Projects
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
participations in other joint project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50QW2201A - BC MERTIS: Systemtests, Start, Inbetriebnahme, Cruise-Phase Teil 1 ( – )
participations in other joint project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50QW1701 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase E/F1 ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QW1302 - Compact LIPS Spektrometer – GENTNER Phase B ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QX0602
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
Publications
- . . ‘Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.’ Icarus 415: 116078. doi: 10.1016/j.icarus.2024.116078.
- . . ‘Alteration in the Raman spectra of characteristic rock-forming silicate mixtures due to micrometeorite bombardment.’ Journal of Raman Spectroscopy 55, № 8: 901–913. doi: 10.1002/jrs.6676.
- . . ‘Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.’ Journal of Geophysical Research: Planets 129, № 8: e2024JE0–e2024JE008483. doi: 10.1029/2024JE008483.
- 10.1016/j.icarus.2022.115344. . ‘Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.’ Icarus 391. doi:
- . . ‘A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.’ Icarus 396: 115498. doi: 10.1016/j.icarus.2023.115498.
- . . ‘Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.’ Earth and Space Science 10, № 6: e2023EA002903. doi: 10.1029/2023EA002903.
- . . ‘Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.’ Icarus 404: 115683. doi: 10.1016/j.icarus.2023.115683.
- . . ‘Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.’ Journal of Geophysical Research: Planets 128, № 12: e2023JE0. doi: 10.1029/2023JE007895.
- . . ‘Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.’ Earth and Planetary Science Letters 593: 117647. doi: 10.1016/j.epsl.2022.117647.
- . . ‘Space weathering simulation of micrometeorite bombardment on silicates and their mixture for space application.’ Journal of Raman Spectroscopy 53, № 3: 411–419. doi: 10.1002/jrs.6162.
- . . ‘The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.’ Earth and Planetary Science Letters 569: 117072. doi: 10.1016/j.epsl.2021.117072.
- . . ‘Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.’ Journal of Geophysical Research (Planets) 126, № 8: e06832. doi: 10.1029/2021JE006832.
- . . ‘Physico-Chemical Investigation of Endodontic Sealers Exposed to Simulated Intracanal Heat Application: Hydraulic Calcium Silicate-Based Sealers .’ Materials (Basel) 14, № 4: 1–11. doi: 10.3390/ma14040728.
- . . ‘In situ science on Phobos with the Raman spectrometer for MMX (RAX): preliminary design and feasibility of Raman measurements.’ Earth, Planets and Space 73, № 1. doi: 10.1186/s40623-021-01496-z.
- . . ‘Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.’ Icarus 361: 114363. doi: 10.1016/j.icarus.2021.114363.
- . . ‘A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.’ ıcarus 357: 114162. doi: 10.1016/j.icarus.2020.114162.
- 10.1111/maps.13568. . ‘Mid-infrerad reflectance spectroscopy of aubrite components.’ Meteoritics & Planetary Science 55: 2080–2096. doi:
- . . ‘Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.’ Earth and Planetary Science Letters 530. doi: 10.1016/j.epsl.2019.115884.
- . . ‘Mid-infrared spectroscopy of alkali feldspar samples for space application.’ Mineralogy and Petrology 114: 453–463. doi: 10.1007/s00710-020-00709-9.
- . . ‘Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.’ Space Science Reviews 216, № 6: 110. doi: 10.1007/s11214-020-00732-4.
- . . ‘Raman characteristics of Alpine–Himalayan serpentine polymorphs: A case study of Khankuie ultramafic complex, southeast of Iran.’ Journal of Earth System Science 8 / 128, № B: 238. doi: 10.1007/s12040-019-1259-6.
