νnQ>∗n (5.5)

where Q>∗n denotes the n-fold convolution of Q> and Q>∗0 def= δ0. Putting M̂n
def= eŜn for

n ≥ 0, (5.4) may of course be rewritten in multiplicative form as

M∗ d= M̂ζ . (5.6)

By combining these facts with Lemma 4.2(b) specialized to S = S<
1 , the following result is

immediate from (4.9).

Lemma 5.2. Let Π be a copy of the Π(v), v ∈ V, and independent of (Mn)n≥0, (M̂n)n≥0

and ζ. Then

E

 ∑
v≺S<

1

L(v)Ψ(L(v),Π(v))

 = Eσ<

1 EΨ(M∗,Π) = Eσ<

1 EΨ(M̂ζ ,Π). (5.7)
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The remainder of this section is devoted to a series of lemmata on the behavior of the
moments of Mn and M∗.

Lemma 5.3. Given α ≥ 0, � ∈ R∗
0, and a nonnegative random variable X with X ≥ η

a.s. for some η > 1 and EXα�(X) < ∞, the following assertion holds true: For each µ >

µα
def= EXα there exists b = bµ > 0 such that

sup
x≥b

E

(
Xα �(xX)

�(x)

)
< µ. (5.8)

Moreover, if (Mn)n≥0 denotes a multiplicative random walk with M0 = 1 and M1
d= X, then

EMα
n �(Mn) ≤ Cµn (5.9)

for all n ≥ 0, µ > µα and some C = Cµ ∈ (0,∞).

Proof. The function � being submultiplicative, we see that �(xX)
�(x) ≤ �(X) a.s. for all

x ≥ 1 whence the family {Xα �(xX)
�(x) , x ≥ 1} is dominated by Xα�(X) and thus uniformly

integrable. Since, furthermore, limx→∞ Xα �(xX)
�(x) = Xα a.s., we infer (5.8) with the help of the

dominated convergence theorem.
Turning to (5.9), fix any µ > µα and then b according with (5.8). Let k ∈ N be so large

that ηk ≥ b. Then for all n > k

EMα
n �(Mn) =

∫
xα�(x) E

(
Mα

1

�(xM1)
�(x)

)
P(Mn−1 ∈ dx)

≤
∫

xα�(x) sup
x≥b

E

(
Mα

1

�(xM1)
�(x)

)
P(Mn−1 ∈ dx)

≤ µ EMα
n−1�(Mn−1)

and therefore

EMα
n �(Mn) ≤ µn−k

EMk�(Mk)

for all n > k. Combining this with

EMk�(Mk) ≤
(
EXα�(X)

)k

< ∞,

where again the submultiplicativity of � has been utilized, the assertion easily follows. ♦

Lemma 5.4. Let � ∈ R∗
0.

(a) If α > 1, then EM̂α−1
1 �(M̂1) < ∞ iff EMα−1

1 �(M1) =
∑

i≥1 ETα
i �(T1) < ∞.

(b) E�(M̂1) < ∞ iff EU�(M1) < ∞.

Proof. We write A � B hereafter if A < ∞ holds iff B < ∞. Let us start by noting the
following tail estimate from renewal theory for the (defective) ladder height Sσ>1{σ><∞} (see
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[2, eq. (2.15)]): As t → ∞,

P(Sσ> > t, σ> < ∞) 

∫ ∞

t

P(S1 > s) ds.

As P(M̂1 ∈ ·) = P(eSσ> ∈ ·|σ> < ∞), this gives

P(M̂1 > t) = ν−1
P(Sσ> > log t, σ> < ∞) 


∫ ∞

log t

P(S1 > s) ds

as t → ∞. For α > 1, we will further need that xα−1�(x), � in normalized form (2.9), has
derivative αxα−2�(x) + 1(1,∞)(x)xα−2ε(x)�(x) 
 xα−2�(x), as x → ∞.

(a) With the help of these estimates, we infer

EM̂α−1
1 �(M̂1) �

∫ ∞

0

tα−2�(t) P(M̂1 > t) dt

�
∫ ∞

1

tα−2�(t)
∫ ∞

log t

P(S1 > s) ds dt

=
∫ ∞

1

tα−2�(t)
∫ ∞

t

x−1
P(S1 > log x) dx dt

=
∫ ∞

1

x−1
P(M1 > x)

∫ x

1

tα−2�(t) dt dx

�
∫ ∞

1

xα−2�(x) P(M1 > x) dx

� EMα−1
1 �(M1).

(b) Using again the above tail estimate in combination with (U�)′(x) = x−1�(x) for x > 1,
we obtain by a similar estimation as before

E�(M̂1) �
∫ ∞

0

�′(t) P(M̂1 > t) dt

=
∫ ∞

1

�′(t)
∫ ∞

t

x−1
P(S1 > log x) dx dt

=
∫ ∞

1

x−1
P(M1 > x)

∫ x

1

�′(t) dt dx

=
∫ ∞

1

x−1�(x) P(M1 > x) dx

� EU�(M1). ♦

With the help of the previous lemmata we are now able to derive a crucial moment result
for M∗ = supn≥0 a−nMn, in case α > 1 for suitably chosen a ∈ (0, 1]. Rewritten in terms of
S∗ = eM∗

, it may be viewed as an extension of Theorem 3 in [2] and Theorem 2 in [54].

Lemma 5.5. Let � ∈ R∗
0.

(a) If α > 1 and a ∈ (0, 1] is chosen such that g(α) = EMα−1
1 ≤ E(M1/a)α−1 < 1, then

E(M∗)α−1�(M∗) < ∞ holds true iff EMα−1
1 �(M1) < ∞.
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(b) If � is unbounded, then E�(M∗) < ∞ holds true iff EU�(M1) < ∞.

