Dr. Iris Weber

Dr. Iris Weber

Wilhelm-Klemm-Str. 10, room 111f
48149 Münster

T: +49 251 83-39051

Academic Profile

  • Projects

  • Publications

    • , , , , , , , and . . “Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.Icarus, 415 116078. doi: 10.1016/j.icarus.2024.116078.
    • , , , and . . “Alteration in the Raman spectra of characteristic rock-forming silicate mixtures due to micrometeorite bombardment.Journal of Raman Spectroscopy, 55 (8): 901913. doi: 10.1002/jrs.6676.
    • , , , , , , , and . . “Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.Journal of Geophysical Research: Planets, 129 (8): e2024JE0e2024JE008483. doi: 10.1029/2024JE008483.

    • , , , , , , , , , , and . “Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.Icarus, 391 doi: 10.1016/j.icarus.2022.115344.
    • , , , , , , , and . . “A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.Icarus, 396: 115498. doi: 10.1016/j.icarus.2023.115498.
    • , , , , , , , , and . . “Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.Earth and Space Science, 10 (6): e2023EA002903. doi: 10.1029/2023EA002903.
    • , , , , , , , , and . . “Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.Icarus, 404: 115683115683. doi: 10.1016/j.icarus.2023.115683.
    • , , , , , , and . . “Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.Journal of Geophysical Research: Planets, 128 (12): e2023JE0. doi: 10.1029/2023JE007895.

    • , , , , , , and . . “Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.Earth and Planetary Science Letters, 593: 117647. doi: 10.1016/j.epsl.2022.117647.
    • , , , , , , and . . “Space weathering simulation of micrometeorite bombardment on silicates and their mixture for space application.Journal of Raman Spectroscopy, 53 (3): 411419. doi: 10.1002/jrs.6162.

    • , , , , , , , , , , , , , , , , and . . “Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.Icarus, 361: 114363. doi: 10.1016/j.icarus.2021.114363.
    • , , , , , , , , , , , and . . “A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.ıcarus, 357: 114162. doi: 10.1016/j.icarus.2020.114162.
    • , , , , , , , , and . . “The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.Earth and Planetary Science Letters, 569: 117072. doi: 10.1016/j.epsl.2021.117072.
    • , , , , , , and . . “Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.Journal of Geophysical Research (Planets), 126 (8): e06832. doi: 10.1029/2021JE006832.
    • , , , , , and . . “Physico-Chemical Investigation of Endodontic Sealers Exposed to Simulated Intracanal Heat Application: Hydraulic Calcium Silicate-Based Sealers.Materials (Basel), 14 (4): 111. doi: 10.3390/ma14040728.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements.Earth, Planets and Space, 73 (1) doi: 10.1186/s40623-021-01496-z.

    • , , , , , and . . “Mid-infrared spectroscopy of alkali feldspar samples for space application.Mineralogy and Petrology, 114: 453–463. doi: 10.1007/s00710-020-00709-9.
    • , , , , , , , , , , , , and . . “Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.Space Science Reviews, 216 (6): 110. doi: 10.1007/s11214-020-00732-4.
    • , , , , , , , and . “Mid-infrerad reflectance spectroscopy of aubrite components.Meteoritics & Planetary Science, 55: 2080–2096. doi: 10.1111/maps.13568.
    • , , , , , , , , , , , and . . “Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.Earth and Planetary Science Letters, 530 doi: 10.1016/j.epsl.2019.115884.

    • , , , , , , , , , , , , , , , , , , , , , , and . “The Renchen L5-6 chondrite breccia – the first confirmed meteorite fall from Baden-Württemberg (Germany).Geochemistry – Chemie der Erde, 79: 125525. doi: 10.1016/j.chemer.2019.07.007.
    • , , , , , , , , , , , and . “Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometre scale.Astronomy and Astrophysics, 1 doi: 10.1051/0004-6361/201834851.
    • , , , , , , and . . “Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.Icarus, 324: 86103. doi: 10.1016/j.icarus.2019.02.010.
    • . . “Raman characteristics of Alpine–Himalayan serpentine polymorphs: A case study of Khankuie ultramafic complex, southeast of Iran.Journal of Earth System Science, 8 / 128 (B): 238. doi: 10.1007/s12040-019-1259-6.