- 10.1016/j.chemer.2019.07.007. . ‘The Renchen L5-6 chondrite breccia – the first confirmed meteorite fall from Baden-Württemberg (Germany).’ Geochemistry – Chemie der Erde 79: 125525. doi:
- 10.1051/0004-6361/201834851. . ‘Dust of comet 67P/Churyumov-Gerasimenko collected by Rosetta/MIDAS: classification and extension to the nanometre scale.’ Astronomy and Astrophysics 1. doi:
- . . ‘Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.’ Icarus 324: 86–103. doi: 10.1016/j.icarus.2019.02.010.
- . ‘The Chelyabinsk meteorite: New insights from a comprehensive electron microscopy and Raman spectroscopy study with evidence for graphite in olivine of ordinary chondrites.’ Meteoritics & Planetary Science 53: 416–432.
- . ‘Raman spectra of hydrous minerals investigated under various environmental conditions in preparation for planetary space missions.’ Journal of Raman Spectroscopy 49: 1830–1839.
- 10.1002/jrs.5083. . ‘Laser alteration on iron sulfides under various environmental conditions.’ Journal of Raman Spectroscopy 2017. doi:
- 10.1016/j.pss.2017.05.004. . ‘Shifted Excitation Raman Difference Spectroscopy applied to extraterrestrial particles returned from the asteroid Itokawa.’ Planetary and Space Science 144: 106–111. doi:
- 10.1016/j.pss.2017.02.001. . ‘Laser-induced alteration of Raman spectra for micron-sized solid particles.’ Planetary and Space Science 2017, № 138: 25–32. doi:
- . . ‘IR Spectroscopy of Synthetic Glasses with Mercury Surface Composition: Analogs for Remote Sensing.’ Icarus 296: 123–138.
- 10.1038/nature19091. . ‘Aggregate dust particles at comet 67P/Churyumov–Gerasimenko.’ Nature 537 (7618). doi:
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278: 162–179. doi:
- . . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264: 352–368. doi: 10.1016/j.icarus.2015.10.003.
- 10.1111/maps.12586. . ‘Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.’ Meteoritics and Planetary Science 51, № 1: 3–30. doi:
- . ‘Mineralogical and Raman spectroscopy studies of natural olivines exposed to different planetary environments.’ Planetary and Space Science 104 (B): 163–172.
Research Articles (Journals)
- 10.1117/12.2024375. . ‘The Developing of MERTIS as an advanced process – From the study up to the flight model.’ Proceedings of SPIE 8867. doi:
Research Article (Book Contributions)
- . ‘Application of Raman Spectroscopy as in-situ technology for the search for life.’ In Habitability of Other Planets and Satellites., edited by , 1–12. Düsseldorf: Springer VDI Verlag.
- . ‘Optimizing the Detection of Carotene in Cyanobacteria in a Martian Regolith Analogue with a Raman Laser Spectrometer on ExoMars.’ Planetary and Space Science 60: 356–362.
- . ‘MERTIS - The Thermal Infrared Imaging Spectrometer Onboard of the Mercury Planetary Orbiter.’ Proceedings of ICSO 162.
- . . ‘A combined ToF-SIMS and EMP/SEM study of a three-phase sympletictite in the Los Angeles basaltic shergottite.’ Meteoritics and Planetary Science 44, № 8: 1225–1237. doi: 10.1111/j.1945-5100.2009.tb01219.x.
- . . ‘The Crystallization Age of Eucrite Zircon.’ Science 317, № 5836: 345–347. doi: 10.1126/science.1140264.
- . ‘TEM investigations of a “mysterite” inclusion from the Krymka LL-chondrite.’ Meteoritics Planet. Science 2006, № 41: 571–580.
- . ‘Carbonaceous xenoliths in the Krymka LL3.1-chondrite: mysteries and established facts.’ Geochemica Cosmo. Acta 2005, № 69: 2165–2182.
- . ‘TEM investigations on the monomict ureilites Jalanash and Hammadah al Hamra 064.’ Meteoritics Planet. Science 38: 145–156.
- . ‘Mineralogy of fine-grained material in the Krymka (LL3) chondrite.’ Meteoritics Planet. Science 36: 1067–1085.