Proof. (a) Given EMα−1
1 �(M1) < ∞, Lemma 5.4 ensures EM̂α−1

1 �(M̂1) < ∞. Since
E(M1/a)α−1 < 1, ((Mn/an)α−1)n≥0 forms a supermartingale converging a.s. to 0. Hence, by
the optional sampling theorem in combination with Fatou’s lemma,

ν EM̂α−1
1 = E

(
Mσ>

aσ>

)α−1

1{σ><∞} ≤ lim inf
n→∞ E

(
Mσ>∧n

aσ>∧n

)α−1

≤ E

(
M1

a

)α−1

< 1.

Next, Lemma 5.3 allows us to pick any µ close enough to EM̂α−1
1 such that νµ < 1 and

EM̂α−1
n �(M̂n) ≤ Cµn

for all n ≥ 0 and some C > 0. Now use (5.6) to conclude

E(M∗)α−1�(M∗) = EM̂α−1
ζ �(M̂ζ)

= (1 − ν)
∑
n≥0

νn
EM̂α−1

n �(M̂n)

≤ C(1 − ν)
∑
n≥0

(νµ)n < ∞,

as claimed. For the converse it suffices to note that

(1 − ν)ν EM̂α−1
1 �(M̂1) ≤ E(M∗)α−1�(M∗) < ∞

implies EMα−1
1 �(M1) < ∞ by another appeal to Lemma 5.4.

(b) Here, Lemma 5.3 allows us to pick a 1 < µ < ν−1 such that E�(M̂n) ≤ Cµn for all
n ≥ 0 and some C > 0. The remaining arguments using (5.6) and Lemma 5.4 are very similar
to those for part (a) and are therefore omitted. ♦

The final lemma of this section may be viewed as an extension of Lemma 5.3.

Lemma 5.6. Let � ∈ R∗
0 and (Mn)n≥0 be a nonnegative multiplicative random walk with

M0 = 1. Put µα
def= EMα

1 and γα
def= EMα

1 �(M1) for α ≥ 0.

(a) If α > 0, µα < 1 and γα < ∞, then there exists µ < 1 such that EMα
n �(Mn) ≤ Cµn for

all n ≥ 0 and some C > 0.

(b) If γ0 < ∞, then E�(Mn) = o(µn) as n → ∞ for any µ > 1.

Proof. (a) By a similar argument as in the proof of Lemma 5.3, we can pick b ≥ 1 and
µ ∈ (µα, 1) such that

sup
x≥b

E

(
Mα

1

�(xM1)
�(x)

)
≤ µ.
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Consequently, by splitting up the range of integration into {Mn−1 ≤ b} and its complement,

µ−n
EMα

n �(Mn) ≤ �(b) γα

(
µα

µ

)n−1

+ µ−n+1
EMα

n−1�(Mn−1)

follows for all n ≥ 1, and this easily yields the assertion.
(b) Fix any µ > 1 and ε > 0 and choose b so large that E�(M1)1{M1>b} < ε and

sup
x≥b

E

(
�(xM1)

�(x)

)
≤ µ.

Let X1 = M1, X2, ... be the i.i.d. factors of the random walk (Mn)n≥0. By integrating separately
over {Xn > b}, {Mn−1 > b, Xn ≤ b} and {Mn−1 ≤ b, Xn ≤ b}, it is easily verified that

E�(Mn) ≤ (µ + ε) E�(Mn−1) + �(b)2

for all n ≥ 1, and this in turn implies E�(Mn) = O((µ + ε)n), as n → ∞. ♦

6. A pathwise renewal theorem

As a final prerequisite for the proof of our main results, this section will provide a pathwise
renewal theorem which is also of interest in its own right. Under the stated conditions it is
tailored to our needs but it actually belongs to a larger class of related results derived in [3]
under more general assumptions. Earlier results of such type are due to Nerman [48] and
Gatzouras [30].

Suppose that the multiplicative random walk (Mn)n≥0 as in the previous sections satisfies
Mn < 1 a.s., thus supi≥1 Ti < 1 a.s. As renewal theory is usually cast in the framework of

additive random walks with positive drift, we put Sn
def= − log Mn for n ≥ 0 (which up to a sign

change equals the definition of Section 5 with a = 1) and consider the a.s. finite first passage
time

τ(b) def= inf{n ≥ 0 : Sn > b} = inf{n ≥ 0 : Mn < e−b}
and its overshoot Rb

def= Sτ(b) − b for b > 0. Let Tb denote the associated HSL and S(v) def=
− log L(v) for v ∈ V. By (4.7) of Lemma 4.2,

P(Rb ≤ t) = E

( ∑
v∈Tb

L(v)δS(v)−b([0, t])

)
, t > 0, (6.1)

and renewal theory asserts that, if S1 is nonarithmetic, then (recall ES1 = −E log M1 = |γ|)

lim
b→∞

P(Rb ≤ t) = ζ(t) def=
1
|γ|

∫
[0,t]

P(S1 > x) λλ(dx) (6.2)

for all t > 0. A corresponding result holds true in the d-arithmetic case (d > 0) if b → ∞
only through the minimal lattice dZ on which S1 is concentrated and λλ is replaced with d
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times counting measure on that lattice in the definition of ζ. Our purpose is to derive a similar
pathwise result for the empirical measure

Rb
def=

∑
v∈Tb

L(v)δS(v)−b

showing up under the expectation sign in (6.1).

Proposition 6.1. Suppose (C.1-4) and supi≥1 Ti < 1 a.s. Then

Rb([0, t]) − Wζ(t) P→ 0 (6.3)

for all t > 0, where b → ∞ only through dZ if S1 is d-arithmetic.