    • , , , , , , , and . . “The Chelyabinsk meteorite: New insights from a comprehensive electron microscopy and Raman spectroscopy study with evidence for graphite in olivine of ordinary chondrites.Meteoritics & Planetary Science, 53: 416432.
    • . . “Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions.Journal of Raman Spectroscopy, 49: 18301839.

    • , , , , , and . “Laser alteration on iron sulfides under various environmental conditions.Journal of Raman Spectroscopy, 2017 doi: 10.1002/jrs.5083.
    • , , , , , , , , , , and . “Shifted Excitation Raman Difference Spectroscopy applied to extraterrestrial particles returned from the asteroid Itokawa.Planetary and Space Science, 144: 106111. doi: 10.1016/j.pss.2017.05.004.
    • , , , , , , and . “Laser-induced alteration of Raman spectra for micron-sized solid particles.Planetary and Space Science, 2017 (138): 2532. doi: 10.1016/j.pss.2017.02.001.
    • , , and . . “IR Spectroscopy of Synthetic Glasses with Mercury Surface Composition: Analogs for Remote Sensing.Icarus, 296: 123138.

    • , , , , , , , , , , , and . “Aggregate dust particles at comet 67P/Churyumov–Gerasimenko.Nature, 537 (7618) doi: 10.1038/nature19091.
    • , , , , , and . “Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.Icarus, 278: 162179. doi: 10.1016/j.icarus.2016.06.013.
    • , , , , , , , and . “Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.Icarus, 264: 352368. doi: 10.1016/j.icarus.2015.10.003.
    • , , , , , , , , , , , , , and . “Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.Meteoritics and Planetary Science, 51 (1): 330. doi: 10.1111/maps.12586.

    • , , , , and . “Mineralogical and Raman spectroscopy studies of natural olivines exposed to different planetary environments.Planetary and Space Science, 104 (B): 163–172.

    Research Articles (Journals)
    • , , , , , , and . “The Developing of MERTIS as an advanced process – From the study up to the flight model.Proceedings of SPIE, 8867 doi: 10.1117/12.2024375.
    Research Article (Book Contributions)
    • , , , , , and . “Application of Raman Spectroscopy as in-situ technology for the search for life.” in Habitability of Other Planets and Satellites., edited by Seckbach J. and de Vera J.P.. Düsseldorf: Springer VDI Verlag.

    • , , , , , and . “Optimizing the Detection of Carotene in Cyanobacteria in a Martian Regolith Analogue with a Raman Laser Spectrometer on ExoMars.Planetary and Space Science, 60: 356362.
    • , , , , , , , , and . “MERTIS - The Thermal Infrared Imaging Spectrometer Onboard of the Mercury Planetary Orbiter.Proceedings of ICSO, 162

    • , , , , , , and . . “A combined ToF-SIMS and EMP/SEM study of a three-phase sympletictite in the Los Angeles basaltic shergottite.Meteoritics and Planetary Science, 44 (8): 12251237. doi: 10.1111/j.1945-5100.2009.tb01219.x.

    • , , , and . . “The Crystallization Age of Eucrite Zircon.Science, 317 (5836): 345347. doi: 10.1126/science.1140264.

    • , , , and . “TEM investigations of a “mysterite” inclusion from the Krymka LL-chondrite.Meteoritics Planet. Science, 2006 (41): 571580.

    • , , , , , and . “Carbonaceous xenoliths in the Krymka LL3.1-chondrite: mysteries and established facts.Geochemica Cosmo. Acta, 2005 (69): 21652182.

    • , , and . “TEM investigations on the monomict ureilites Jalanash and Hammadah al Hamra 064.Meteoritics Planet. Science, 38: 145156.

    • , , , , and . “Mineralogy of fine-grained material in the Krymka (LL3) chondrite.Meteoritics Planet. Science, 36: 10671085.