Proof. We confine ourselves to the case that S1 has a nonarithmetic distribution and
start by introducing some necessary notation. If L

def= (L(w))w∈V denotes the random vector
of branch weights of our given weighted branching model, let [L]v

def= (Lv(w))w∈V denote the
corresponding vector for the subtree emanating from v for each v ∈ V. So the bracket operator
[·]v acts as a shift and will be used for functionals U = Φ(L) as well by setting [U ]v

def= Φ([L]v).
We write Rb(t) as shorthand for Rb([0, t]) and put ζb(t)

def= ERb(t) which, by (6.1) and (6.2),
equals P(Rb ≤ t) and converges to ζ(t), as b → ∞. Notice that all [Rb]v, v ∈ V, are identically
distributed with E[Rb]v(t) = ζb(t) for all t > 0.

Using W =
∑

v∈Tb
L(v)W (v) from Lemma 4.2(c), it is now readily seen that, for all

b, t > 0,

R2b(t) − Wζ(t) =
∑
v∈Tb

L(v)1{2b<S(v)≤2b+t} − ζ(t)
∑
v∈Tb

L(v)W (v)1{S(v)>2b}

+
∑
v∈Tb

L(v)W (v)(ζ2b−S(v)(t) − ζ(t))1{S(v)≤2b}

+
∑
v∈Tb

L(v)1{S(v)≤2b}
(
[R2b−S(v)]v(t) − W (v)ζ2b−S(v)(t)

)
.

By separately estimating the four terms I1(b, t), ..., I4(b, t), say, on the right-hand side, we will
now verify that

lim
b→∞

E|R2b(t) − Wζ(t)| = 0 (6.4)

which particularly implies (6.3). By utilizing (4.8) of Lemma 4.2 in all three assertions below,
we easily see that

EI1(b, t) = P(b < Rb ≤ b + t)) → 0,

EI2(b, t) = ζ(t) P(Rb > b) EW → 0,

and

E|I3(b, t)| ≤ E

( ∑
v∈Tb

L(v)W (v)|ζ2b−S(v)(t) − ζ(t)|1{S(v)≤2b}

)
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= E|ζb−Rb
(t) − ζ(t)|1{Rb≤b} EW → 0.

This leaves us with the estimation of the crucial term I4(b, t) which requires once again a
martingale argument. Observe that, conditioned upon FTb

, I4(b, t) =
∑

v∈Tb
L(v)Y (v) may be

viewed as a martingale limit, because the

Y (v) def= 1{S(v)≤2b}
(
[R2b−S(v)]v(t) − W (v)ζ2b−S(v)(t)

)
, v ∈ Tb, (6.5)

are conditionally independent with mean 0. Moreover,

Y (v) = Ψ
(
S(v) − b, W (v), ([Rx]v(t))0≤x≤2b

)
for all v ∈ V and a suitable function Ψ. Note that Π(v) def= (W (v), ([Rx]v(t))0≤x≤2b) forms an
independent copy of (W, (Rx(t))0≤x≤2b) which is also independent of FTb

and thus S(v)− b for
each v ∈ Tb. Let Π denote a generic copy of Π(v) independent of all other occurring random
variables. By another appeal to Lemma 4.2, the last observations allow us to infer that

E

( ∑
v∈Tb

φ(L(v)Y (v))

)
= E

( ∑
v∈Tb

φ
(
L(v)Ψ

(
S(v) − b, Π(v)

))
1{S(v)≤2b}

)

= E

(
Ψ

(
Rb,Π

)
φ
(
e−b−RbΨ

(
Rb,Π

))
1{Rb≤b}

)
for any even φ : R → [0,∞) with φ(x) def= φ(x)

|x| . Choose φ(x) = x21[0,1](x) + (2x − 1)1(1,∞)(x)
for x ≥ 0 and note that φ ∈ C∗

0 and φ(x) = x1[0,1](x) + (2− 1
x )1(1,∞)(x) ∼ x, as x → 0. By an

appeal to the Topchii-Vatutin inequality [55], [4] (abbreviated as TV-inequality hereafter and a
generalization of the von Bahr-Esseen inequality to convex functions with conacve derivatives),
we infer

Eφ(I4(b, t)) ≤ 2 E

( ∑
v∈Tb

φ
(
L(v)Y (v)

))

= 2 E

(∣∣Ψ(
Rb,Π

)∣∣φ(
e−b−RbΨ

(
Rb,Π

))
1{Rb≤b}

)
≤ 2

(
φ
(
ce−b

)
+ 2 E

∣∣Ψ(
Rb,Π

)∣∣1{|Ψ(Rb,Π)|>c}
)

for each c > 0. Clearly, φ(ce−b) ∼ ce−b → 0, as b → ∞, for any c > 0. Finally,

EΨ
(
Rb,Π

)
1{Ψ(Rb,Π)>c} =

∫
(0,b]

E
∣∣Rb−x(t) − Wζb−x(t)

∣∣1{|Rb−x(t)−Wζb−x(t)|>c} P(Rb ∈ dx)

can be made arbitrarily small for c sufficiently large because of∣∣Rb−x(t) − Wζb−x(t)
∣∣ ≤ Rb−x((0,∞)) + W = ZTb−x

+ W = E(W |FTb−x
) + W

and the uniform integrability of (E(W |FTa
))a≥0. ♦
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As to our purposes, the important consequence of the previous proposition is stated in the
next corollary and should be viewed as a tightness result for the number of weights L(v), v ∈ Tb,
that are ’close’ to the stopping boundary e−b.

6.2. Corollary. Given the situation of Proposition 6.1, fix any ε ∈ (0, 1) and c > 0
with ζ(c) > 1 − ε. Define

Nb(c)
def=

∑
v∈Tb

1[e−b−c,e−b](L(v)) (6.6)

for b ≥ 0. Then
lim

b→∞
P(e−bNb(c) − (1 − ε)W ≥ −ε) = 1. (6.7)

Proof. We infer for each b > 0

Rb(c) =
∑
v∈Tb

L(v)1[e−b−c,e−b](L(v)) ≤ e−bNb(c)

and then upon using Proposition 6.1

P(e−bNb(c) − (1 − ε)W ≥ −ε) ≥ P(Rb(c) − (1 − ε)W ≥ −ε)

≥ P(Rb(c) − Wζ(c) ≥ −ε) → 1,

as b → ∞, and this is easily seen to imply (6.7). ♦

7. Proofs of the main results

Besides our standing assumptions (C1-4), the notation introduced in Sections 4 and 5
will be in force throughout. In particular, (Mn)n≥0 denotes the multiplicative random walk
introduced at the beginning of Section 4. We point out that, by Lemma 4.2(c),

Wn
def= ZS<

1 ∧n = E(W |FS<
1 ∧n), n ≥ 0 (7.1)

forms a uniformly integrable martingale with limit Z<
1

def= ZS<
1

and increments

Dn
def= ZS<

1 ∧n − ZS<
1 ∧(n−1) =

∑
v≺S<

1 ,|v|=n−1

L(v)(Z1(v) − 1), n ≥ 1. (7.2)

Before proceeding with the proof of Theorem 1.2, some further notation and an extension of
Lemma 3.4 must be given. Recalling the definitions of Z

(α)
n , W

(α)
n , D

(α)
n , D

(α)

n from Section 3,
we further put

W(α)
n

def=
∑

v∈S<
1 ∧n

g(α)−|v|L(v)α,

D(α)
n

def= W(α)
n − W

(α)
n−1 = g(α)−n

∑
v≺S<

1 ,|v|=n−1

L(v)α
(
Z

(α)
1 (v) − g(α)

)
,
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and

D
(α)

n
def= g(α)nD(α)

n

for n ≥ 1 and α > 0 with g(α) < ∞. For n = 0 these variables are defined as 1. One can
then readily check that (W(α)

n )n≥0, like (W (α)
n )n≥0, constitutes a mean one martingale and that

the following counterpart of Lemma 3.4 holds true without further ado and is therefore stated
without proof. Recall that Z denotes the class of all even nonnegative functions ψ which are
continuous, nondecreasing on [0,∞) and satisfy the growth condition (2.3). Recall further that
we write A � B if B < ∞ implies A < ∞.

Lemma 7.1. Let m ∈ N and ψ ∈ Z. Suppose that Eψ(Z1) < ∞, µ(2m) < ∞ and
g(2m) < 1. Then

sup
n≥0

Eψ(Wn) � Q(m, ψ) def= Q1(m, ψ) + Q2(m, ψ),

where

Q1(m, ψ) def= ES
−mψ

∑
n≥0

D
(2m)

n

 and Q2(m, ψ) def=
m−1∑
l=0

∑
n≥0

ES
−lψ

(
D

(2l)

n

)
.

Furthermore,

0 ≤
∑
k≥0

D
(2m)

k < ∞ P-a.s.

Proof of Theorem 1.2. ”(a)⇒(b)” By Lemma 2.4(d), the assumption ε ∈ R0 in
case α ∈ {2m : m ∈ N0} implies � = U�0 for some �0 ∈ R0. Hence, for any α ≥ 1 and
m ∈ N0 determined by 2m ≤ α < 2m+1, Lemma 2.1 ensures the existence of a function
φ̂(x) = xα�̂(x) ∈ C∗

m ∩ Rα such that φ 
 φ̂ or, equivalently, � 
 �̂. The latter implies
supx≥x0

�(x)

�̂(x)
< ∞ for some x0 > 0. Since � ≥ 1 by (1.12), we also have supx≥0

�̂(x)
�(x) < ∞.

Consequently,

C1φ̂(x) ≤ φ(x) ≤ C2

(
xα ∨ φ̂(x)

)

 φ̂(x) (7.3)

for all x ≥ 0 and suitable C1, C2 > 0. As before, C ∈ (0,∞) will denote a generic constant
which may differ from line to line.

Instead of (b) we will in fact prove (and need) the extended assertion

Eφ(Z<
1 ) ≤ sup

n≥0
Eφ(Wn) < ∞ and Eφ(W ) ≤ sup

n≥0
Eφ(Wn) < ∞, (7.4)

provided that in case α > 1 the parameter a ∈ (0, 1] in the definition of S<
1 and thus of Z<

1 is
chosen such that EMα−1

1 = g(α) < aα−1. Note that Eφ(W ) > 0 is guaranteed by Lemma 3.3.
We will distinguish the cases α ∈ [2m, 2m+1) and use an induction over m.

Step 1. α ∈ [1, 2). Once again the double martingale structure of (Zn)n≥0 will be uti-
lized, more precisely that of (Wn)n≥0 as exhibited by (7.1) and (7.2). Since φ̂ ∈ C∗

0, a double
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use of the TV-inequality in combination with (7.3) and the submultiplicativity of φ leads to

Eφ̂(Wn) ≤
n∑

k=0

Eφ̂(Dk) ≤ φ̂(1) + 2
n∑

k=1

E

 ∑
v≺S<

1 ,|v|=k−1

φ̂(L(v)(Z1(v) − 1))


≤ φ̂(1) + 2 E

 ∑
v≺S<

1 ,|v|<n

φ̂(L(v)Z1(v))


≤ φ̂(1) + C E

 ∑
v≺S<

1 ,|v|<n

φ(L(v)Z1(v))


≤ φ̂(1) + C Eφ(Z1) E

 ∑
v≺S<

1 ,|v|<n

φ(L(v))



(7.5)

for all n ≥ 0 (and a constant C not depending on n) and then, upon taking the supremum
over n and using (5.7),

Eφ̂(Z<
1 ) ≤ sup

n≥0
Eφ̂(Wn) � Eφ(Z1) E

 ∑
v≺S<

1

φ(L(v))

 = Eσ<

1 Eφ(Z1) Eφ(M∗),

where φ(x) def= x−1φ(x) = xα−1�(x). Since � is supposed to be unbounded if α = 1, we have
Eφ(M∗) = E(M∗)α−1�(M∗) < ∞ by Lemma 5.5. Moreover, Eφ(Z<

1 ) ≤ C E[(Z<
1 )α∨ φ̂(Z<

1 )] �
Eφ̂(Z<

1 ) by (7.3) and Eφ(Z1) < ∞, whence we arrive at the conclusion

Eφ(Z<
1 ) � Eφ(Z1) Eφ(M∗) < ∞,

that is the first half of (7.4). But a similar estimation as in (7.5) shows

Eφ̂(Wn) �
∑

|v|=n−1

Eφ(L(v)Z1(v)) ≤ Eφ(Z1) Eφ(Mn−1) ≤ Eφ(Z1) Eφ(M∗) < ∞

for all n ≥ 1 and therefore the second half of (7.4).

Step 2. Now assume claim (b) be true whenever α < 2m+1 for some m ≥ 0, � ∈ R∗
0 and

(Zn)n≥0 is any WBP satisfying the conditions of (a) for such α, � (inductive hypothesis). Pick
α ∈ [2m+1, 2m+2).

Step 2a. Proof of first half of (7.4). Again, we begin with the proof of the first
half of (7.4), that is of supn≥0 Eφ̂(Wn) < ∞ which, by Lemma 7.1, reduces to the proof of

Q1(m + 1, φ̂) < ∞ and Q2(m + 1, φ̂) < ∞. Put s
def= 2m+1. Via a similar estimation as in

the proof of Theorem 3.1 (there for Q1(m + 1, φα)) in combination with (7.3), g(α) < 1 and
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S
−m−1φ̂ ∈ C∗

0, S
−m−1φ̂(xs) = φ̂(x)

Q1(m + 1, φ̂) = ES
−m−1φ̂

∑
k≥0

D
(s)

k


≤ φ̂(1) + 4

∑
k≥1

E

 ∑
v≺S<

1 ,|v|=k−1

S
−m−1φ̂

(
L(v)s (1 ∨ Z1(v))s

)
= φ̂(1) + 4 E

 ∑
v≺S<

1

φ̂
(
L(v) (1 ∨ Z1(v))

)
≤ φ̂(1) + C E

 ∑
v≺S<

1

φ
(
L(v) (1 ∨ Z1(v))

)
≤ φ̂(1) + C Eφ(1 ∨ Z1) E

 ∑
v≺S<

1

φ(L(v))


= φ̂(1) + C Eφ(1 ∨ Z1) Eφ(M∗) < ∞,

(7.6)

the finiteness being true by the same argument as at the end of Step 1 (invoking again Lemma
5.5(a)).

To show Q2(m + 1, φ̂) < ∞ or, equivalently,

U(l, φ̂) def=
∑
n≥1

ES
−lφ̂

(
D

(2l)

n

)
< ∞ for l ∈ {0, ..., m},

we start by pointing out that Eφ̂(Z1) < ∞ gives

ES
−lφ̂

(
D

(2l)

1

)
≤ ES

−lφ̂

1 ∨
∑
i≥1

T 2l

i

 ≤ ES
−lφ̂(1 ∨ Z1) = Eφ̂(1 ∨ Z1) < ∞.

As for
∑

n≥2 ES
−lφ̂

(
D

(2l)

n

)
, an appeal to the BDG-inequality shows that it suffices to verify

∑
n≥2

J1(n, l, φ̂) +
∑
n≥2

J2(n, l, φ̂) < ∞, (7.7)

where

J1(n, l, φ̂) def= ES
−l−1φ̂

µ(2l+1)
∑

v≺S<
1 ,|v|=n−1

L(v)2
l+1


and

J2(n, l, φ̂) def= E

 ∑
v≺S<

1 ,|v|=n−1

S
−lφ̂

L(v)2
l

∣∣∣∣∣ ∑
i≥1

Ti(v)2
l − g(2l)

∣∣∣∣∣


(cf. (3.3-5) in the proof of Theorem 3.1 for a similar estimation).
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As for the simpler assertion
∑

n≥2 J2(n, l, φ̂) < ∞, we obtain

∑
n≥2

J2(n, l, φ̂) ≤
∑
n≥2

E

 ∑
v≺S<

1 ,|v|=n−1

S
−lφ̂

L(v)2
l

1 ∨
∑
i≥1

Ti(v)2
l



≤
∑
n≥2

E

 ∑
|v|=n−1

S
−lφ̂

L(v)2
l

1 ∨
∑
i≥1

Ti(v)

2l


= E

∑
n≥2

∑
v≺S<

1 ,|v|=n−1

φ̂(L(v)(1 ∨ Z1(v))


≤ C Eφ(1 ∨ Z1) Eφ(M∗) < ∞,

(7.8)

where finiteness of the last line has already been found in (7.6).

Turning to
∑

n≥2 J1(n, l, φ̂) < ∞, use (2.3), (7.3) and the submultiplicativity of S
−l−1φ ∈

to infer ∑
n≥2

J1(n, l, φ̂) ≤ C
∑
n≥2

ES
−l−1φ̂

 ∑
v≺S<

1 ,|v|=n−1

L(v)2
l+1


≤ C

∑
n≥2

ES
−l−1φ

(
Z

(2l+1)
n−1

)
= C

∑
n≥2

ES
−l−1φ

(
g(2l+1)n−1W

(2l+1)
n−1

)
≤ C

∑
n≥2

φ(g(2l+1)n/2l+1
) ES

−l−1φ(W (2l+1)
n )

≤ C sup
n≥0

ES
−l−1φ(W (2l+1)

n )
∑
k≥1

φ(g(2l+1)k/2l+1
).

(7.9)

If α > 2l+1, we will show the last line be finite, whereas in the case α = 2l+1 we will do so for
the penultimate line.

Suppose first α > 2l+1, so that we must verify

(i) supn≥0 ES
−l−1φ(W (2l+1)

n ) < ∞,

(ii)
∑

k≥1 φ(g(2l+1)k/2l+1
) < ∞.

As for (ii), it is enough to notice that g(2l+1) < 1 by Lemma 3.2(b) from which it is not difficult
to infer

φ(g(2l+1)k/2l+1
) = o(cn), n → ∞, (7.10)

for any c > g(2l+1)k/2l+1
.

Turning to (i), we want to apply the inductive hypothesis to the normalized WBP
(W (2l+1)

n )n≥0 with generic weight vector (T 2l+1

i /g(2l+1))i≥1 and the pair (α/2l+1, S−l−1�) in
place of (α, �), as ψl+1(x) def= S

−l−1φ(x) = xα/2l+1
�(x1/2l+1

). So we must verify the pertinent
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hypothesis (a). Observe that S
−l−1� ∈ R∗

0 and

S
−l−1�(x2l+1

/g(2l+1)) ≤ C�(x)

for all x ≥ 0 and some C > 0 (in fact C = �(1/g(2l+1)) will do). Furthermore, by Lemma
3.5 applied to the WBP (Z(2l+1)

n )n≥0 with generic weight sequence (T 2l+1

i )i≥1 we may assume
w.l.o.g. that

g(α) =
∑
i≥1

ETα
i <

∑
i≥1

ET 2l+1

i

α/2l+1

= g(2l+1)α/2l+1
. (7.11)

With this we get

Eψl+1

(
W

(2l+1)
1

)
= Eφ


∑

i≥1

T 2l+1

i

g(2l+1)

1/2l+1 ≤ C Eφ(Z1) < ∞,

∑
i≥1

E

(
T 2l+1

i

g(2l+1)

)α/2l+1

=
g(α)

g(2l+1)α/2l+1 < 1,

thus confirming validity of (a) for the WBP (W (2l+1)
n )n≥0 and (α/2l+1, S−l−1�) in place of

(α, �).

Now suppose α = 2l+1 and note that (7.10) remains valid. In order to verify that the
penultimate line of (7.9) is finite it therefore suffices to prove that

Eψl+1

(
W (2l+1)

n

)
= EW (2l+1)

n ψ(W (2l+1)
n ) = o(c−n), n → ∞,

for any c ∈ (0, 1), where ψl+1(x) = �(x1/2l+1
) ∈ R∗

0. But ψl+1 
 ψ̂ for some ψ̂ ∈ C∗
0 and the

martingale property of (W (2l+1)
n )n≥0 yields as in Step 1

Eψl+1

(
W (2l+1)

n

)
≤ C

∑
|v|=n−1

Eψl+1(L(v)Z1(v)) ≤ C Eψl+1(Z1) Eψl+1(Mn−1),

and since Eψl+1(M1) � Eψl+1(Z1) < ∞, Lemma 5.6(b) provides us with the desired conclusion
Eψl+1(Mn) = o(c−n) for any c ∈ (0, 1). We have thus completed the proof of the first half of
(7.4).

Step 2b. Proof of second half of (7.4). Suppose a appearing in the definition
of Z<

1 be fixed strictly less than 1 and satisfying EMα−1
1 < aα−1. We will take advantage of

what has been proved so far, namely that Eφ(Z1) < ∞ and g(α) < 1 implies Eφ(Z<
1 ) < ∞.

Moreover, by Lemma 4.2,

g<(α) def=
∑
i≥1

E(T<
i )α =

∑
v∈S<

1

EL(v)α = EMα−1
σ<
1

< a ≤ 1,
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so that, if (Zn)n≥0 satisfies hypothesis (a), then so does the WBP (Z<
n )n≥0. By Proposition

5.1, the latter also satisfies the standing assumptions (C1-4), and W is also its a.s. limit.
However, (Z<

n )n≥0 possesses the additonal property that its generic weights T<
i , i ≥ 1, are

all bounded by a. Based on these remarks, it suffices to prove the second half of (7.4) when
substituting Wn with W<

n
def= Z<

n . Namely, having done so, we infer 0 < Eφ(W ) < ∞ and from
this supn≥0 Eφ(Wn) < ∞ by an appeal to the tail inequality (1.18) which in fact even yields
Eφ(W ∗) < ∞, where W ∗ = supn≥0 Wn should be recalled. In order to not overburden the
necessary notation, we assume w.l.o.g. that (Zn)n≥0 itself already has generic weights strictly
bounded by some a < 1, thus giving Zn = Z<

n and Mn ≤ an for all n ≥ 0.

We will again distinguish the cases α ∈ [2m, 2m+1), m ≥ 0, and use an induction over m.
The case α ∈ [1, 2) has already been proved in Step 1. So let us make the inductive hypothesis
that the assertion holds true whenever α ≤ 2m+1 for some m ≥ 0, � ∈ R∗

0 and (Zn)n≥0 is any
WBP satisfying assertion (a) for such α, � and having generic weights bounded by some constant
strictly less than 1. By Lemma 3.4, we must show Q1(m + 1, φ̂) < ∞ and Q2(m + 1, φ̂) < ∞.
By a similar estimation as in (7.6), we obtain (with s = 2m+1)

Q1(m + 1, φ̂) = ES
−m−1φ̂

∑
k≥0

D
(s)

k


≤ φ̂(1) + C Eφ(1 ∨ Z1)

∑
k≥0

∑
|v|=k

Eφ(L(v))

= φ̂(1) + C Eφ(1 ∨ Z1)
∑
k≥0

Eφ(Mk)

≤ φ̂(1) + C Eφ(1 ∨ Z1)
∑
k≥0

φ(ak) < ∞.

(7.12)

As for Q2(m + 1, φ̂) < ∞ or, equivalently,

U(l, φ̂) def=
∑
n≥1

ES
−lφ̂

(
D

(2l)

n

)
< ∞ for l ∈ {0, ..., m},

the procedure is similar to that in Step 2a for Q2(m + 1, φ̂). We have

ES
−lφ̂(D

(2l)

1 ) ≤ Eφ̂(1 ∨ Z1) < ∞

and, by an appeal to the BDG-inequality,∑
n≥2

ES
−lφ̂

(
D

(2l)

n

)
�

∑
n≥2

J1(n, l, φ̂) +
∑
n≥2

J2(n, l, φ̂),

where

J1(n, l, φ̂) def= ES
−l−1φ̂

µ(2l+1)
∑

|v|=n−1

L(v)2
l+1
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and

J2(n, l, φ̂) def=
∑

|v|=n−1

ES
−lφ̂

L(v)2
l

∣∣∣∣∣ ∑
i≥1

Ti(v)2
l − g(2l)

∣∣∣∣∣
 .

But ∑
n≥2

J1(n, l, φ̂) ≤ C
∑
n≥2

ES
−l−1φ̂

(
Z

(2l+1)
n−1

)
and the latter sum has already been shown to be finite in the estimation of

∑
n≥2 J2(n, l, φ̂)

in Step 2A (see (7.9)). Finally,

∑
n≥2

J2(n, l, φ̂) ≤ C
∑
n≥2

∑
|v|=n−1

ES
−lφ

L(v)2
l

(
1 ∨

∑
i≥1

Ti(v)

)2l
≤ C Eφ(1 ∨ Z1)

∑
n≥2

∑
|v|=n−1

Eφ(L(v))

= C Eφ(1 ∨ Z1)
∑
n≥1

Eφ(Mn)

≤ C Eφ(1 ∨ Z1)
∑
n≥2

φ(an) < ∞,

(7.13)

and this finally completes our proof of ”(a)⇒(b)”.

”(b)⇒(a)” Let us first consider the case α > 1 which is very simple. As before, write
φ(x) = xα�(x). Since 0 < Eφ(W ) < ∞ implies supn≥0 Eφ(Wn) ≤ Eφ(W ∗) < ∞ (Lemma A.1),
we particularly infer Eφ(Z1) < ∞. But EWα � Eφ(W ) further implies g(α) < 1 by an appeal
to Theorem 3.1.

The case α = 1, for which EZ1U�(Z1) < ∞ must be proved, is more difficult and requires a
combination of Corollary 6.2 with an argument appearing in a similar form in [5] for the Galton-
Watson process. By assumption on �, there exists φ ∈ C∗

0 with x�(x) 
 φ(x). Following Section
6, let Tb denote the HSL associated with τ(b) = inf{n ≥ 0 : Mn < e−b} for b > 0. Fix any b > 0
and let Sn be the HSL associated with τ(bn) + 1. Define Wn

def= ZSn , W∗
n

def= max0≤k≤n Wn

for n ≥ 0 and W∗ def= supn≥0 Wn. Note that

Wn =
∑

v∈Tbn

L(v)Z1(v).

Clearly, Sn ↑ ∞ as n → ∞, whence (1.18) ensures P(W∗ > t) ≤ C P(W > at) for all t > 1,
a ∈ (0, 1) and a suitable constant C = Ca > 0. Since EW = 1 and Wn = E(W |FSn

) → W a.s.,
there exists 0 < ρ < 1 such that infn≥0 P(ρ ≤ W∗

n ≤ ρ−1, W ≥ ρ) > 0. By Corollary 6.2, we
can further choose c > 0 such that

Nbn(c) =
∑

v∈Tbn

1[e−bn−c,e−bn](L(v))
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satisfies P(e−bnNbn(c) ≥ (1 − ρ/2)W − ρ/2) → 1, as n → ∞. Hence, by considering the event
{ρ ≤ W∗

n ≤ ρ−1, W ≥ ρ, e−bnNbn(c) ≥ (1−ρ/2)W −ρ/2} and setting κ
def= (1−ρ/2)ρ−ρ/2 > 0,

we see that

η
def= inf

n≥m
P(ρ ≤ W∗

n−1 ≤ ρ−1, e−bnNbn(c) ≥ κ) > 0

for m ≥ 1 sufficiently large. With these observations we infer

P(W∗ > t) = P(W0 > t) +
∑
n≥1

P(W∗
n−1 ≤ t,Wn > t)

≥
∑
n>m

P

(
ρ ≤ W∗

n−1 ≤ t, Nbn(c) ≥ κebn,
∑

v∈Tbn

1[e−bn−c,e−bn](L(v))L(v)Z1(v) > t

)
≥

∑
n>m

P(ρ ≤ W∗
n−1 ≤ t, Nbn(c) ≥ κebn) P(e−bn−cUκebn > t)

≥ η
∑
n>m

P(Uκebn > tec/κ)

for all t ≥ ρ−1, where Us
def= X1 + ... + X�s and Us

def= s−1Us for s > 0 with X1, X2, ... being
i.i.d. copies of Z1. The remaining argument can be copied from [5, p. 927] and leads to the
inequality

P(W∗ > t) ≥ η P(U
∗

> at), U
∗ def= sup

k≥1
Uk,

for all t ≥ ρ−1 and some a > 0. Consequently, EW∗�(W∗) � Eφ(W∗) < ∞ implies Eφ(U
∗
) <

∞ which in turn holds iff ELφ(Z1) < ∞ by Lemma 4.4 in [5]. But Lφ, defined as in (2.6),
satisfies Lφ(x) ∼ xU�(x), as x → ∞, by (2.7) of Lemma 2.3. Thus we finally conclude
EZ1U�(Z1) < ∞ which completes the proof of Theorem 1.2. ♦

Proof of Theorem 1.3. The proof of this result, as compared to that of Theorem 1.2,
differs only in those places where, given φ(x) = xα�(x) with � ∈ R0, the submultiplicativity
of � has been utilized before and must now be replaced with a use of a submultiplicative cap
�∗ ∈ R∗

0[�] satisfying
∑

i≥1 ETα
i �∗(Ti) < ∞ (α > 1), resp.

∑
i≥1 ETα

i U�∗(Ti) < ∞ (α = 1).
These places are (7.5), (7.6), (7.8), (7.9), (7.12) and (7.13), and the necessary modification of
the argument is always of the same form. We therefore restrict ourselves to a demonstration
of this modification in (7.5).

With �∗ as stated, put φ∗(x) def= xα�∗(x) and notice that, in extension of (7.3) and
naturally keeping the notation from there, we have

C1φ̂(x) ≤ φ(x) ≤ C2

(
xα ∨ φ̂(x)

)

 φ̂(x) ≤ C3φ

∗(x) (7.14)

for all x ≥ 0 and suitable C1, C2, C3 > 0. W.l.o.g. suppose � be normalized. By Lemma 2.5,
we infer �(xy) ≤ C�(x)�∗(y) and thus φ(xy) ≤ Cφ(x)φ∗(y) for all x, y ≥ 0 and some C > 0.
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Turning to (7.5), hence assuming α ∈ [1, 2] and φ̂ ∈ C∗
0, we then obtain

Eφ̂(Wn) ≤ φ̂(1) + C E

 ∑
v≺S<

1 ,|v|<n

φ(L(v)Z1(v))


≤ φ̂(1) + C Eφ(Z1) E

 ∑
v≺S<

1 ,|v|<n

φ∗(L(v))


for all n ≥ 0 (and a constant C not depending on n) and therefrom (as Eφ(Z1) < ∞)

Eφ̂(Z<
1 ) ≤ sup

n≥0
Eφ̂(Wn) � E

 ∑
v≺S<

1

φ(L(v))

 = Eσ<

1 Eφ∗(M∗).

But Lemma 5.5 ensures Eφ∗(M∗) < ∞ iff
∑

i≥1 ETα
i �∗(Ti) < ∞ in case α > 1, respectively∑

i≥1 ETiU�∗(Ti) < ∞ in case α = 1. ♦

Proof of Theorem 1.4. ”(a)⇒(b)” Here it suffices to note that, if limx→∞ �(x) = 0,
then �∗ ≡ 1 ∈ R∗

0[�] satisfies the extra condition of Theorem 1.3 as reducing to g(α) < ∞.
”(b)⇒(a)” If EWα�(W ) < ∞, then EW β < ∞ for all β < ∞ whence, by Theorem 3.1,

g(β) < 1 for all such β. But then, by Fatou’s lemma,

n∑
i=1

ETα
i ≤ lim inf

β↑α

n∑
i=1

ET β
i ≤ lim inf

β↑α
g(β) ≤ 1

for all n ≥ 1 and thus

g(α) = lim
n→∞

n∑
i=1

ETα
i ≤ 1.

So once again we infer the extra condition of Theorem 1.3 with �∗ ≡ 1 and thus validity of (a)
by that theorem. ♦

Appendix. A tail inequality

Given a weighted branching model satisfying (C1-4), let (Sn)n≥0 be an increasing sequence
of a.s. finite HSL with Sn ↑ ∞. This means that S0 � S1 � ... and

{v ∈ V : |v| ≤ k, Sn � v} ↓ ∅, n → ∞

for all k ≥ 0. Note that these conditions include the cases when Sn = {v : |v| = n} or
Sn = S<

1 ∧ n (see (7.1)) for n ≥ 0. Put Wn
def= ZSn for n ≥ 0 and W∗ def= supn≥0 Wn. By

Lemma 4.2(c), Wn = E(W |FSn
) a.s. and thus forms a martingale with a.s. limit W as Sn ↑ ∞.

The proof of the following tail inequality may be found in [38, Theorem 1.1.4] and is based on
an adaptation of an argument given by Biggins in [16].
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Lemma A.1. For any 0 < a < 1, there exists a constant C = C(a) ∈ (0,∞) such that

P(W > at) ≥ C P(W∗ > t) (A.1)

for all t > 1. In particular,

Eφ(W ) < ∞ ⇔ Eφ(W∗) < ∞ (A.2)

for any nondecreasing convex φ : [0,∞) → [0,∞) with φ(0) = 0 and φ(2x) ≤ cφ(x) for some
c > 0 and all x ≥ 0.
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Appl. 25, 85-100.
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